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ABSTRACT
Advances in deep learning have propelled the evolution of multi-view clustering
techniques, which strive to obtain a view-common representation from multi-view
datasets. However, the contemporary multi-view clustering community confronts
two prominent challenges. One is that view-specific representations lack guarantees
to reduce noise introduction, and another is that the fusion process compromises
view-specific representations, resulting in the inability to capture efficient information
from multi-view data. This may negatively affect the accuracy of the clustering results.
In this article, we introduce a novel technique named the ‘‘contrastive attentive
strategy’’ to address the above problems. Our approach effectively extracts robust view-
specific representations from multi-view data with reduced noise while preserving
view completeness. This results in the extraction of consistent representations from
multi-view data while preserving the features of view-specific representations. We
integrate view-specific encoders, a hybrid attentive module, a fusion module, and
deep clustering into a unified framework called AMCFCN. Experimental results on
four multi-view datasets demonstrate that our method, AMCFCN, outperforms seven
competitive multi-view clustering methods. Our source code is available at https:
//github.com/xiaohuarun/AMCFCN.

Subjects Data Mining and Machine Learning, Data Science
Keywords Multi-view Clustering, Contrastive Learning, Attention Mechanism

INTRODUCTION
In real-world scenarios, various heterogeneous visual features are commonly encountered,
including HOG (Dalal & Triggs, 2005), SIF (Lowe, 2004), and LBP (Ojala, Pietikäinen &
Harwood, 1996). Multi-view data is data that can be described in many different ways for
the same thing, but which all share the same clustering structure. As a result, multi-view
clustering (Li et al., 2019; Yang et al., 2021; Lin et al., 2023) garners significant attention
in the machine-learning community. In the past decades, several traditional clustering
methods were proposed, such as non-negative matrix factorization (Chen et al., 2020a;
Chen et al., 2020b), subspace clustering (Cao et al., 2015), and spectral clustering (Li et al.,
2018). However, despite the effectiveness of traditional clustering methods for single-view
data, their applicability to multi-view data is limited due to the underutilization of a
shared value representation of multi-view (or as view-common representation). Thus, the
multi-view fusion technique becomes crucial in the context of multi-view clustering (Ke et
al., 2021; Ke, Zhu & Yu, 2022).
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In previous studies, exemplified by reconstruction fusion-based models (Zhang et al.,
2020; Ke et al., 2022), the primary focus lies on the extraction of multiple view-specific
representations and the subsequent acquisition of a shared view-common representation,
which serves the purpose of reconstructing the original data. The reconstruction process
mandates the network to capture details, potentially introducing noise into the learned
representation (Ke, Zhu & Yu, 2022). Consequently, the network’s ability to effectively
extract both view-common and view-specific representations during the fusion process
may be compromised, while there are some approaches (Li et al., 2019; Zhou & Shen,
2020) that use GAN (Mirza & Osindero, 2014) to improve the stability of view-specific
representations, as well as constrain the model to avoid compromising view-specific
representations during the fusion process (over-fusion). We observe that this can result in
prolonged training times and an unstable training process.

In this article, we identify two challenges for multi-view clustering: (i) how to obtain a
representation with less noise in a large amount of unlabeled data. (ii) when fusing multiple
views to obtain view-common representation for clustering, it is important to preserve
view-specific completeness. For the first challenge, we employ the attention mechanism
as a solution. The attention mechanism plays a crucial role in numerous state-of-the-art
neural architectures (Guo et al., 2022), enabling models to dynamically concentrate on
specific parts of inputs for the identification of the most informative and discriminative
features from each view (Lu, Liu & Zuo, 2021). For the second challenge, instead of allowing
view-specific representations to interact directly with the view-common representation, we
introduce an additional alignment space for view-specific alignment interactions, hereby
safeguarding the integrity of the representation.

In brief, we argue that good view-common representations require less noise and
completeness. Inspired by the substantial achievements of contrastive learning (Chen et al.,
2020b) in the context of multi-view learning (Ke et al., 2021; Ke et al., 2023), we propose a
novel framework of Attentive Multi-View Contrastive Fusion Clustering Net (AMCFCN).
This framework employs view-specific encoders and a fusion module to extract robust
representation from multi-view data. Additionally, we introduce a clustering-guided
mechanism to drive the fusion module to learn the view-common representation. Unlike
previous approaches (Lin et al., 2021; Ke et al., 2022), we introduce a novel contrastive
strategy, called contrastive attentive strategy (COATS), for maintaining view-specific
representations. The main contributions of this article are summarized as follows:

(1) We propose a hybrid attentive module that combines the dynamic contribution of
view-specific representations to representation learning to derive robust representations.

(2) We introduce a contrastive attentive strategy (COATS) for view fusion while
preserving view-specific completeness.

(3)We integrate view-specific encoders, a hybrid attentive module, a fusionmodule, and
deep clustering into a unified framework known as AMCFCN. We conduct experiments
on four clustering datasets to measure the clustering performance of AMCFCN. A large
number of experiments validate the effectiveness of the proposed method.
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RELATED WORK
In this section, we briefly review multi-view clustering. Existing multi-view clustering
methods fall into three categories: traditional multi-view clustering methods (Cao et al.,
2015; Liu et al., 2016; Chen et al., 2020a), deep learning-based methods (Li et al., 2019;
Zhou & Shen, 2020), and deep learning methods combining with traditional multi-view
clustering techniques (Gao et al., 2020; Yang et al., 2021).

Traditional multi-view clustering methods can be classified into four categories,
including those based on kernel learning (Liu & Tuzel, 2016), subspace learning (Cao et al.,
2015), non-negative matrix decomposition (Chen et al., 2020a), and spectral approaches
(Li et al., 2018). For example, the subspace learning method (Cao et al., 2015) focuses
on dimensionality reduction across multiple views and information fusion, aiming to
reveal intricate data structures and improve clustering outcomes. The non-negative matrix
decomposition method (Chen et al., 2020a) aims to identify common basis vectors for each
view, with their similarities influencing the clustering effectiveness. However traditional
methods struggle with high-dimensional and massive data in the big data era.

Now, deep learning is gaining popularity due to its powerful nonlinear and parallel
computing capabilities. Deep learning-based approaches harness deep neural networks to
learn discriminative features from each view and extract view-common representation for
improved clustering. In the following, we present four of the latest and best deep learning-
based multi-view clustering, which will be used to compare with our method. DAMC (Li
et al., 2019) deploys deep autoencoders to facilitate the efficient transformation of raw
features into a shared, low-dimensional embedding space, simultaneously acquiring shared
representation across multiple views. It also employs adversarial training to capture data
distributions and decompose mappings. EAMC (Zhou & Shen, 2020) employs adversarial
learning and attention mechanisms to redistribute feature distributions and to elucidate
the significance of three tasks: feature learning, modal fusion, and clustering assignment.
Ae2-Nets (Zhang, Liu & Fu, 2019) combines view-specific representations learning with
multi-view information encoding using a nested auto-encoder framework, achieving a
balance between complementarity and consistency among multi-views. CONAN (Ke et
al., 2021) extracts consistent representations from multiple views, preserves view-specific
features, and achieves view alignment through contrastive learning to obtain a good
view-common representation.

In contrast, there exist some deep learning methods combined with traditional multi-
view clustering techniques (Gao et al., 2020; Yang et al., 2021). Deep Canonical Correlation
Analysis (DCCA) (Gao et al., 2020), as an alternative to kernel canonical correlation
analysis (Liu & Tuzel, 2016), is recognized for its scalability with data size. It is introduced
as a method for acquiring correlated representations by learning nonlinear transformations
from two data views. Deep multimodal subspace clustering (DMSC) (Yang et al., 2021)
utilizes subspace learning (Cao et al., 2015) and measures the loss during training by
assessing the distance between the reconstruction and the original input, achieving a
view-common representation through spatial fusion. Simultaneously, there exist deep
learning methods combined with traditional k-means clustering methods (Caron et al.,
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2018). For example, Caron et al. (2018) propose a sequential paradigm that separates the
two key tasks of feature learning and clustering, and can only perform clustering on the
entire dataset.

However, the above methods also have room for improvement. For instance, in the
context of deep learning, DAMC (Li et al., 2019) and CONAN (Ke et al., 2021) neglect
the noise in view-specific representations, potentially yielding suboptimal results. EAMC
(Zhou & Shen, 2020) employs an attention mechanism to reduce representation noise but
uses GAN for model constraints, which may lead to model instability. On the other hand,
Caron et al. (2018), the authors combine deep learning and K-Means while separating the
two crucial tasks of feature learning and clustering. This separation has the potential to
delay the network’s training in the optimal direction. Our AMCFCN effectively reduces
representation noise with the attention mechanism while preserving view integrity through
COATS. Additionally, it seamlessly integrates feature learning and clustering, co-optimizing
both tasks. This adaptation allows the clustering process to improve as the feature learning
process unfolds, ultimately enhancing clustering results.

METHOD
In this section, firstly, we introduce the formulation of the problem. This is followed by an
introduction to the hybrid attentive module and the contrastive attentive strategy. Lastly,
we present the objective function.

Formulation of the problem
In this section, we introduce the goal of our study. The objective of AMCFCN is to go from a
dataset consisting of N data samples, which comprises Q views {M(1),M(2) ··· ,M(Q)}, where
M(i) ∈RN×d(M(i)) represents data samples of the dimension d(M(i)) from the i-th views.
The aim is to derive a set of view-common representations denoted as G and subsequently
cluster the N data samples into c clusters using this view-common representation. The
proposed method AMCFCN consists of Q view-specific encoder networks E(·), Q hybrid
attentive module A(·), a fusion module, and a clustering head C(·) as illustrated in Fig. 1.

The AMCFCN contains Q view-specific encoder networks E(·), which extracts
view-specific feature maps {X(i)Qi=1} from multi-view data {M(i)Q

i=1}; Ai(·) is utilized to
obtain view-specific robust representations {Y(i)Q

i=1} from these view-specific feature
maps {X(i)Qi=1}; f(·) is responsible for generating the view-common representation by
amalgamating the view-specific representations into G. In COATS, we optimize the
view-common representation G by taking G and {Y(i)Qi=1} as inputs. Finally, C(·) applies
off-the-shelf clustering methods on G to evaluate the effectiveness of the view-common
representation G. Below we describe the functions of each module in detail.

View-specific encode network
E(·) : The survey (Zhu et al., 2023) provides a summary of feature extraction methods
applicable to multimodal domains, encompassing text, vision, and audio. The survey (Zhu
et al., 2023) recommends the utilization of a Convolutional Neural Network (CNN) for
feature extraction. CNN is preferred due to its capacity to alleviate the laborious process
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Figure 1 Illustration of the workflow of AMCFCN.
Full-size DOI: 10.7717/peerjcs.1906/fig-1

Figure 2 The network structure of the view encoder.
Full-size DOI: 10.7717/peerjcs.1906/fig-2

of manual feature extraction and its effectiveness in extracting features from images. The
network structure diagram of CNN is depicted in Fig. 2. E(·) transforms the input image
data M(i)Q

i=1, which is converted into the feature map type {X(i)Qi=1} ∈RC×H×W, as follows:

X(i)= E(i)
(
Mi
;W(i)

E

)
,where i= 1,2,...,Q (1)

here, W(i)
E denotes the weight of the i-th view encoder E(i)(·).

Hybrid attentive module
A(·): A(·) acts to allow the network to weight the view-specific feature map X into HA,
i.e., to allow the network to adapt itself to the part of its interest (also known as the
downstream task-relevant information). Then, the obtained feature map information is
subjected to dimensionality reduction. We perform the dimensionality reduction using the
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dimensionality reduction module T(), which maps all view-specific feature maps that have
been undergone by the hybrid attentive module to a lower dimensional space, i.e., maps
robust view-specific representations Y. The next section goes into more detail, HA(i) and
Y(i) are defined as follows:

HA(i)=A
(
X(i)

)
(2)

Y(i)=T
([
HA(i)

])
,where i= 1,2,...,Q (3)

here, X(i) ∈RC×H×W represents the i-th feature map of the input, and HA(i) represents the
view-specific feature map generated by input X(i) through the hybrid attentive module,
where HA(i) ∈RC×H×W.Y(i) denotes the i-th robust view-specific representation, where
Y(i) ∈RN×d(Y(i)).

Fusion module
The fusion module consists of a fusion network f(·) and a contrastive attentive strategy.
f(·) takes this low-dimensional information and utilizes the fully connected layer to make
a join then as input to the fusion modules, we obtain the view-common representation G
after dimensional scaling and latent space encoding, as follows:

G= f(cat(Y1,...,YQ)), (4)

where G∈RN×d(G). In order to make G robust, we design a contrastive attentive strategy to
avoid destroying the view-specific representations and tomaximize themutual information
between G and each Y. The contrastive attentive strategy is discussed in detail below.

Clustering head C(·)

The clusteringmodule functions as a guiding task, steering the view common representation
G in a good direction. This module leverages existing clustering techniques to assign each
data point to a compact space based on G. Consequently, cluster labels can be derived from
this process, denoted as labels, which equals C(G).

Hybrid attentive module
In this subsection, we introduce the hybrid attentive module of detail. The hybrid attentive
module is shown in Fig. 3 and contains the channel attention module, the spatial attention
module, and positional attention module, and the dimensionality reduction module T()
mentioned in the previous section. We first introduce the roles of these modules, before
detailing their methods. We go over these three components in the following.

The inner modules of the hybrid attentive module play distinct roles. The channel
attention module of the hybrid attentive module enhances feature refinement by
generating channel attention maps, aiding in understanding the ‘‘content’’ being learned.
Simultaneously, the spatial attention module of the hybrid attentive module determines
the ‘‘location’’ of features through the generation of spatial attention maps along the spatial
dimension. To mitigate long-distance dependency issues, we adopt the approach of Hou,
Zhou & Feng (2021), embedding location features into the channel within the location
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Figure 3 Illustration of hybrid attentive module workflow. The input view-specific feature map
{X (i)Q

i=1}, goes through three rounds of attention map weighting, which includes the channel attention
map, spatial attention map, and positional attention map-to produce {HA(i)Q

i=1}. Then after T(), the
feature map is reducing dimensionality to get the view-specific robust representation {Y (i)Q

i=1}.
Full-size DOI: 10.7717/peerjcs.1906/fig-3

module. The positional attention module of the hybrid attentive module addresses the
long-range dependency problem, ensuring the retention of positional information. Lastly,
the dimensionality reduction module converts the 3D feature map HA ∈RC×H×W into
matrix form Y∈RN×d(Y).

The hybrid attentive module enhances downstream tasks by focusing on feature maps
with comprehensive channel, spatial, and positional information, thereby obtaining
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Table 1 Summary of key symbols used in this section of the article.

Symbols Explanation

GAP Global average pooling
GMP Global maximum pooling
Convvi×i Convolution of feature maps using a convolution kernel

size of i
σ Relu activation function
δ sigmoid activation function
BN Batch Normalization
⊗ multiplied element-by-element

view-specific robust representations. To prevent convergence to a trivial solution, the
hybrid attentive module employs a skip connection and decoupling channel, spatial, and
positional information. The overall attention process is summarized in Eq. (5), where
⊗ is the element-wise multiplication, X ∈RC×H×W is the view-specific feature map,
P∈RC×H×W is the channel attention information, P

′

∈RC×H×W is the spatial attention
information, P

′′

∈RC×H×W is the positional attention information, and HA∈RC×H×W is
the refined output.

HA=X
⊗

(P+P
′

+P
′′

) (5)

Table 1 contains pertinent notations for this section. Figure 3 illustrates the entire
process, while comprehensive descriptions of each attention module follow.

Channel attention module
We describe the flow of feature maps in the channel attention module, along with the
expression of relevant formulae. Assuming we are initially given a view-specific feature map
X∈RC×H×W. Following Woo et al. (2018), the channel attention infers a one-dimensional
channel attention map z∈RC×1×1 which represents the importance of each channel in the
feature map, as shown in Eq. (6).

z= δ(Conv1×1(GAPC(X))+Conv1×1(GMPC(X))) (6)

X∈RC×H×W possesses a total of C channels, while z∈RC×1×1 signifies a weight for each
channel. Therefore, z∈RC×1×1 is a channel weighting information employed to allocate
weights to each channel within a network. This empowers the network to prioritize channels
with higher weights, thereby augmenting its focus on essential information. Therefore, Let
the one-dimensional channel attention graph z∈RC×1×1 be corrected for the feature map
X∈RC×H×W by correcting it with the feature map zc ∈RC×H×W, i.e., letting the two be
multiplied element-by-element to obtain a channel attention graph-weighted feature map
zc ∈RC×H×W, as follows in Equation (7). The channel attention module accentuates the
significance of particular channels in the overall computation process.

zc = (z⊗X). (7)

However, previous work (He et al., 2016) shows that as the network becomes deeper
(i.e., the number of layers increases), the network may learn mundane solutions. For this
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reason, we introduce skip connections. As a result, the channel attention module of the
hybrid attentive module produces the feature graph information P∈RC×H×W, as shown
in Eq. (8).

P=X+zc (8)

Spatial attention module
We detail the flow of feature maps in the spatial attention module as well as the expression
of formulas. We initiate the process by applying both the GAP and GMP operations to the
weighted feature maps P∈RC×H×W derived from the channel attention maps, performed
along the channel dimensions. This yields the feature description operators, known as
GAPs, another called GMPs. Subsequently, we merge GAPs and GMPs, and apply a 7×7
convolution operation to reduce dimensionality. Next, we determine the direction of the
two-dimensional spatial attention map z

′

∈R1×H×W by applying the sigmoid activation
function, which plays a crucial role in highlighting relevant features, as shown in Eq. (9).

z
′

= δ(Conv7×7(GAPs(P);GMPs(P))) (9)

z
′

∈R1×H×W is a 2D weight map that records the magnitudes of location weights within
the process. This facilitates the network in attending to regions with prominent features.
The large weights of the 2D maps represent stronger features. FollowingWoo et al. (2018),
we rectify the 2D spatial attention map, z

′

∈R1×H×W, by correcting it with P∈RC×H×W

through the channel attention module. In simple terms, these two entities undergo
element-wise multiplication, leading to the creation of a channel attention map-weighted
feature map denoted as zs ∈RC×H×W, as shown in Eq. (10).

zs= z
′

⊗P (10)

We add the above-generated attention information to the original view-specific feature
mapX. This is to prevent the attention information from focusing on ‘‘biased’’ information,
so the feature map information P

′

∈RC×H×W generated by the channel attention module
of the hybrid attentive module is as shown in Eq. (11).

P
′

=X+zs (11)

Positional attention module
The following is a detailed description of the workflow and formula expression of
the positional attention module. We put P

′

∈ RC×H×W, pooling along two different
directions of the feature map with two pooling kernels (H,1) and (1,W) yields two high
direction embedded information feature maps Ihc ∈RC×H×1, and wide direction embedded
information feature maps embedded information feature map Iwc ∈RC×1×W, respectively.
Therefore, the output of the c-th channel at height h is expressed as in Eq. (12).

Ihc (h)=
1
w

W∑
i=0

P
′

(h,i). (12)
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Similarly, the output of the c-th channel with width w is expressed as in Eq. (13).

Iwc (w)=
1
H

H∑
j=0

P
′

(w,j). (13)

To establish cross-channel links, we concatenate the two embedded information feature
maps obtained along the spatial dimension to obtain comprehensive global information.
Subsequently, a ReLU activation follows a 1×1 convolutional transformation, resulting in
fz ∈RC×1×(W+H), as illustrated in Eq. (14).

fz= σ (Conv1×1(Ihc (h);I
w
c (w))) (14)

This is done to subsequently perform a split operation along the spatial dimension to
obtain two separated feature maps fh ∈RC×H×1,andfw ∈RC×1×W, as shown in Eq. (15).

f
h,fw= split(fz). (15)

Then, the 1× 1 convolution variant is sigmoid activated to obtain the positional
information feature maps located on the width and the height zh ∈ RC×H×1 and
zw ∈RC×1×W. Its formula is obtained as:

zh= δ(Conv1×1h (fh)), (16)

zw= δ(Conv1×1w (fw)). (17)

Finally, let the positional weighting information zh and zw be corrected after dot
multiplication with the feature map P

′

∈RC×H×W. That is, multiply them element-wise to
obtain positional weighting information with the positional attention information of the
embedded channel zp

(
i,j
)
∈RC×H×W, as shown in Eq. (18).

zp
(
i,j
)
= zh

(
j
)
⊗zw(i)⊗P

′

(18)

To prevent the positional attention information from focusing on ‘‘biased’’ information,
we add to the positional attention information the original view-specific feature map
X∈RC×H×W. Thus, the featuremap information P

′′

∈RC×H×W, produced by the positional
attention module of the hybrid attentive module, as shown in Eq. (19).

P
′′

=X+zp
(
i,j
)

(19)

All in all, our designed hybrid attentive module efficiently allocates effective
feature weights, and we summarize its effectiveness in two aspects. (1) The produced
weighting information, z∈RC×1×1, z

′

∈R1×H×W, zh ∈RC×H×1, zw ∈RC×1×W, capture
comprehensive attention to feature maps from multiple perspectives: channel dimension
(c-th), spatial dimensions (h and w-th), and high and wide positional dimensions (c, h-th
and c, w-th). This differs from previous attention mechanisms that focused on one or two
dimensions. We exhaustively verify in the ablation experiments section that features map
weighting that considers full aspects will be better than one that considers only one or two
dimensions. (2) Simultaneously, a crucial design aspect of the hybrid attention mechanism
is the addition of the original feature map X after generating each attention map. For
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Figure 4 Illustration of the workflow of the contrastive attentive strategy.
Full-size DOI: 10.7717/peerjcs.1906/fig-4

instance, assuming z∈R3×1×1 with weight distribution 0, 0.9, 0.1, where the channel with
weight 0 is significant, we add the original feature map to correct biased information.
This design ensures correction even when attention weights deviate towards incorrect
information. Consequently, we attribute the success of the hybrid attentive module to
these two design elements.

Contrastive attentive strategy
In this chapter, we present the contrastive attentive strategy (COATS), as illustrated
in Fig. 4. COATS processes the input view-specific robust representations and the view-
common representation by passing them through themapping head PRO(·). Subsequently,
it computes the cosine similarity between the two representations and calculates the
contrastive loss based on this cosine similarity. It’s worth noting that COATS does not
directly align view-specific representations with each other, which helps in preserving
the completeness of the views. The mapping head PRO(·) follows the same settings as
previously defined in our work (Chen et al., 2020b) for constructing the projection header.

We conclude that the contrastive attentive strategy has two advantages: (1) it ensures
that the intrinsic structure of the original view is not destroyed, and (2) it weights the
view-specific representations to obtain a robust view-specific representation and thus
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a more comprehensive view-common representation. Following Chen et al. (2020b), we
compute the similarity between view-specific robust representations (after projection head
PRO(·)) and the view-common representation of the view (after projection head PRO(·))
as cosine similarity, as shown in Eq. (20).

di,j=
(Gi)ᵀ(Y

(q)
j )

‖Gi ‖ · ‖Y
(q)
j ‖

(20)

In this context, the notation di,j(i 6= j) denotes the calculation of similarity for a pair of
negative examples, while di,i signifies the computation of similarity for a pair of positive
examples. Intuitively, di,j means that at this point the view-common representation Gi

computes the similarity with the view-specific robust representations of the negative

examples Y(
q)

j , and vice versa. Following Chen et al. (2020b), we design a contrastive
learning loss function for AMCFCN, as shown in the following:

LAMCFCN
sim =−

N∑
i=1

log
exp

(
di,i
τ

)
∑2N

j l[i6=j]exp
(
di,j
τ

) , (21)

Lc=
Q∑

q=1

LAMCFCN
sim . (22)

The exp() denotes an exponential function with a natural number e as the base. The
symbol N represents the number of samples, while (i,i) and (i,j) represent a pair of positive
and a pair of negative examples, respectively; l[i6=j] ∈ {0,1} denotes an indicator function
that takes the value of one if i= j, and τ denotes a temperature constant. In our experiments,
we adopt the optimal setting of τ = 0.1 for the temperature parameter suggested by Ke et
al. (2021).

The objective function
The total loss function is used tomeasure the degree of difference between the predicted and
true values of the model. Before this, the whole network process lacked a certain steering
direction, and we chose the clustering steering instead of the task, and we empirically used
the off-the-shelf deep divergence-based DDC (Kampffmeyer et al., 2019) online clustering
task. It assigns the consistency representation G to a compact space, i.e., a soft label can be
obtained from this go, i.e., B=C(G). To reduce the computational cost, AMCFCN only
uses DDC to constrain the view-common representation G.

The loss function of DDC is described below. DDC uses Cauchy–Schwarz scatter
(CS-scatter) to enhance the separability and compactness of the clustering. We predefine
some theoretical foundations, where B is an n×k cluster assignment matrix and bi is
the i-th column of matrix B, and % is Gaussian kernel bandwidth, defaulting 0.15. K is
computed as in Eq. (23). mi,j is computed as in Eq. (24), where ej is corner j of the standard
simplex on Rk.

Ki,j= exp(−‖Gi−Gj‖
2/(2%)2) (23)

mi,j= exp(−‖ bi−ej‖2) (24)
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triu(BB)T denotes BT the upper strictly triangular element, andK denotes kernel similarity
matrix computed by Ki,j. Then the loss function of DDC consists of three terms as shown
below:

Lddc=
k−1∑
i=1

k∑
j>i

bTi Kbj√
bTi KbjbTj Kbi

+

k−1∑
i=1

k∑
j>i

mT
i Kmj√

mT
i KmjmT

j Kmi

+ triu(BB)T (25)

In summary, we combined the objective function of AMCFCN as follows:

Lsum= Lddc+ϑLc, (26)

here, ϑ is a trade-off parameter intended to restrict the contrastive loss term from becoming
excessively large. ϑ is meticulously determined in the experimental section.

EXPERIMENTS AND RESULT ANALYSIS
In this section, we initially introduce the datasets: E-MNIST, E-FMNIST, COIL-20,
COIL-100, and the experimental environment. Subsequently, we account for the model
Performance. Then, we conduct ablation experiments on two key methods: the hybrid
attentive module and the contrastive attentive strategy. Additionally, we explore the
hyperparametric analysis of the loss function. Lastly, we introduce convergence of model
analysis.

Dataset
We evaluate the model AMCFCN on four public multi-view datasets and compare it to
seven other mainstream models. The four datasets are.
(1) Edge-MNIST (E-MNIST) (Liu & Tuzel, 2016): which is from the staff of the US Census

Bureau. This is a large and widely used benchmark dataset. A set of public benchmark
datasets consists of 60,000 handwritten digital images (10 categories) of 28× 28 pixels.
In this dataset, there are two views containing the original figure and the edge detection
versions, respectively.

(2) Edge-Fashion MNIST (E-FMNIST) (Xiao, Rasul & Vollgraf, 2017): This is provided
by Zalando’s research department (German fashion tech company). This dataset,
characterized by its diverse range of clothing items in terms of shapes, colors, and
patterns, presents a higher level of complexity compared to the standard MNIST
dataset. We create a second view by running the same edge detector used to create
Edge-MNIST.

(3) COIL-20 (Nene, Nayar & Murase, 0000): This is Columbia University’s description
of grayscale images containing 20 categories from separate perspectives. We create a
three-view dataset by randomly grouping the coil-20 dataset into three sets. The details
of creating the three views are covered in the next paragraph.

(4) COIL-100 (Geusebroek, Burghouts & Smeulders, 2005): This is from Columbia
University; separate RGB images containing 100 categories were taken from different
angles, and we created a three-view dataset by randomly grouping the coil-100 dataset
into three sets. The coil-100 constructs the three views in the same way as the coil-20.
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Table 2 Overview of the dataset.

Data set Samples Categories View Dimensionality

E-MNIST 60,000 10 2 1×28× 28
E-FMNIST 60,000 10 2 1×28× 28
Coil-20 480 20 3 1×28× 28
Coil-100 2,400 100 3 3×28× 28

We randomize the objects of a category using a random arrangement technique to
generate a random index for image generation, the purpose of utilizing random is for the
diversity of the selected view images. Multiple views are constructed from the generated
indexes. For example, in Coil-20, a category comprises 72 images, and when three views
are constructed, the index can form a 3 × 24 matrix. The selected images are organized
into three views and stored as an array that represents three different views of the images.
In short, items for coil-20 are generated by randomly selecting images related to the project
and organizing them into three different views.

The details are shown in Table 2:

Implementation details
The experimental system runs on Ubuntu 18.04.6, utilizing hardware comprising an
NVIDIARTX 3090GPUwith 16GB ofmemory and anAMDEPYC 7702 64-core Processor.
The software includes CUDA 11.4 and Python 3.9.7, while the deep learning framework
PyTorch (Paszke et al., 2019) is employed for model development and validation on a
publicly available benchmark dataset.

The model is validated on a publicly available benchmark dataset. For the MNIST class
dataset, key hyperparameters are configured as follows: the training batch epoch is set to
100; model optimization employs the ADAM optimizer with default parameters; the batch
size is fixed at 100; and reference to specific encoder CNN structures and configurations
in Abavisani & Patel (2018). The training dataset’s batch size is 128; the initial learning
rate is 0.001; and the hidden representation dimensionality is 288. On the other hand,
for the COIL class dataset, we adopt AlexNet (Krizhevsky, Sutskever & Hinton, 2017) as
the view-specific encoder, with a batch size of 24, an initial learning rate of 0.0001, and a
hidden representation size of 1,024.

Model performance
In this subsection, we conduct a series of experiments to evaluate the performance of
the model, and we explain our experimental design and results. We introduce model
evaluation metrics, model stability experiments, model visualization experiments, and
model comparison experiments.

Evaluation metrics
Two well-known metrics are considered in the comparison experiments, they are accuracy
(ACC) and normalized mutual information (NMI). The ACC represents the total
proportion of clustered samples to the total samples, while the NMI is based on the
information theory idea and is used to measure the similarity between two groups of
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Figure 5 Stability performance of our model and the next best model on two public datasets.
Full-size DOI: 10.7717/peerjcs.1906/fig-5

samples. The larger value of the two sets of evaluation indexes represents the better
clustering effect. The predicted clustering labels are denoted as Fj, where Fj ∈ F denotes the
predicted clustering label; the true label is denoted as Dj, Dj ∈D denotes the true label of
the dataset; the map() is the mapping function for the optimal one-to-one assignment of
clusters to labels (Kuhn, 1955). Among them, I(Dj,map(Fj)) is an indicator function, when
Dj=map(Fj) the indicator function is 1, otherwise it is 0; then the ACC metric is defined
as:

ACC=

∑N
j=1 I(Dj,map(Fj))

N
. (27)

I(D;F) and H(·) denote the true and predicted clustered label mutual information,
respectively, and the entropy function. The NMI metric is defined as shown in (28).

NMI=
2I(D;F)

(H(D)+H(F))
(28)

Stability experiments
In the field of unsupervised learning, stability plays a crucial role in its performance and
reliability. The stabilization of the clustering is indirectly illustrated by the evolution of ACC
and NMI. The stability evaluation experiments for AMCFCN are conducted by monitoring
the rate of change in these two metrics over one run. AMCFCN and the next best model
(CONAN) are executed on two datasets, there are E-MNIST and COIL-20, from which the
rate of change of ACC and NMI metrics is obtained, as follows in Fig. 5.

As shown in Fig. 5, the rate of change of the two metrics of CONAN is very large, which
indirectly indicates that the performance of CONAN is not stable enough. Compared to
CONAN, AMCFCN exhibits elevated levels in both metrics with minimal rates of change.
It is noteworthy that the contrastive attentive strategy yields a robust view-common
representation, contributing to the stability demonstrated by AMCFCN.

Visualization experiments
To show the effectiveness of the contrastive attentive strategy, we visualize the view-
common representation. We demonstrate the clustering process on the E-MNIST and
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Figure 6 Visualization of the view-common representation using T-SNE on E-MNIST dataset at the
1st, 25th, 50th, and 100th training.

Full-size DOI: 10.7717/peerjcs.1906/fig-6

Figure 7 Visualization of the view-common representation using T-SNE on FMNIST dataset at the 1st,
25th, 50th, and 100th training.

Full-size DOI: 10.7717/peerjcs.1906/fig-7

COIL-20 datasets, as depicted in Figs. 6 and 7. The following T-SNE (Vander Maaten &
Hinton, 2008), is a dimensionality reduction technique that visualizes high-dimensional
data by preserving pairwise similarities in a lower-dimensional space. AMCFCN employs
T-SNE to project the view-common representation onto the 2D plane for both the
E-MNIST and E-FMNIST datasets. The visualization reveals that the structure specific to
clustering becomesmore compact and separable as the training period is extended. The two
experimental studies demonstrate that the view-specific robust representation obtained
through the hybrid attentive module enhances the view-common representation through
view-specific representation fusion, which in turn improves the stability of the multi-view
clustering.

Comparison experiments
AMCFCN evaluates its performance against seven current mainstream multi-view
clustering models to assess its effectiveness. The comparison models include:
I. Deep Canonical Correlation Analysis (DCCA) (Gao et al., 2020);
II. Deep Canonically Correlated Auto-encoders (DCCAE) (Wang et al., 2015);
III. Deep Multi-modal Subspace Clustering (DMSC) (Yang et al., 2021);
IV. Deep Adversarial Multi-view Clustering (DAMC) (Li et al., 2019);
V. End-to-end Adversarial attention network for Multi-modal Clustering (EAMC) (Zhou

& Shen, 2020);
VI. Autoencoder in autoencoder networks (Ae2-Nets) (Zhang, Liu & Fu, 2019);
VII. Contrastive Fusion Networks for Multi-view Clustering (CONAN) (Ke et al., 2021);
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Table 3 Comparison results of different data sets in different models (%).

Data set E-MNIST Coil-20 E-FMNIST Coil-100

Evaluation indicators ACC NMI ACC NMI ACC NMI ACC NMI

DCCA
(Gao et al., 2020)

47.6 44.3 42.6 41.9

DCCAE
(Wang et al., 2015)

50.8 47.5 45.8 43.6

DMSC
(Yang et al., 2021)

65.3 61.4 65.1 72.0 52.4 51.8 54.1 53.8

DAMC
(Li et al., 2019)

64.6 59.4 67.2 72.9 49.5 48.7 52.6 70.1

Ae2 -Nets
(Zhang, Liu & Fu, 2019)

53.7 46.3 71.7 81.2 41.0 39.2 54.1 75.3

EAMC
(Zhou & Shen, 2020)

66.8 62.8 69.0 75.3 54.1 62.2 51.8 68.0

CONAN
(Ke et al., 2021)

90.5 86.1 72.5 80.3 59.2 55.2 55.6 77.4

AMCFCN
(OURS)

95.1 89.2 82.2 85.2 63.2 55.8 66.4 84.8

Notes.
Large-scale or high-dimensional datasets require substantial computational resources. DCCA and DCCAE are applicable ex-
clusively to two-view datasets. Bolded values represent the highest value of an indicator for this experiment. ‘p’ denotes the in-
clusion of the current module, while ’-’ signifies its exclusion.

Tomitigate the influence of randomness in experimental outcomes, AMCFCN conducts
five repetitions of training on each dataset and utilizes the average values for evaluation.
We conduct a comparative experiment involving seven classical deep models, evaluating
AMCFCN alongside the baseline model across four datasets. The resulting clustering
performance, expressed in percentages (%), is presented in Table 3. As evident from the
comparative results in the table, AMCFCN outperforms the suboptimal model on the
Coil-20 and E-MNIST datasets across two metrics, achieving improvements of 10% and
4.9%, another 4.6% and 3.1%, respectively in ACC and NMI.

To make it easier to observe AMCFCN, we visualize the seven models and AMCFCN
in Fig. 8. AMCFCN is represented in violet. Higher bars in the figure represent better
performance, and it can be seen from the figure that the bar levels of AMCFCN are basically
higher than those of the seven methods. Thus, AMCFCN outperforms the mainstream
methods on most datasets, but its NMI metrics on the E-FMNIST dataset are slightly lower
than those achieved by EAMC.

Ablation experiments
In this subsection, we conduct a total of two ablation experiments. The first ablation
experiments involve the hybrid attentive module proposed in the article, with the ablation
focus on the three types of attention within the module. The other ablation experiments
assess the contrastive attentive strategy’s impact when contrastive learning and attention
mechanisms are absent in AMCFCN. In the experimental data table below, ‘

√
’ denotes

the inclusion of the current module, while ‘-’ signifies its exclusion.
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Figure 8 Performance comparison of AMCFCNwith sevenmulti-view clustering models.
Full-size DOI: 10.7717/peerjcs.1906/fig-8

Table 4 Internal ablation study of the hybrid attentive module on EMNIST dataset.

Channel
attention
module

Spatial
attention
module

Positional
attention
module

ACC (%) NMI (%)

√ √ √
95.1 89.2

√
– – 86.5 84

√
–

√
84.0 79.7

–
√

– 87.5 84.6
–

√ √
82.1 75.5

√ √
– 87.9 83.8

Notes.
Bolded values represent the highest value of an indicator for this experiment. ‘

√
’ denotes the inclusion of the current module,

while ‘–’ signifies its exclusion.

The hybrid attentive module for AMCFCN Ablation experiments conducts ablation
experiments on the EMNIST dataset, as detailed in Table 4. The results demonstrate
that the hybrid attentive module internally achieves the best performance when all three
attention modules are employed, with metrics of 95.1% and 89.2%, respectively. In
contrast, the hybrid attentive module performed worst when relying only on the spatial
and positional attention modules, with metrics of 82.1% and 75.5%, respectively. These
ablation experiments demonstrate the robust noise suppression capability of the hybrid
attentive module, especially when using three modules, which allows the hybrid attentive
module to focus more comprehensively on the feature information of the feature map.
This enhancement allows AMCFCN to improve its information capture, thus allowing the
clustering to obtain a good result.

This ablation experiment aims to assess the contrastive attentive strategy. The experiment
involves using the contrastive attentive strategy to obtain a view-common representation,
followed by incomplete strategies in subsequent experiments. These incomplete strategies
include one utilizing only the contrastive learning strategy, another employing the attention
mechanism strategy, and the last one employing no specific strategy. To validate the
superior performance of the proposed fusion strategy of the contrastive attentive strategy,
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Table 5 Contrastive attentive strategy ablation findings on four datasets.

Hybrid
attentive
module

Contrastive
learning

ACC (%) NMI (%)

E-MNIST
√ √

95.1 89.2
√

– 87.4 85.0
–

√
87.7 84.4

– – 87.3 84.6
FMNIST

√ √
63.2 55.5

√
– 61.4 55.4

–
√

59.6 54.4
– – 61.4 53.8

Coil-20
√ √

82.2 85.2
√

– 70.2 76.4
–

√
62.7 71.5

– – 69.7 78.1
Coil-100

√ √
66.4 84.8

√
– 53.8 79.5

–
√

36.3 65.6
– – 38.9 67.4

Notes.
Bolded values represent the highest value of an indicator for this experiment. ‘

√
’ denotes the inclusion of the current module,

while ‘–’ signifies its exclusion.

ablation experiments conduct on four datasets, as detailed in Table 5. When employing the
contrastive attentive strategy, AMCFCN consistently outperforms the incomplete strategies
across both metrics on the various datasets. The improvement is particularly noteworthy
on the COIL-100 dataset, where the use of the contrastive attentive strategy leads to a 27.5%
increase in ACC and a 17.4% increase in NMI compared to the no-strategy approach.

We compare the differences in model learning performance under each of the four
steps, as shown in Fig. 9. Specifically, Step-A is the model with the hybrid attentive module,
Step-B is the model with contrastive learning, and Step-C is the model with none of the
why strategy. In Fig. 9, where higher bars denote better performance, it is evident that
AMCFCN achieves the most favorable results when utilizing COATS. The utilization
of the hybrid attentive strategy enhances AMCFCN’s performance compared to models
employing incomplete strategies (Step-A, Step-B) or no strategies (Step-C) across all four
datasets.

Hyperparametric analysis of the objective function
We conduct a hyperparametric analysis experimental study for ϑ of Eq. (26). ϑ represents
the hyperparameter for the contrastive loss within the objective function, and we analyze
the study on the E-MNIST dataset, utilizing the optimal value determined for ϑ as the
parameter value for all experiments in this context. Then, AMCFCN is analyzed and
studied on the EMNIST dataset, employing values ranging from 10−3 to 10. The specific
experimental results are displayed in Table 6.
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Figure 9 Ablation experiments are performed on four multi-view datasets.
Full-size DOI: 10.7717/peerjcs.1906/fig-9

Table 6 Impact of hyperparameter on AMCFCNmodel.

Dataset The size of
the ϑ

ACC (%) NMI (%) BEST_LOSS

E-MNIST 10 86.7 80.1 184.4
1 87.1 83.6 19.0
0.1 87.7 84.5 2.47
0.01 95.1 89.2 0.82
0.001 87.4 85.4 0.64

It is observed that when ϑ is set to 10, the ACC and NMI are 86.7% and 80.1%,
respectively, resulting in the best total loss value of AMCFCN reaching 184.4. Conversely,
when ϑ is set to 0.001, the ACC and NMI are 87.4% and 85.4%, respectively, with a total
loss of only 0.64. Values of ϑ that are excessively large or small can cause one of the loss
components to dominate network training, contrary to our intended hyperparameter
setting. With ϑ set to 0.01, the ACC and NMI are 95.1% and 85.4%, respectively, while the
total loss is 0.82. Therefore, we consider ϑ = 0.01 an appropriate value, ensuring that the
contrastive loss and clustering loss of AMCFCN are of comparable magnitude, allowing
both loss components to guide network training effectively.

Convergence analysis
In this subsection, we focus on the convergence of the methods. Some of the popular
methods based on autoencoders, such as COMPLETER (Lin et al., 2021) and EMC-
Nets (Ke et al., 2022), require 200 and 400 training epochs, respectively, to achieve good
convergence. We discuss the convergence of AMCFCN by visualizing the change of loss
values with training epochs, and the convergence analysis of AMCFCN loss values on four
datasets is shown in Fig. 10.

The visualization analysis in Fig. 10 reveals that the loss value of AMCFCN consistently
decreases with each epoch, ultimately converging to a stable target value by the 30th
training epoch. The rapid and effective convergence of AMCFCN is attributed to the
COATS. This strategy preserves the complete view-specific representations, eliminating
the necessity to continually learn features from corrupted view-specific representations
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Figure 10 Change in loss values with a training period.
Full-size DOI: 10.7717/peerjcs.1906/fig-10

over time. In summary, the accelerated convergence of AMCFCN can be attributed to a
contrastive attentive strategy. The strategy retains both view completeness and improves the
robustness of the view-common representation, thus expediting the convergence process.
AMCFCN requires about 30 training epochs to achieve convergence on the four datasets,
which is much faster than the autoencoder-based methods to converge.

CONCLUSIONS
In this work, we introduce a novel framework called AMCFCN, validating its effectiveness
on four multi-view datasets, and demonstrating a significant enhancement in unsupervised
representations. However, it is worth noting that AMCFCN shows a relatively smaller
improvement compared to EAMC (Zhou & Shen, 2020) on the E-FMNIST dataset. This
observation sheds light on a potential limitation of AMCFCN within the domain of
multi-view clustering. This is because the study primarily utilizes smaller or medium-sized
datasets, and the AMCNCF does not take into account the balance between contrastive
learning method and attention mechanism. Moving forward, our future research will focus
on extending AMCFCN’s suitability to very large datasets, and aim to strike an optimal
balance between attention mechanism and contrastive learning methods.
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