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ABSTRACT
Diffusion models are a kind of math-based model that were first applied to image
generation. Recently, they have drawn wide interest in natural language generation
(NLG), a sub-field of natural language processing (NLP), due to their capability to
generate varied and high-quality text outputs. In this article, we conduct a
comprehensive survey on the application of diffusion models in text generation. We
divide text generation into three parts (conditional, unconstrained, and multi-mode
text generation, respectively) and provide a detailed introduction. In addition,
considering that autoregressive-based pre-training models (PLMs) have recently
dominated text generation, we conduct a detailed comparison between diffusion
models and PLMs in multiple dimensions, highlighting their respective advantages
and limitations. We believe that integrating PLMs into diffusion is a valuable
research avenue. We also discuss current challenges faced by diffusion models in text
generation and propose potential future research directions, such as improving
sampling speed to address scalability issues and exploring multi-modal text
generation. By providing a comprehensive analysis and outlook, this survey will serve
as a valuable reference for researchers and practitioners interested in utilizing
diffusion models for text generation tasks.

Subjects Artificial Intelligence, Computational Linguistics, Natural Language and Speech, Neural
Networks
Keywords Diffusion models, Text generation, Natural language generation

INTRODUCTION
Diffusion-based generation
With the development of artificial intelligence, people are no longer satisfied with merely
classifying data and have begun to explore how to generate new data. Currently, the most
popular deep learning generative models include variational autoencoders (VAE) (Kingma
& Welling, 2013), generative adversarial networks (GANs) (Goodfellow et al., 2014),
flow-based generative models (Dinh, Krueger & Bengio, 2014), and diffusion models that
has been widely used in the past 2 years. The essence of deep generative models is to
generate new data samples that are as similar as possible to the distribution of the given
training data (Harshvardhan et al., 2020). Of the three aforementioned model types, VAE
must choose a variational posterior distribution, GAN requires training an additional
discriminator, and the flow-based generative model requires the model to be an invertible
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function. Does there exist a deep generative model that only needs to train a generator
without additional training of other networks or other such restrictions? The diffusion
model provides one answer.

Diffusion models can be traced back to 2015, when Sohl-Dickstein et al. (2015) proposed
the concept of diffusion probabilistic models (DPM). However, these models were not
extensively developed during the next few years. In work published in 2020, Google
improved the details of the model, introduced denoising diffusion probabilistic models
(DDPM) (Ho, Jain & Abbeel, 2020) and applied them to the field of image generation,
gradually bringing diffusion models into focus. After the release of DDPM, denoising
diffusion implicit models (DDIM) (Song, Meng & Ermon, 2020) further improved the
denoising process of DDPM, laying the foundation for subsequent diffusion models. After
that, ablated diffusion model (ADM) (Dhariwal & Nichol, 2021) achieved the first victory
over generative adversarial networks (GANs), causing a surge of interest in the diffusion
model field. Building upon the methods of conditional image generation (Liu et al., 2021;
Ho & Salimans, 2022), Palette (Saharia et al., 2022) demonstrated the immense potential of
diffusion models in image-to-image translation. Additionally, GLIDE (Nichol et al., 2021),
DALL�E 2 (Ramesh et al., 2022), and Imagen (Saharia et al., 2022) have achieved new state-
of-the-art results in the field of text-to-image generation. Later on, researchers proposed
the use of diffusion models for audio generation (Kong et al., 2021; Chen et al., 2020;
Kameoka et al., 2020) and achieved tremendous success.

There is no doubt that diffusion models have proved highly successful in generating
content in continuous spaces, particularly in the domains of images and audio (Yang et al.,
2022). Models represented by Stable Diffusion (Rombach et al., 2022) and AudioLDM (Liu
et al., 2023) are diffusion models in the continuous domain, both based on latent diffusion
models (LDMs), which introduce random noise to latent variables and reverse this process
through a series of denoising steps to learn data generation. But how can they be applied to
text generation tasks? One of the most direct challenges of applying diffusion models to the
field of natural language processing (NLP) is the difference in data structure. Images exist
in a continuous space, while text is discrete. To address this issue, there are two solution:
one is to map the discrete text to a continuous space (Li et al., 2022b; Gong et al., 2022;
Yuan et al., 2022; Strudel et al., 2022), specifically by using an embedding layer to map the
text into a continuous representation space. Another approach is to preserve the discrete
nature of the text and generalize the diffusion models to handle discrete data (Reid,
Hellendoorn & Neubig, 2022; He et al., 2023). These two ways of applying diffusion models
to NLP have achieved many excellent results in the last 2 years, with Fig. 1 illustrating the
development of text generation diffusion models along the time.

Scope of this survey
Due to the increasing number of publications on diffusion text generation models (see
Fig. 2), it is essential to conduct a comprehensive review to summarize recent research
methods and forecast future research directions. In 2023, scholars began to attempt to
summarize the application of diffusion models in NLP. Zhu & Zhao (2023) provide an
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overview of the application of diffusion models in NLP. While the review discusses the use
of diffusion models in text generation, text-driven image generation, text-to-speech, etc., it
fails to provide inspiring guidance for potential future research directions. Li et al. (2023)
and Čeović et al. (2023) review recent advances of diffusion models in NAR (non-
autoregressive) text generation and discuss optimization techniques for text diffusion
models. Zou, Kim & Kang (2023) summarize diffusion model methods in NLP and provide
a comprehensive comparison with other text generation approaches. Although Li et al.
(2023), Čeović et al. (2023) and Zou, Kim & Kang (2023) all offer a comprehensive
summary of algorithms for diffusion models in NLP, it is unfortunate that they all focus on
the perspective of applying diffusion models to the textual domain, specifically dividing
them into discrete text diffusion models and continuous text diffusion models.

In our work, distinguished from previous related reviews, we introduce a completely
new classification perspective to categorize and summarize the research on the application

Figure 1 The development of text generation diffusion models.
Full-size DOI: 10.7717/peerj-cs.1905/fig-1
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Figure 2 The current number of articles on diffusion text generation models.
Full-size DOI: 10.7717/peerj-cs.1905/fig-2
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of diffusion models to text generation tasks. The main contributions of this article are as
follows:

� Provide a comprehensive overview of the latest advances in relevant current research
and help researchers develop a deeper understanding of diffusion language models.

� Classify studies from the novel perspective of text generation tasks and provide
detailed descriptions of the methods.

� Differentiate diffusion models from pre-trained language models from various
perspectives, providing readers with insightful comparisons.

� Elaborate on the existing challenges and expected future research directions,
providing insights for researchers in relevant fields.

SURVEY METHODOLOGY
Regarding the topic of “diffusion models in text generation”, we carried out extensive study
on research questions, searched and organized the relevant literature. The research
methodology primarily outlines data sources, search strategy, and literature inclusion
criteria.

Research questions
Our literature review aims to address the following research questions (RQs):

� RQ1: How diffusion models evolve and develop?

� RQ2: How are diffusion models applied to various text generation tasks?

� RQ3: What are the differences between text diffusion models and pre-trained
language models?

� RQ4: What are the potential research directions for text diffusion models?

where the first two questions aim to illustrate the application of diffusion models in text
generation, the third question is used to compare text diffusion models with pre-trained
models, and the last one is intended to assist researchers in proposing potential directions
for improving text diffusion models.

Data sources and research strategy
We utilized search engines such as Google Scholar, IEEE Xplore, WoS, Arxiv, and others to
search and collect relevant literature. The keywords used for literature search included
“diffusion model”, “text generation”, “NLP”, “pre-trained language model”, etc. Table 1
presents the data sources, search string and links.

Criteria for inclusion/exclusion
After searching for relevant literature, our inclusion criteria for the research are that the
articles must be written in English and should be research articles. In addition, we filtered
out research articles that focused on applications of diffusion models in domains other
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than text, such as visual and audio. Finally, we summarized the number of articles, as
shown in Fig. 2, indicating that diffusion models in text generation are still in development
with significant growth potential.

DEFINITIONS
Natural language generation (NLG)
Natural text generation aims to produce fluent, reasonable and understandable linguistic
text from input data (Yu et al., 2022b). This task is more formally known as “natural
language generation” in the literature. At present, it is one of the most important and
challenging subtasks in NLP.

NLG has two principal generative methods: autoregressive (AR) and non-autoregressive
(NAR), also known as end-to-end generation. With the rise of deep learning in recent
years, researchers have proposed various models to realize language generation, including
the Transformer (Vaswani et al., 2017), BERT (Devlin et al., 2018), and GPT (Radford
et al., 2019), as well as diffusion-based text generative model. In the era of Large Language
Models (LLMs), decoder-only models, exemplified by the GPT, have emerged as a pivotal
technology in the domain of text generation. Such models generate text exclusively
through the decoder, obviating the necessity for a dedicated encoder, and operate in an
autoregressive manner, sequentially generating discrete tokens. The introduction of
diffusion-based models has steered the evolution of the text generation field towards
harnessing both discrete and continuous features more comprehensively across diverse
tasks.

Text generation tasks
To date, researchers have developed many techniques with regard to text generation
applications (Li et al., 2021a). NLG encompasses many downstream subtasks that take
various forms of data as input (Celikyilmaz, Clark & Gao, 2020). Examples include
unstructured inputs, such as sentences and paragraphs; structured inputs, such as graphs
and tables; and multimedia inputs, such as images, videos, and speech (Li et al., 2021b).
Figure 3 illustrates the typical text generation task.

Diffusion model
Diffusion models (Sohl-Dickstein et al., 2015; Ho, Jain & Abbeel, 2020) were originally
latent variable models designed for continuous data domains. The model training process

Table 1 The description of data sources, search string and links.

Search engine Search string Links

Google Scholar Diffusion model AND text generation https://scholar.google.com/

IEEE Xplore Text generation OR pre-trained language model https://ieeexplore.ieee.org/

WoS Diffusion model OR text generation https://www.webofknowledge.com/

Arxiv Diffusion model AND NLP https://arxiv.org/
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can be divided into two steps: the forward noise addition process and the reverse denoising
process.

The forward process originates from data x0 � qðxÞ. The model adds the noise
corresponding to time step t and obtains output xt according to xt�1. At step T (the final
time step) to obtain xT , the data is transformed into an invisible noise distribution. In the
reverse process, according to the given condition xt (t decrements from T to 0), the Bayes’
theorem is used to determine xt�1. As a result, the target sentence or image can be
generated by iteratively sampling noise.

Specifically, given an initial sample x0, a small amount of Gaussian noise is gradually
injected into the sample according to the forward process q xtjxt�1ð Þ during each step to
disrupt the original data. q xtjxt�1ð Þ is represented by the following equation:

q xtjxt�1ð Þ ¼ N xt;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bt

p
xt�1;btI

� �
(1)

where bt ¼ 1� at is a pre-defined noise schedule (Li et al., 2023). The noise added at each
step is independent and follows a normal distribution. As the number of iterations
increases, the intensity of the added noise also increases, requiring the intermediate latent
variables to incorporate more noise to effectively disrupt the training data. Consequently,
bt will progressively increase over time, eventually transforming x0 into random noise,
approximately following a normal distribution Nð0; IÞ.

Each iteration of the forward process will produce a new latent variable xt . Therefore,
the diffusion model can model the original data x0 as a Markov chain x0; x1; x2; � � � ; xT .
Based on the re-parameterization method, the model can convert q xt j xt�1ð Þ into
q xt j x0ð Þ for better sampling:

q xt j x0ð Þ ¼ N xt;
ffiffiffiffi
�at

p
x0;

ffiffiffiffiffiffiffiffiffiffiffiffi
1� �at

p
I

� �
(2)

Figure 3 Subtasks for text generation. Full-size DOI: 10.7717/peerj-cs.1905/fig-3
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where �a = rti¼1ai. Since the reverse denoising continuously approaches the posterior
distribution q xt�1 j xtð Þ, the denoising model utilizes ph xt�1 j xtð Þ to restore xT to the
desired result. The denoising process can be formulated as follows:

ph xt�1 j xtð Þ ¼ N xt�1; lh xt; tð Þ;
X

h
xt; tð Þ

� �
(3)

where lh xt; tð Þ andPh xt; tð Þ can be computed using U-Net or the Transformer model (Li
et al., 2022b). The variance

P
h xt; tð Þ is determined by a specific scheduler and remains

fixed, hence there is no need to predict it. The ultimate objective of the training process is
to predict lh xt; tð Þ.

On the basis of known x0 and forward process q xtjxt�1ð Þ, using Bayes’ formula can
directly link xt and x0 in the denoising process instead of tediously using xt to predict xt�1

step by step. As a result, the final training goal can be simplified as follows:

Lsimple ¼
XT

t¼1
Eq½jjltðxt; x0Þ � lhðxt; tÞjj2� (4)

where lt is the mean of posterior qðxt�1jxt; x0Þ. The objective of the model is to minimize
the mean square error between the two distributions.

DIFFUSION MODELS IN TEXT GENERATION
In this section, we will elaborate sequentially on diffusion models in the field of text
generation. We categorize these into three types based on the tasks of text generation:
conditioned text generation, unconstrained text generation, and multi-mode text
generation. Table 2 provides a summary and comparison of all diffusion text models
considered in this survey.

Conditional text generation
Text-driven generation
The objective of text-driven generation is to generate a target sentence y ¼ y1; y2; � � � ; yT
given a source sentence xðiÞ ¼ xðiÞ1 ; xðiÞ2 ; � � � ; xðiÞL , with the goal of maximizing the
conditional probability PðyjxÞ. Specifically, the objective function can be expressed as:
argmaxhPðyjx; hÞ, where h represents the parameters of the model, and Pðyjx; hÞ denotes
the conditional probability of generating the target text y given the input text x. The
sequence-to-sequence conditional text generation typically uses the encoder-decoder
architecture (Lee, Lee & Hwang, 2020), schematically shown in Fig. 4. Currently, diffusion-
based text generation approaches predominantly utilize text-driven conditional
generation; the following is a detailed description of diffusion models for text-driven
generation.

DiffuSeq (Gong et al., 2022) is a groundbreaking conditional diffusion language model
that applies diffusion to sequence-to-sequence (SEQ2SEQ) text generation tasks. Notably,
DiffuSeq introduces the concept of partial noising, which selectively applies Gaussian noise
to the target sequence while preserving the integrity of the source sentence embeddings.
This innovative approach allows for controlled corruption and enhances the generation
process.
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Table 2 Summary of diffusion models in text generation, grouped by type.

Model Noise schedule Sampling Space Generation
process

Pretrain

Conditional text generation (Text-driven generation)

DiffuSeq Partial noising Minimum Bayes Risk Ca NARb /

DiffuSum Partial noising / C NAR /

DiffusER Edit-based
reconstruction

Beam search, 2D Beam search, Nucleus sampling D NAR /

SeqDiffuSeq Adaptive noise
schedule

Self-conditioning C NAR /

Zero-Shot Diffusion Partial noising Classifier-free conditional denoising C NAR /

GENIE / Continuous paragraph denoise C NAR Arge-scale pretrained
diffusion language
model

RDMs Mask Reparameterized sampling, stochastic routing
mechanism

D NAR Pre-trained
autoregressive
Transformer

Diffusion-NAT Mask Self-prompting D NAR BART

CDCD Time warping Inverse transform sampling, time warping C NAR BERT

DiNoiSer Manipulated
noises

MBR C NAR /

AR-DIFFUSION Square-root Multi-level diffusion strategy, dynamic movement
speeds, MBR

C AR /

Conditional text generation (Fine-grained control generation)

Diffusion-LM Cosine MBR C NAR /

Masked-Diffuse LM Strategically
soft-masking

MBR D NAR BERT

Difformer Sqrt noise 2D parallel decoding C NAR /

Text-driven generation and Fine-grained control generation

LDEBM / / C NAR /

Unconstrained text generation

D3PM Uniform
transition
matrices

/ D NAR /

DiffusionBERT Spindle
schedule

x0-Parameterization D NAR BERT

Multi-mode text generation

SED Span masking Self-conditioning C NAR Embedding pretraining

SUNDAE Uniform
transition
matrices

Unrolled denoising, low-temperature sampling, argmax-
unrolled decoding, updating fewer tokens

C NAR /

LD4LG Cosine Self-conditioning C NAR BART

SSD-LM Logits-
generation

Sampling, multi-hot and greedy C NAR /

Notes:
a “C” and “D” respectively represent continuous and discrete.
b “AR” and “NAR” respectively stand for autoregressive and non-autoregressive.
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DiffuSum (Zhang, Liu & Zhang, 2023) extends the idea of conditional diffusion
modeling to the task of text summarization. Similar to DiffuSeq (Gong et al., 2022), which
employs partial noise in the diffusion process, DiffuSum goes a step further by
incorporating additional components, such as matching loss and multiclass contrast loss.
This pioneering research on DiffuSum represents the first dedicated exploration of text
summarization using diffusion models.

DiffusER (Reid, Hellendoorn & Neubig, 2022) differs from the traditional diffusion
model in terms of noise injection. It considers operations such as insertion, deletion, and
editing as forms of noise, because both Gaussian noise and these editing operations are in
essence destroying the original data. Such an operation fully takes into account the discrete
characteristics of the text, making the generation more flexible.

SeqDiffuSeq (Yuan et al., 2022), an encoder-decoder Transformers architecture,
incorporates two key techniques: adaptive noise schedule and self-conditioning, resulting
in substantial enhancements in both the quality and speed of text generation.

Zero-shot diffusion (Nachmani & Dovrat, 2021), inspired by encoder-decoder
architecture, inputs the source language sentence x (i.e., the condition) into the
Transformer encoder and the noisy target language sentence y into the decoder. Notably,
this work is the first to apply the diffusion model to conditional text generation tasks.

GENIE (Lin et al., 2022) represents a significant advancement in the field of language
modeling with its large-scale pre-training approach. Using the masked source sequence s
as the input of the encoder and incorporating the continuous paragraph denoise training
method, GENIE has demonstrated its ability to generate text that exhibits both high quality
and remarkable diversity. This not only showcases the effectiveness of diffusion language
models but also opens up new possibilities for various natural language processing tasks.

RDMs (reparameterized diffusion models) (Zheng et al., 2023) introduce
reparameterization and a stochastic routing mechanism, leading to two significant
advantages: simplified training and flexible sampling. However, currently RDMs can only
generate sentences of fixed length.

Diffusion-NAT (Zhou et al., 2023) integrates discrete diffusion models (DDM) and
BART into non-autoregressive (NAR) text generation, unifying the inference and
denoising processes into a masked token recovery task. Diffusion-NAT focuses on

encoder

−

decoder

Figure 4 Text-driven generation. Full-size DOI: 10.7717/peerj-cs.1905/fig-4
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conditional text generation tasks, highlighting the synergistic effect of discrete diffusion
models and pre-trained language models in enhancing text generation.

CDCD (Dieleman et al., 2022) improves the training process of diffusion models by
incorporating score interpolation and time warping techniques, achieving excellent
performance in language modeling and machine translation tasks.

DiNoiSer (Ye et al., 2023) argues that simply mapping discrete tokens to continuous
space through embedding is not sufficient to fully eliminate the discrete nature of text.
Therefore, DiNoiSer employs counter-discreteness training by utilizing adaptive noise
levels and amplifies the noise scale to leverage source conditions, leading to consistent
improvements across multiple conditional text generation tasks.

Difformer (Gao et al., 2022), a denoising diffusion model built upon the Transformer
architecture, tackles the challenges of diffusion models in continuous embedding space. By
incorporating an anchor loss function, a layer normalization module for embeddings, and
a noise factor for Gaussian noise, Difformer exhibits remarkable benefits in machine
translation and text summarization tasks.

AR-DIFFUSION (Wu et al., 2023), unlike most text diffusion models, proposes a multi-
level diffusion strategy and dynamic movement speeds to explore an autoregressive text
generation diffusion model and demonstrates strong performance even with very few
decoding steps.

Fine-grained control generation
Fine-grained controlled text generation accepts fine-grained control conditions
(sentiment, theme, style, etc.) as input and introduces a conditional variable c, which can be
used to represent control attributes (Hu & Li, 2021). The generation process diagram is
shown in Fig. 5. For example, in the case of sentiment-controlled generation (Zhu et al.,
2022), c represents the labels of different sentiment polarities (Li et al., 2022b). The
objective of controllable text generation is to maximize the conditional probability PðxjcÞ,

Sentiment
Length

Semantic Content
Syntax Tree

…….

… … …… …

−−

Denoising

Attribute
Discriminator

Figure 5 Fine-grained control generation process. Full-size DOI: 10.7717/peerj-cs.1905/fig-5
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which represents the probability of generating a text sequence x given a specific condition
c. Currently, the research on the application of diffusion models in the context of
controllable text generation is still in its preliminary exploration stage.

Diffusion-LM (Li et al., 2022b), a controllable language model based on continuous
diffusion, has been successfully applied to six fine-grained control generation tasks.
However, Diffusion-LM has much room for further optimization and improvement in
terms of perplexity, decoding speed, and convergence speed.

Masked-Diffuse LM (Chen et al., 2023), inspired by linguistic features, proposes to
apply strategic soft-masking to corrupt text in the forward process and iteratively denoise it
through direct text prediction. Compared to Diffusion-LM (Li et al., 2022b), this model has
lower training cost and better performance through five controllable text generation tasks.

Latent Diffusion Energy-Based Model (LDEBM) (Yu et al., 2022a), combining
diffusion models and latent space energy-based models, uses diffusion recovery likelihood
learning to address poor sampling quality and instability. It exhibits superior interpretable
text modeling performance in several challenging tasks such as conditional response
generation and sentiment-controllable generation.

Unconstrained text generation
Unconstrained text generation (Li et al., 2022a), also known as unconditional text
generation, refers to the process where a model generates text without specific themes or
length limitations based on a training corpus. Currently, diffusion models have been
proposed and employed for unconstrained text generation.

D3PM (Austin et al., 2021) develops a more structured categorical corruption process
by using similarity between tokens to enable gradual corruption and denoising and
explores inserting (MASK) token to draw parallels to auto-regressive and mask-based
generative models. As a result, D3PM achieves strong results on character-level text
generation while scaling to large vocabularies on LM1B (Language Model on One Billion
Words).

DiffusionBERT (He et al., 2023) creatively proposes to use BERT as its backbone to
perform text generation, combining pre-training models (PLMs) with a discrete diffusion
model of the absorption state of the text to address the problem of unconditional text
generation with non-autoregressive models. Experiments on unconditional text generation
show significant improvements in perplexity and BLEU scores over D3PM (Austin et al.,
2021) and Diffusion-LM (Li et al., 2022b).

Multi-mode text generation
In addition to handling the three aforementioned text generation tasks individually,
current research on diffusion models in text generation often focuses on addressing
multiple tasks simultaneously.

Self-conditioned embedding diffusion (SED) (Strudel et al., 2022) proposes a
continuous diffusion mechanism called self-conditioned embedding, which learns a
flexible and scalable diffusion model suitable for both conditional and unconditional text
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generation. Notably, this study can support text padding, laying the foundation for
exploring embedding space design and padding capabilities.

Step-unrolled Denoising Autoencoder (SUNDAE) (Savinov et al., 2021) introduces
the training mechanism of unrolled denoising based on Autoencoders. Compared to the
usual denoising approach, it requires fewer iterations to converge and demonstrates good
performance in machine translation and unconditional text generation tasks. Additionally,
it breaks the autoregressive limitation and can fill arbitrary blank patterns in templates,
paving the way for new approaches to text editing and text repair.

Latent Diffusion for Language Generation (LD4LG) (Lovelace et al., 2022), unlike
other works that transfer discrete text to continuous space by embedding, learns the
process of diffusion over the latent space of pre-trained language models and extends this
framework from unconditional text generation to conditional text generation.

Semi-autoregressive Simplex-based Diffusion Language Model (SSD-LM) (Han,
Kumar & Tsvetkov, 2023), a semi-autoregressive diffusion language model that performs
diffusion over the natural vocabulary space, enables flexible output length and modularity
control through these two key designs features. On unconstrained and controlled text
generation tasks, SSD-LM outperforms the autoregressive baseline model in terms of
quality and diversity.

COMPARISON BETWEEN TEXT DIFFUSION MODELS AND
PLMS
Large-scale pre-trained language models (PLMs) based on transformers represented by
GPT (decoder-only model), BERT (encoder-only model), and T5 (encoder-decoder
model) provide a strong foundation for natural language processing tasks. Among the
articles published in recent years, publications based on pre-training have occupied the
mainstream position, hence this survey examines the similarities and differences between
PLMs and diffuison models.

Through deep learning training on a large-scale corpus, a pre-trained model can not
only learn richer and more targeted semantic information, but also understand the
grammar and context of natural language, and generate coherent and logical text. PLMs
have shown impressive results in many NLP domains and applications. Their training
process can be divided into: (1) Pre-training: PLMs first train a general and large-scale
language model on large-scale text, which contains rich contextual semantic information;
(2) Fine-tuning: according to different downstream tasks, the pre-training model performs
discriminative learning on labeled data.

When comparing autoregressive and diffusion models, it is imperative to balance their
merits and drawbacks in terms of generation speed, diversity, and other relevant factors.
This consideration facilitates a judicious selection based on specific application scenarios
and task requirements. In this survey, we compare PLMs and diffusion-based text
generation models across the following four dimensions, as shown in Table 3 below.
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Comparison of generation methods
Pre-trained language models The PLMs based on Transformers usually adopt an
autoregressive approach (Manning & Schutze, 1999) (see Fig. 6), to generate sentences via
a time series forecast technology. A trained language model samples a sequence of discrete
words to predict the next possible word based on previous content.

Formally, the model obtains the probability score of word xi by calculating the
conditional probability Pðxijx1; x2; � � � ; xi�1Þ (see Eq. (5)). After concatenating xi behind
the original sequence ðx0; � � � ; xi�1Þ to obtain the new representation ðx0; � � � ; xi�1; xiÞ, the
model uses the new representation to predict the probability score of next word xiþ1. In
this way, the next word will continuously generate in a loop until , eos. or another
constraint token is generated.

pðxi; xiþ1; � � � ; xl j x0; x1; � � � ; xi�1Þ ¼
Yl
i¼t

pðxijx1; x2; � � � ; xi�1Þ (5)

Diffusion-based models The generation method of the diffusion model in NLP is
different from the traditional autoregressive method. As can be seen from Fig. 7, its

Table 3 Comparison between diffusion models and PLMs.

Dimension PLMs Diffusion-based models

Generation
methods

Usually autoregressive. Usually non-autoregressive.

Discrete text
handling

One-hot encoding, distributed representation, bag-of-words representation and word
embedding representation.

Discrete text diffusion and continuous text
diffusion.

Time
complexity

Related to factors such as the number of layers of the model, the number of attention
heads, the dimension of the hidden layer, and the size of the training data.

Usually related to the number of sampling
steps and the model complexity.

Diversity of
generated
results

Tending to choose words with high probabilities may result in relatively conservative
and similar generated outcomes.

By introducing more randomness, the
generated text tends to exhibit diversity.

.

.

.

Generation direction

,I love apple because it is

.

.

.

.

.

.

.
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Figure 6 Autoregressive language model. Full-size DOI: 10.7717/peerj-cs.1905/fig-6
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training process starts with an original sentence. These models generate sentences by first
constantly adding noise (usually Gaussian noise) to obtain a completely invisible noise
distribution, then producing a word vector through the iterative denoising of Gaussian
noise. This generative approach introduces inherent stochasticity, enhancing the diversity
of the generated outcomes.

Discrete text handling
Pre-trained language models Because of the particularities of discrete text, putting the
words into the NLG model requires special processing. This mainly includes one-hot
encoding, distributed representation, bag-of-words representation and word embedding
representation.

One-hot encoding uses a completely different vector to represent words, which can lead
to data sparsity; distributed representation represents words based on their contextual
distribution, which objectively draws on human association ability. However, there are still
issues such as sparsity, and even high-frequency words can mislead calculation results. The
bag-of-words representation is established in cases of unordered text and works by adding
all the corresponding vectors of the word to form the final text vector representation. Word
embedding uses an embedding layer to map discrete features to a continuous vector space,
where each eigenvalue corresponds to a unique vector. At the same time, the embedding
layer can be learned through pre-training or initialized randomly and trained together with
other model parameters.

Diffusion-based models Although PLMs have proven successful in text generation,
their autoregressive generation method follows the left-to-right and word-by-word
pattern, which poses difficulties when taking into account flexibility and controllability. To
address these limitations, some researchers have proposed using diffusion models.
However, a primary challenge lies in incorporating discrete text into the model. At present,
there are two mainstream methods among all diffusion-based models:

Discrete text diffusion models first refine the sentence to the token level when
processing the discrete diffusion model, then map different tokens to the transfer matrix
through the establishment of a category distribution function. For instance,He et al. (2023)
propose an absorbing state to either keep each token unchanged or convert it to a [MASK]
token with a certain probability, so as to form a transfer matrix and train the matrix to

……

Source sentence

……

……

……

Target sentence

Denoising Process

Forward Process

Figure 7 Diffusion-based generation process. Full-size DOI: 10.7717/peerj-cs.1905/fig-7
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convergence, i.e., all tokens change to [MASK]. However, researchers have observed that it
is possible to generate an unknownmarker during the token transformation process (e.g., a
tag may be damaged and randomly marked with a certain probability).

Continuous text diffusion models avoid the aforementioned instability through a simple
and effective technique. Qin et al. (2022) propose relaxing the output of a discrete language
model to continuous variables to help learn semantic information more accurately.
Continuous text diffusion models first utilize “an embedding” technique to encode the
discrete text into continuous variables with low dimensionality and rich semantics, then
perform forward diffusion and reverse denoising to obtain a latent variable. Finally, the
discrete text is retrieved using the rounding method to map the latent variable back to
words.

Overall, based on whether the input to the diffusion model is spatially continuous or
not, text generation diffusion models can be classified into discrete text diffusion models
(Austin et al., 2021; Reid, Hellendoorn & Neubig, 2022; Zheng et al., 2023; He et al., 2023)
and continuous text diffusion models (Li et al., 2022b; Savinov et al., 2021; Gong et al.,
2022; Yuan et al., 2022; Strudel et al., 2022; Lin et al., 2022). The discrete text diffusion
models perform diffusion process at the token level, with the advantage of directly
handling discrete text data without the need for additional embedding operations.
However, its disadvantage is that it is difficult to capture the semantic information of token
context. In contrast, the continuous text diffusion model employs a more stable technique
by diffusing over a continuous latent space, which can contain richer textual semantic
information. Nevertheless, the challenge lies in the conversion of discrete text data into
continuous latent vectors, potentially leading to information loss. Each of these approaches
presents unique advantages and challenges, offering extensive and profound research
directions within the field of text generation.

Time complexity
Pre-trained language models Pre-trained language models are typically pre-trained on
large amounts of unlabeled text data, often as autoregressive models. During the training of
an autoregressive model, the elements at each position depend on the previously generated
elements. The time complexity of pre-trained language models is mainly determined by
factors such as the number of layers in the model, the size of the hidden layer, the number
of attention heads, and the length of the input sequence. The time complexity of a given
model is approximated as OðLN2DÞ, where L denotes the number of layers, N represents
the sequence length, and D signifies the hidden layer dimension.

In the generation phase, an autoregressive model must execute sampling operations,
with the generation time complexity exhibiting a linear correlation with the sequence
length. The forward calculation time complexity at each position is approximately
OðLDNÞ, where L is the sequence length, D is a d-dimensional vector representing each
position, and N denotes the time cost of performing forward calculations at each position.

Diffusion-based models The time complexity of diffusion models is primarily
contingent upon the number of sampling steps and the computational complexity per step.
Within the diffusion model, the generative process involves multiple iterations, with each
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iteration requiring predictions facilitated by a neural network, such as the Transformer. As
a result, the time complexity of diffusion models may be relatively elevated, particularly
when confronted with a substantial number of sampling steps.

Currently, there is a paucity of research focused on the time complexity of diffusion
models. In order to provide a more intuitive comparison of the time complexity between
Diffusion Models and PLMs, we have referenced existing works and experimental data.
Taking DiffusionBERT, a diffusion model based on BERT, as an example, when both
models use a step of 64, the inference time of DiffusionBERT is more than twice as slow as
that of GPT, as illustrated in the Table 4. It is noted in RDMs that continuous diffusion
models exhibit time complexities several orders of magnitude higher than GPT2. However,
RDMs achieve a running speed approximately 10 times faster than a comparable-sized
autoregressive baseline like GPT2, owing to the implementation of various optimization
techniques.

In summary, diffusion models generally exhibit higher time complexity because they
require multiple iterations to recover text from noise. In contrast, PLMs have lower time
complexity as they only need a single forward pass to predict the next word from the
context. The choice of an appropriate model depends on specific application scenarios and
requirements. For instance, in diffusion models, the generation process typically involves
parallel generation of the entire sequence, while autoregressive models must sequentially
generate elements at each position. Therefore, when generating long sentences, diffusion
models might be more efficient.

Diversity of generated results
For text generation tasks, we usually use evaluation metrics such as BLEU (Papineni et al.,
2002), ROUGE (Lin, 2004) and MAUVE (Darling et al., 2004) to measure the quality of the
generated text. In Table 5, we summarize the results of BLEU and SacreBLEU evaluations
of different models on the datasets IWSLT14 (Cettolo et al., 2014), WMT14 (Bojar et al.,
2014) and WMT16 (Bojar et al., 2016). From existing studies, it is observed that the text
quality generated by diffusion-based models is comparable to that of autoregressive
language models, and in some cases, text generated by diffusion-based models even
surpasses that of autoregressive language models.

The impact of result diversity on different types of tasks varies. For generation tasks
such as chatbots and story generation, the diversity of generation results can enhance
interactivity and creativity and improve user experience. To assess the diversity of

Table 4 Comparison of inference time.

Method Step Inference times (s)

DiffusionBERT 64 4.25

Diffusion-LM 2,000 83.67

GPT 64 1.55
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generated texts, GENIE (Lin et al., 2022), AR-DIFFUSION (Wu et al., 2023) and
DiffusionBERT (He et al., 2023) utilize SELF-BLEU (Zhu et al., 2018) (lower scores
indicate higher diversity of generated text) as an evaluation metric, while Diffusion-NAT
employs Distinct-1/2 (Li et al., 2015) (higher scores indicate higher diversity of generated
text) as a metric. In Fig. 8, the results of the diversity comparison for some of the models
are shown. From the perspective of result diversity, diffusion models demonstrate

Table 5 BLEU and SacreBLEU evaluations on IWSLT14, WMT14, and WMT16 datasets.

Models IWSLT14 DE-EN WMT14 EN-DE WMT16 EN-RO

BLEU SacreBLEU BLEU SacreBLEU BLEU SacreBLEU

Transformer 32.62 33.61 26.37 26.85 32.76 32.86

CMLM 26.41 29.41 25.94 23.22 32.13 31.26

DiffuSeq 27.03 – 13.73 15.37 23.37 25.45

SeqDiffuSeq 28.65 – 14.37 17.14 23.98 26.17

Difformer 32.18 – 26.5 23.8 32.52 –

CDCD – – 20 19.7 – –

AR-DIFFUSION 35.62 32.35 – – – –

DiNoiSER – 31.61 – 25.88 – 32.84

(a) Self-BLUE scores on XSUM (b) Self-BLUE scores on E2E

(c) Distinct-1 scores on PersonaChat (d) Distinct-2 scores on PersonaChat

l

l

l l

I I I

l

l

Figure 8 Diffusion-based generation process. Full-size DOI: 10.7717/peerj-cs.1905/fig-8

Yi et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1905 17/26

http://dx.doi.org/10.7717/peerj-cs.1905/fig-8
http://dx.doi.org/10.7717/peerj-cs.1905
https://peerj.com/computer-science/


significant advantages over pre-trained language models. For instance, as shown in Fig. 8A,
the diversity of text generated by AR-DIFFUSION and GENIE is significantly higher than
that of the BART (Lewis et al., 2020) model. This is because the PLMs are obtained through
self-supervised learning on large-scale text data, which tend to generate more common
phrases and sentences, resulting in similar generated results. However, diffusion models
enhance randomness in generation through techniques such as noise injection and
random sampling, thereby increasing the richness and diversity of the generated text. In
summary, these experimental results collectively indicate that text generated by diffusion
language models presents rich diversity while maintaining quality.

In general, diffusion models and PLMs both possess unique advantages and limitations
in the field of text generation. In terms of text quality, both models can generate smooth,
coherent, and meaningful text. However, diffusion models excel in generating diversity,
capable of creating text in different styles, emotions, and themes. It is important to note
that diffusion models may be more prone to generating content that deviates from
common sense or logic, whereas pre-trained language models may lean towards producing
repetitive or irrelevant text. Regarding generation speed, diffusion models are relatively
slow, requiring multiple iterations to obtain the final result. To enhance generation speed,
diffusion models can adopt various acceleration techniques, such as parallelization.
Additionally, diffusion models offer the capability of pluggable controllability. In
summary, they each have their strengths and weaknesses and can draw inspiration from
each other to achieve a better balance between generation effectiveness and user
experience.

FUTURE DIRECTIONS
While diffusion models have made progress in text generation, there are still various
underlying challenges, such as slow convergence and long training time. In response to
these challenges, researchers have proposed a range of methods and techniques aimed at
enhancing the performance of diffusion models. However, diffusion models still hold
significant potential for development in the field of text generation, and much exploration
remains to be undertaken. In this section, we will explore several potential research
directions for diffusion models in the field of text generation.

Zero-shot tasks
A diffusion model is a probabilistic inference-based generative model, which generates
new samples by modeling the probability distribution of the data and random sampling. In
the face of zero-shot problems, the diffusion model can leverage the learned data
distribution characteristics and prior knowledge from the training phase to generate new
samples. In the field of computer vision, research has shown that diffusion models have the
ability to handle zero-shot problems (Xu et al., 2023a; Wang et al., 2023). Similarly, in the
field of NLP, the developers of zero-shot diffusion (Nachmani & Dovrat, 2021) found that
diffusion models can address zero-shot translation problems. In the future, in controllable
text generation, it will be possible to control specific attributes of generated samples to
satisfy specific conditions. Furthermore, the data generated by diffusion models exhibits
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diversity, and using diffusion models for data augmentation can to some extent address the
problem of limited data.

Multimodal diffusion models
Multimodality has become a trend and has demonstrated tremendous potential in various
fields (Zhu et al., 2023). Diffusion models can already handle data from different
modalities (text, image, audio, etc.), and if a unified multimodal diffusion model can be
constructed, the complementarity and correlation between modalities can be explored to
obtain more accurate and comprehensive information, accurately understand text, and
improve the performance of tasks such as sentiment analysis, visual question answering,
and image description. Currently, numerous studies have successfully implemented
generative diffusion models from one modality to another. For example, researchers have
made significant progress in text-to-audio (Yang et al., 2023; Huang et al., 2023b, 2023a),
text-to-image (Zhang, Rao & Agrawala, 2023; Ruiz et al., 2023), and image-to-text
(Fujitake, 2023). In addition to the studies of single cross-modal transitions, there is a body
of research proposing multimodal mutually guided generative approaches (Huang et al.,
2022; Yang, Chen & Liao, 2023; Ma et al., 2023). Huang et al. (2022), for example,
employed both image and text modalities to jointly guide the generation of images,
achieving a higher degree of controllability. In addition, several studies have proposed
unified diffusion frameworks such as UniDiffuser (Bao et al., 2023) and Versatile Diffusion
(Xu et al., 2023b). UniDiffuser not only encompasses multiple functions such as images
and text co-generation and images and text rewriting, but also achieves inter-modal
transformation among various modalities. As for the text generation task, the unified
multimodal diffusion model can explore the complementarity and correlation between
modalities, so as to obtain more accurate and comprehensive information, accurately
understand text, and improve the performance of tasks such as sentiment analysis, visual
question answering, and image description.

Combination with PLMs
Pre-training and fine-tuning, which are widely adopted in current research, are
indispensable and crucial techniques in the field of NLP. They can capture rich semantic
information and reduce the consumption of computational resources. Currently, some
works have combined diffusion models with pre-trained language model BERT (Dieleman
et al., 2022; Chen et al., 2023; He et al., 2023). This is mainly because pre-trained language
models are trained on a large corpus of text and have language modeling capabilities, while
can also speed up inference. In future work, more efficient ways of integrating diffusion
models with pre-trained models can be considered, such as incorporating in-context
learning, prompt learning, and other techniques.

Speeding up sampling
In diffusion models, generating samples typically requires multiple iterations of
computations. Some studies, such as SED (Strudel et al., 2022), have pointed out the
limitations of low sampling efficiency in diffusion models, which is indeed a drawback of
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diffusion models. To address this issue, in the field of computer vision, there have been a
few studies that propose different efficient sampling strategies (Bond-Taylor et al., 2022;
Xiao, Kreis & Vahdat, 2022; Watson et al., 2022; Vahdat, Kreis & Kautz, 2021; Zhang &
Chen, 2021). These methods have demonstrated the ability to double the sampling speed in
many cases. In the future, we believe that in addition to designing specialized sampling
strategies, it will also be possible to draw inspiration from successful sampling strategies in
computer vision and apply them to the field of NLP.

Designing embedding space
In order to use the diffusion model on continuous space, it is common to map discrete text
into a continuous space using an embedding. The embedding space is learnable during the
training process, and the objective of embedding is to map input data to a low-dimensional
vector space by learning the representation of the data. However, during the training
process, in order to minimize the loss function, the embedding may map all input data to a
similar embedding space, leading to the collapse of the loss function. This will cause the
model to be unable to distinguish between different samples. Therefore, it is necessary to
adopt certain strategies to guide the learning of the embedding space and devise better
embedding space to ensure that the original data is appropriately represented.

CONCLUSIONS
This article investigates the recent progress of text diffusion models. First, we briefly
introduced text generation and its subtasks, and elaborated in detail on the formula of the
diffusion models. Second, we reviewed articles applying diffusion models to tasks of
conditional text generation, controlled text generation, and unconstrained text generation.
Third, we made a comprehensive comparison between diffusion models and the current
mainstream models (PLMs), explored their differences in multiple dimensions, and
emphasized the strong advantages of diffusion models in text generation.

This survey of the diffusion model provides a comprehensive overview of the tasks of
conditional and unconstrained text generation. In the meantime, we also proposed some
possible challenges and future research directions for diffusion models. We hope that this
survey can promote the progress of diffusion models in the NLP field.
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