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Aspect-Based Multimodal Sentiment Analysis (ABMSA) is an emerging task in the research
of multimodal sentiment analysis, which aims to identify the sentiment of each given
aspect in text and image. Although recent research on ABMSA has achieved some success,
most existing models only use attention mechanism to interact aspect with text and image
respectively and obtain sentiment output through multimodal concatenation, they often
neglect to consider that some samples may not have semantic relevance between text
and image. In this paper, we propose a Text-Image Semantic Relevance Identification
(TISRI) model for ABMSA to address the problem. Specifically, we introduce a multimodal
feature relevance identification module to calculate the semantic similarity between text
and image, and then construct an image gate to dynamically control the input image
information. On this basis, an image auxiliary information is provided to enhance the
semantic expression ability of visual feature representation to generate more intuitive
image representation. Furthermore, we finally employ attention mechanism to obtain the
text-aware image representation through text-image interaction to prevent irrelevant
image information interfering our model. Experiments demonstrate that TISRI achieves
competitive results on two ABMSA Twitter datasets, and then validate the effectiveness of
our methods.
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14 Abstract

15 Aspect-Based Multimodal Sentiment Analysis (ABMSA) is an emerging task in the research of 

16 multimodal sentiment analysis, which aims to identify the sentiment of each given aspect in text 

17 and image. Although recent research on ABMSA has achieved some success, most existing 

18 models only use attention mechanism to interact aspect with text and image respectively and 

19 obtain sentiment output through multimodal concatenation, they often neglect to consider that 

20 some samples may not have semantic relevance between text and image. In this paper, we 

21 propose a Text-Image Semantic Relevance Identification (TISRI) model for ABMSA to address 

22 the problem. Specifically, we introduce a multimodal feature relevance identification module to 

23 calculate the semantic similarity between text and image, and then construct an image gate to 

24 dynamically control the input image information. On this basis, an image auxiliary information is 

25 provided to enhance the semantic expression ability of visual feature representation to generate 

26 more intuitive image representation. Furthermore, we finally employ attention mechanism to 

27 obtain the text-aware image representation through text-image interaction to prevent irrelevant 

28 image information interfering our model. Experiments demonstrate that TISRI achieves 

29 competitive results on two ABMSA Twitter datasets, and then validate the effectiveness of our 

30 methods.

31

32 Introduction

33 With the rapid development of Internet technology, online social and service platforms have 

34 gradually become an important part of people's lives(Q. Yu et al., 2019; Fuji and Matsumoto, 

35 2017). Nowadays, the content posted by users is gradually diversified with the prevalence of 

36 social media and various service products, and people are more inclined to express their 

37 sentiment in multimodal ways such as text and image for different topics and events. Therefore, 

38 Multimodal Sentiment Analysis (MSA) task is becoming increasingly important in research 

39 communities. Sentiment Analysis (SA) is an effective method to extract valuable information 

PeerJ Comput. Sci. reviewing PDF | (CS-2023:10:92227:0:1:NEW 26 Oct 2023)

Manuscript to be reviewedComputer Science



40 from massive data(Zhu et al., 2022). As an important fine-grained task in sentiment analysis, 

41 Aspect-Based Sentiment Analysis (ABSA) has attracted extensive attention from both academia 

42 and industry in the past decade for its ability to detect the sentiment polarity of the specific 

43 aspect in data(Zhang et al., 2018; Cao and Huang, 2023).

44 Aspect-based Multimodal Sentiment Analysis (ABMSA) is a new subtask of ABSA(Pontiki et 

45 al., 2016). In this paper, we introduce image as another modality to assist the text semantic 

46 expression, and then predict the sentiment polarity of the aspect involved in text and image. 

47 Table 1 shows two representative examples: Table 1(a) chooses �Taylor� as the aspect, the text 

48 aims to describe a detail about the event of Taylor�s award, and the smiling face in image also 

49 helps to identify the aspect �Taylor� as positive sentiment. Table 1(b) chooses �Percy Harvin� 

50 and �JETS� as aspects, the text provides a statement of an objective event and focuses all 

51 sentimental expressions on the image, we can infer the aspect �Percy Harvin� as a negative 

52 sentiment by his shocked expression in image, but �JETS� as an objectively existing 

53 organization has no image reflection, so the aspect �JETS� is assigned a neutral sentiment. 

54 Overall, ABMSA is a more refined and challenging task compared with global multimodal 

55 sentiment analysis, which can capture the sentiment polarity of text internal entities that cannot 

56 be obtained in the global tasks.

57 Given the importance of this field, researchers have proposed numerous methods for ABMSA. 

58 For example, Xu et al.(N. Xu et al., 2019) adopted attention mechanism to model interactions 

59 between aspect and text, as well as image. Yu et al.(Yu and Jiang, 2019), Yu et al.(J. Yu et al., 

60 2019), and Wang et al.(Wang et al., 2021) further modeled the interactions of text-image, aspect-

61 text, and aspect-image by employing pre-trained language and visual models. These research 

62 results demonstrate that integrating image into traditional text sentiment analysis can utilize more 

63 comprehensive sentiment information to achieve better sentiment identification effect.

64 Although MSA and ABSA are already popular research fields today, ABMSA is still a relatively 

65 new research task. Employing MSA and ABSA research methods to the ABMSA task may 

66 present the following challenges: (1) Some samples in dataset have no semantic relevance 

67 between text and image. (2) Compared to text, visual feature representation extracted from image 

68 is more difficult to perform semantic expression intuitively. (3) In text-relevant images, there 

69 may also be regions that are irrelevant to the text semantics and may introduce additional 

70 interference to the model.

71 To address the above challenges, we propose a general multimodal architecture named Text-

72 Image Semantic Relevance Identification (TISRI) for ABMSA. Compared with traditional 

73 ABMSA models, our main contributions to TISRI are summarized as follows: 

74 � To improve the interaction between aspect and text as well as image, we propose a Multimodal 

75 Feature Relevance Identification (MFRI) module, which determines the relevance between text 

76 and image semantics. Since image is only used as auxiliary information for text here, we 

77 construct an image gate to implement dynamic input for image information to prevent irrelevant 

78 interference for the model.
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79 � To enhance the semantic expression of the visual feature representation, we construct an Image 

80 Feature Auxiliary Reconstruction (IFAR) layer that introduces Adjective-Noun Pairs (ANPs) 

81 extracted from each image in our datasets as image auxiliary information. By fine-tuning the 

82 semantic bias between image visual representation and image auxiliary information, we can 

83 improve the image visual representation in terms of sentiment from a text level.

84 � To prevent the model being influenced by irrelevant image regions, we further interact text and 

85 image representation through attention mechanism in the final multimodal feature fusion, and 

86 then obtain text-relevant image representation to achieve Image Feature Filtering (IFF). 

87 Experimental results demonstrate that TISRI outperforms most existing advanced unimodal and 

88 multimodal methods, and achieves competitive results on two ABMSA Twitter datasets.

89

90 Related Work

91 Early research on sentiment analysis mainly focused on unimodal sentiment analysis of 

92 text(Chen, 2015; Li and Qian, 2016; Shin et al., 2016) and image(You et al., 2017; Li et al., 

93 2018; Wu et al., 2020). In recent years, MSA has gradually become an important focus in 

94 sentiment analysis research, and ABMSA has further developed and improved on the basis of 

95 ABSA research.

96

97 Multimodal Sentiment Analysis (MSA)

98 In recent years, MSA task has attracted widespread attention in academic community(Cambria et 

99 al., 2017; Poria et al., 2020), which aims to model text and other non-text modalities (e.g., visual 

100 and auditory modalities), and mainly focuses on two subtasks: MSA for conversation and MSA 

101 for social media. In MSA for conversation, existing methods mainly focus on adopting different 

102 deep learning models (e.g., Long Short-Term Memory Network(Hochreiter and Schmidhuber, 

103 1997), Gate Recurrent Unit(Chung et al., 2014), and Transformer(Vaswani et al., 2017)) to 

104 model the interaction between different modalities, which have demonstrated better performance 

105 in various MSA tasks (e.g., sentiment analysis(Zadeh et al., 2017; Poria et al., 2015, 2017; Liang 

106 et al., 2018), emotion analysis(Busso et al., 2004; Lee et al., 2011), and sarcasm detection(Castro 

107 et al., 2019; Cai et al., 2019)). In MSA for social media, it mainly includes sentiment analysis of 

108 social media image(Chen et al., 2014b; You et al., 2015; Yang et al., 2018a, 2018b) and 

109 multimodal sentiment analysis of text-image integration(You et al., 2016; Kumar and Garg, 

110 2019; Kumar et al., 2020; Xu et al., 2018). However, the above research methods mainly focus 

111 on coarse-grained sentiment analysis (i.e., identifying the global sentiment reflected by each 

112 sample) and cannot be directly employed for fine-grained ABMSA tasks.

113

114 Aspect-Based Sentiment Analysis (ABSA)

115 As an important fine-grained sentiment analysis task, ABSA has been widely researched and 

116 applied in NLP field over the past decade(Cambria et al., 2017), and its current methods can be 

117 broadly divided into two categories: discrete feature-based method and deep learning-based 

118 method. Discrete feature-based method focuses on designing multi-specific features to train 
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119 learning classifiers for sentiment analysis(Vo and Zhang, 2015; Pontiki et al., 2016). Deep 

120 learning-based method mainly adopts various neural network models to encode aspects and 

121 corresponding context information, including the method based on Recursive Neural 

122 Network(Dong et al., 2014), Convolutional Neural Network(Xue and Li, 2018), Recurrent 

123 Neural Network(Ma et al., 2018; Chen et al., 2017), Attention Mechanism(Wang et al., 2018; 

124 Yang et al., 2019; Meškelė and Frasincar, 2020; Zhao et al., 2021), Graph Convolutional 

125 Network(Wang et al., 2020; Zhang and Qian, 2020), and pre-trained BERT model that has 

126 achieved great success in recent years(H. Xu et al., 2019; Sun et al., 2019). However, the above 

127 research methods mainly focus on text-based unimodal information, but do not take into account 

128 the fact that relevant information from other modalities (e.g., visual modality) can also contribute 

129 to sentiment analysis.

130

131 Aspect-Based Multimodal Sentiment Analysis (ABMSA)

132 To conduct research on ABSA utilizing information from different modalities, researchers have 

133 developed numerous models for ABMSA over the past three years by employing various 

134 effective methods in different tasks. Xu et al.(N. Xu et al., 2019) first explored the ABMSA task 

135 and proposed a multi-interactive memory network model MIMN based on BiLSTM for text-

136 image interaction, while also constructed an e-commerce comment dataset for ABMSA. Yu et 

137 al.(Yu and Jiang, 2019) proposed an ABMSA model TomBERT based on the BERT 

138 architecture, and manually constructed two ABMSA Twitter datasets. Yu et al.(J. Yu et al., 

139 2019) proposed an ABMSA model ESAFN based on entity-sensitive attention and fusion 

140 network. Khan et al.(Khan and Fu, 2021) proposed a novel model CapBERT that employs cross-

141 modal transformation to convert the image content into text caption, and performs final 

142 sentiment analysis solely based on text modality. Wang et al.(Wang et al., 2021) proposed a 

143 recurrent attention network SaliencyBERT also based on BERT, the network effectively captures 

144 both intra-modal and inter-modal dynamics by designing a recurrent attention mechanism. 

145 Although the above research methods have been validated to be effective in the ABMSA task, 

146 they often neglect to identify whether the semantics between modalities are relevant or not. To 

147 address this problem, our model captures the semantic relevance between modalities by 

148 calculating the similarity between text and image features, which facilitates the effective 

149 development of its subsequent work.

150

151 Methodology

152 In this chapter, we first formulate our task, and introduce the overall architecture of our Text-

153 Image Semantic Relevance Identification (TISRI) model, then delve into the details of each 

154 module in TISRI.

155 Task Formulation: Given a set of multimodal samples  as input, each sample ( , , , )1 2 dD x x x L

156  contains an -word text , an associated image , and an -word ix D m ( , , , )1 2 mS w w w L I n

157 aspect 
 
that is a word subsequence of . Our task is to predict the sentiment ( , , , )1 2 nT w w w L S

PeerJ Comput. Sci. reviewing PDF | (CS-2023:10:92227:0:1:NEW 26 Oct 2023)

Manuscript to be reviewedComputer Science



158 label  of each given aspect, where  consists of three categories: positive, negative, and y Y Y

159 neutral.

160

161 Overview

162 Figure 1 illustrates the overall architecture of TISRI, which contains the following modules: (1) 

163 Unimodal Feature Extraction Module. (2) Multimodal Feature Relevance Identification Module. 

164 (3) Aspect-Multimodal Feature Interaction Module. (4) Multimodal Feature Fusion Module.

165 As shown at the bottom of Fig. 1, for a given multimodal sample, we first extract word feature 

166 representations from the input text and aspect, respectively, and visual feature representation 

167 from the input image, then aspect representation interacts with text and image representation to 

168 generate aspect-aware text representation and aspect-aware image representation.

169 Next, we obtain the semantic similarity between text and image by constructing a multimodal 

170 feature relevance identification module. The overall method is shown in Fig. 2, where the fusion 

171 representations of text and image are obtained through cross-modal interaction, and then an 

172 image gate is constructed in a specific way to dynamically control the input image information.

173 To enable better semantic expression of image feature, we propose an image feature auxiliary 

174 reconstruction layer. As shown in Fig. 3, the image visual representation is fine-tuned by 

175 introducing Adjective-Noun Pairs (ANPs) extracted from each image in our datasets as image 

176 auxiliary information to minimize their representation differences.

177 Finally, to prevent the model being influenced by irrelevant image regions, we interact aspect-

178 aware text representation with aspect-aware image representation, and then generate the final 

179 image representation. As shown at the top of Fig. 1, we further concatenate the aspect-aware text 

180 representation and the final image representation, and obtain the final sentiment label through a 

181 sentiment analysis linear layer.

182

183 Unimodal Feature Extraction Module

184 In this module, we adopt two pre-trained models to extract unimodal feature representations from 

185 aspect, text and image, respectively.

186

187 Aspect and Text Representation

188 Given an input text, we divide it into two parts: aspect  and its corresponding context , and T C

189 replace the aspect position in  with a special character �$T$�. For text encoding, we employ C

190 pre-trained language model RoBERTa(Liu et al., 2019) as the text encoder of our model, which 

191 has been proven to achieve competitive performance in various NLP tasks including ABSA(Dai 

192 et al., 2021). For  and , we follow the implementation mechanism of RoBERTa by inserting T C

193 two special tokens into each input (i.e., �<s>� at the beginning and �</s>� at the end), and then 

194 feeding them into text encoder to obtain the hidden representations of aspect: 

195  and context: , respectively, where  and RoBERTa( )TH T RoBERTa( )CH C d t

TH  ¡

196 ,  is the hidden dimension,  is the length of aspect, and  is the length of context.d c

CH  ¡ d t c
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197 Next, we concatenate  with  as sentence . For , we use the token �</s>� to separate  C T S S C

198 from , and then obtain the hidden representation of sentence:  through T RoBERTa( )SH S

199 RoBERTa implementation mechanism, where ,  is the length of sentence. The d s

SH  ¡ s c t 

200 implementations of aspect, context, and sentence encoding are shown at the bottom of Fig. 1 and 

201 Fig. 2.

202

203 Image Representation

204 For image encoding, we employ Residual Network (ResNet)(He et al., 2016) as the image 

205 encoder of our model. Compared to the previous VGG network(Simonyan and Zisserman, 2014), 

206 ResNet uses residual connections to avoid gradient vanishing problems as the number of layers 

207 increases, which allows for deeper extraction of semantic information in image recognition tasks. 

208 Specifically, given an input image , we first resize it to  with 224×224 pixels, and then take I
'I

209 the output of the last convolutional layer in pre-trained 152-layer ResNet as the image visual 

210 representation: , where , 49 is the number of visual blocks with the 'ResNet( )IH I 2048 49

IH  ¡

211 same size by dividing I� into 7×7, and 2048 is the vector dimension of each visual block.

212 Since we will conduct cross-modal interaction with text and image to obtain the feature 

213 representation of text and image fusion, it is necessary to project image representation to the 

214 same semantic space as text representation. We employ a linear transformation function for  IH

215 to obtain the final image representation: , where  is the learnable 
IV

T

IH W H 2048 dT

IW  ¡

216 parameter. The implementation of image encoding is shown at the bottom of Fig. 1.

217

218 Multimodal Feature Relevance Identification Module

219 For images in multimodal samples, while they can provide information beyond text for sentiment 

220 analysis, our purpose is to use image to assist in analyzing the sentiment polarity of aspect in 

221 text, and images that are irrelevant to text semantics may lead to misalignment of aspects and 

222 introduce additional interference to the model. Therefore, we propose a Multimodal Feature 

223 Relevance Identification (MFRI) Module, which provides an image gate when integrating text 

224 and image, and dynamically controls the input image information based on its relevance to text 

225 semantics. MFRI is divided into two layers: (1) Text-Image Cross-Modal Interaction Layer. (2) 

226 Image Gate Construction Layer. As shown in Fig. 2, we provide a detailed introduction to the 

227 implementation methods of these two layers in the following sections.

228

229 Text-Image Cross-Modal Interaction Layer

230 To better learn sentence feature representation in image, we introduce a multi-head cross-modal 

231 attention mechanism (MC-ATT)(Tsai et al., 2019), which treats image representation  as VH

232 query, and sentence representation  as key and value, then involves two layer normalization SH

233 (LN)(Ba et al., 2016) and a feedforward network (FFN)(Vaswani et al., 2017) as follows:

234 (1)LN ( + MC- ATT ( , ))V S V V SZ H H H 
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235 (2)LN ( + FFN ( ))V S V S V SH Z Z  

236 where  is the image-aware sentence representation generated by MC-ATT layer. 49

V S

dH 
 ¡

237 However, image representation is treated as query in the above MC-ATT layer, and each vector 

238 in the generated  represents a visual block rather than a word representation in sentence. V SH 

239 We expect that image-aware sentence representation can reflect on each word in sentence. Given 

240 this problem, we introduce another MC-ATT layer that treats  as query, and  as key SH V SH 

241 and value, then generates the final image-aware sentence representation , where '

V SH 

242 .' s

V

d

SH 
  ¡

243 To obtain the image representation for each word in sentence, we adopt the same method as 

244 above for cross-modal interaction, treating  as query, and  as key and value, then SH VH

245 generating the sentence-aware image representation , where .S VH 
s

S

d

VH 
  ¡

246

247 Image Gate Construction Layer

248 Yu et al.(Yu et al., 2020) introduced visual gate to dynamically control the contribution of image 

249 visual features to each word in text in the multimodal named entity recognition work and 

250 achieved effective experimental results. Inspired by this work, we construct a gate for the input 

251 image information, which is responsible for dynamically controlling the contribution of image 

252 information in our model by assigning a weight in  to each image based on its relevance to [0,1]

253 corresponding sentence, preserving the higher relevance image by assigning a higher weight, and 

254 filtering the lower relevance image by assigning a lower weight. Specifically, we first 

255 concatenate  and , and then construct the gate based on text-image relevance weight '

V SH  S VH 

256 through linear transformation and nonlinear activation function:

257 (3)'( [ ; ])S V V S S Vg W H H   

258 where  is the learnable parameter,  is the element-wise nonlinear activation d

S

2

V

dW 
 ¡ 

259 function, which is used to control the output of  in .g [0,1]

260 Based on the above image gate , we can obtain the final image representation that assigns g

261 relevance weight:

262 (4)'

V S VH g H  

263

264 Aspect-Multimodal Feature Interaction Module

265 After obtaining the feature representations of aspect, context, and image, we analyze the 

266 relationships between aspect and image as well as context, respectively. Furthermore, we design 

267 an Image Feature Auxiliary Reconstruction (IFAR) Layer, which serves as an auxiliary 

268 supervision for visual representation. The specific technical scheme of this module is shown at 

269 the middle part of Fig. 1, and the internal architecture of IFAR Layer is shown in Fig. 3. We 

270 provide a detailed implementation methods for them in the following sections.
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271

272 Aspect Interaction Layer

273 The main purpose of this layer is to obtain aspect-aware image representation and aspect-aware 

274 context representation, so we employ MC-ATT layer to interact with aspect and image as well as 

275 context, respectively, to promote information integration between modalities. Specifically, we 

276 first conduct cross-modal feature interaction between aspect and image, treating aspect 

277 representation  as query, and image representation  as key and value:TH VH

278 (5)LN ( + MC- ATT ( , ))T V T T VZ H H H 

279 (6)LN ( + FFN ( ))T V T V T VH Z Z  

280 where  is the aspect-aware image representation generated by MC-ATT layer.t

T

d

VH 
  ¡

281 Similarly, we can also obtain the aspect-aware context representation , where T CH 
t

T

d

CH 
  ¡

282 .

283

284 Image Feature Auxiliary Reconstruction Layer

285 To improve the effectiveness of visual feature representation, we introduce Adjective-Noun Pairs 

286 (ANPs) extracted from the image in each sample. Since the nouns and adjectives in ANPs can 

287 reflect real content and sentiment in image to some extent, we employ them as auxiliary 

288 supervision for visual representation to obtain a more intuitive image semantic expression. 

289 Specifically, we adopt DeepSentiBank(Chen et al., 2014a) to generate 2089 ANPs for each 

290 image and select the top k ANPs as image auxiliary information.

291 However, the extraction of image ANPs is essentially a coarse-grained extraction method, so 

292 extracted ANPs may be the content of image regions that are irrelevant to aspect or may be 

293 semantic information that is incorrectly recognized for image, and directly using these ANPs can 

294 significantly introduce additional interference to the model due to their inaccuracy. Zhao et 

295 al.(Zhao et al., 2022) obtained nouns relevant to aspect by calculating semantic similarity 

296 between aspect representation and ANPs noun representation in the construction of ABMSA 

297 knowledge enhancement framework, and achieved excellent alignment effect in their 

298 experiment. Inspired by this work, we concatenate the above  ANPs and their corresponding k

299 nouns, respectively, and feed them into text encoder to obtain the ANPs representation  ANPsH

300 and the noun representation , and then we employ cosine similarity to calculate the semantic NH

301 similarity between  and  to achieve the aspect alignment:TH NH

302 (7)
T

T N

T N

H H

H H
 




303 where  is the similarity score between  and , which we use as a weight vector  TH NH

304 representing the semantic relevance of ANPs to the aspect expressed in image. Next, we assign 

305 each individual in ANPs representation with its corresponding relevance weight to obtain the 

306 image auxiliary information representation:
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307 (8)'

ANPs ANPsH H 

308 Furthermore, based on the construction of image gate  in the above Multimodal Feature g

309 Relevance Identification Module, we also treat  as image auxiliary information gate to g

310 dynamically control the contribution of ANPs to the model, and then obtain the final image 

311 auxiliary information representation:

312 (9)'' '

ANPs ANPsH g H 

313 To enable visual attention to be more intuitive and accurate in representing the visual features of 

314 aspect in image, we introduce a reconstruction loss function based on mean square error (MSE) 

315 to minimize the difference between aspect-aware image representation  and final image T VH 

316 auxiliary information representation :''

ANPsH

317 (10)'' 2

1

1
( )

D

R ANPs T V

i

H H
D




 L

318

319 Multimodal Feature Fusion Module

320 In this module, we fuse aspect-aware context representation  and aspect-aware image T CH 

321 representation  with our Image Feature Filtering (IFF) method to obtain the final aspect T VH 

322 output representation. The implementation is shown at the top of Fig. 1. First, we employ MC-

323 ATT to implement the interaction between  and  to obtain the visual feature T CH  T VH 

324 representation corresponding to aspect-aware context in aspect-aware image as the final aspect-

325 aware image representation, and then filter the irrelevant regions in image:

326 (11)LN ( + MC- ATT ( , ))T C V T C T C T VZ H H H    

327 (12)LN ( + FFN ( ))T C V T C V T C VH Z Z     

328 Next, we concatenate  and , and then feed them into a multimodal self-attention T CH  T C VH  

329 layer based on Transformer for feature fusion between modalities:

330 (13)Transformer( ; )T C T C VH H H  

331 Finally, we feed the first token representation  into Softmax layer to obtain the final 0H

332 sentiment label:

333 (14)0( ) Softmax( )TP y H W H

334 We adopt the cross entropy loss constructed by predicted values of aspect-based sentiment labels 

335 and their true values as the training loss function for model sentiment analysis task:

336 (15)0

1

1
log ( )

D

j

S

j

P y H
D 

 L

337 To further optimize all parameters of our model, we train the loss function for sentiment analysis 

338 jointly with image auxiliary reconstruction, and then construct a final training loss function 

339 combining the two tasks:
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340 (16)S R L L L

341 Where  is the tradeoff hyper-parameter used to control the contribution of reconstruction loss.
342

343 Experiment

344 In this chapter, we conduct extensive experiments on two ABMSA datasets to validate the 

345 effectiveness of our Text-Image Semantic Relevance Identification (TISRI) model.

346

347 Experimental Settings

348 Datasets: We adopt two benchmark datasets of ABMSA TWITTER-2015 and TWITTER-2017 

349 proposed by Yu et al.(Yu and Jiang, 2019) that are composed of multimodal tweets posted on 

350 TWITTER in 2014-2015 and 2016-2017, where each sample consists of a text, an image, a given 

351 aspect, and the sentiment label (positive, negative, and neutral) corresponding to the aspect. The 

352 relevant information of these two datasets is shown in Table 2.

353 Implementation Details: For TISRI, we adopt RoBERTa-base(Liu et al., 2019) as the encoder 

354 for sentence, context, and aspect in text, and ResNet-152(He et al., 2016) as the image encoder. 

355 During alternating optimization process, we use AdamW as the learner to optimize parameters. 

356 Specifically, we set the batch size to 16, the training epoch to 9, the  value to 5, the  value to k 
357 0.8, the model learning rate to 1e-5, the maximum length of sentence and context to 128, the 

358 maximum length of aspect to 32, and the hidden dimension to 768. We demonstrate the average 

359 results of three independent training runs for all our models. All the models are implemented 

360 based on PyTorch, and run on an NVIDIA Tesla V100 GPU.

361

362 Compared Baselines

363 In this section, we evaluate the performance of TISRI by comparing it with various existing 

364 methods. Specifically, we consider comparing the following unimodal and multimodal methods 

365 to our model:

366 � Res-Target: a baseline method for obtaining the visual feature representation of input image 

367 directly from the ResNet model.

368 � AE-LSTM(Wang et al., 2016): an attention-based LSTM model for obtaining important 

369 context relevant to aspect.

370 � MGAN(Fan et al., 2018): a multi-grained attention network that fuses aspect and context at 

371 different granularity.

372 � BERT(Devlin et al., 2018): a pre-trained language model with stacked Transformer encoder 

373 layers for the interaction between aspect and text.

374 � RoBERTa(Liu et al., 2019): further improvement of BERT model by adopting better training 

375 strategies and larger corpus.

376 � MIMN(N. Xu et al., 2019): a multi-interactive memory network for the interaction between 

377 aspect, text, and image.
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378 � ESAFN(J. Yu et al., 2019): an entity-sensitive attention and fusion network for obtaining inter-

379 modal dynamics of aspect, text, and image.

380 � ViLBERT(Lu et al., 2019): a pre-trained visual language model that takes aspect-text pairs as 

381 input text.

382 � TomBERT(Yu and Jiang, 2019): an aspect-aware ABMSA method based on multimodal 

383 BERT model architecture.

384 � SaliencyBERT(Wang et al., 2021): a recursive attention network based on multimodal BERT 

385 model architecture for ABMSA.

386 � CapBERT(Khan and Fu, 2021): a method of converting image into text caption and feeding it 

387 with the input text to a pre-processed BERT model.

388 � KEF-TomBERT(Zhao et al., 2022): an extended baseline to apply a proposed knowledge 

389 enhancement framework KEF to TomBERT.

390 � KEF-SaliencyBERT(Zhao et al., 2022): an extended baseline to apply a proposed knowledge 

391 enhancement framework KEF to SaliencyBERT.

392 � CapRoBERTa: an extended baseline that replaces BERT with RoBERTa in CapBERT.

393 � KEF-TomRoBERTa: an extended baseline that replaces BERT with RoBERTa in KEF-

394 TomBERT.

395

396 Experimental Results and Analysis

397 Table 3 demonstrates the performance of our model and each compared baseline model on 

398 TWITTER-2015 and TWITTER-2017 datasets. We adopt Accuracy (Acc) and Macro-F1 as 

399 evaluation metrics and mark the best score for each metric in bold. As shown at the last five 

400 columns of Table 3, we compare our model with the latest proposed best performing KEF-

401 TomBERT and KEF-SaliencyBERT last year. In addition, we also select the best performing 

402 CapBERT from original baseline model and better performing KEF-TomBERT from the above 

403 two models, and replace the BERT in them with RoBERTa to implement a more comprehensive 

404 and fair comparison of TISRI.

405 Based on all the experimental results in Table 3, we can conclude as follows: (1) The 

406 performance of Res-Target is lower than that of all text language models, which may be 

407 explained by the fact that image relevant to aspect mostly serve as an auxiliary role for text and 

408 do not perform well as an independent modality for sentiment prediction. (2) Most multimodal 

409 methods generally perform better than unimodal methods, which indicates that image 

410 information can complement text information to obtain a higher sentiment prediction ability. (3) 

411 TomBERT, SaliencyBERT and CapBERT perform much better than other multimodal models, 

412 and we speculate that adopting multi-head cross-modal attention with self-attention mechanism 

413 to do cross-modal interaction on aspect can obtain more robust feature representation. (4) Among 

414 all original baseline models, CapBERT achieves the best performance due to image caption, 

415 which indicates that text has a more intuitive semantic representation than image. (5) The 

416 performance of KEF-TomBERT and KEF-SaliencyBERT is better than that of other original 
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417 baseline models, which indicates that the knowledge enhancement framework KEF can improve 

418 the performance of original model by introducing image adjective and noun information to some 

419 extent and has excellent compatibility effect. (6) Since RoBERTa is more powerful than BERT, 

420 intuitively the overall performance of CapRoBERTa is generally better than that of CapBERT on 

421 the above evaluation metrics. (7) Compared to the best performing KEF-TomRoBERTa, our 

422 model achieves competitive results on the two datasets, which has about 0.5% higher Macro-F1 

423 on TWITTER-2015 dataset, and about 0.4% and 1.2% higher Accuracy and Macro-F1 on 

424 TWITTER-2017 dataset, respectively.

425 For the slightly lower accuracy of our model on TWITTER-2015 dataset compared to KEF-

426 TomRoBERTa, we speculate that the possible reason is that KEF-TomRoBERTa applies 

427 adjectives in the obtained ANPs directly to aspect-aware image representation, while the overall 

428 text-image relevance weights on TWITTER-2015 dataset may be relatively higher than those on 

429 TWITTER-2017 dataset, which is also validated in the TISRI w/o MFRI part of ablation study in 

430 Section 4.4. Therefore, the direct use of adjectives in this case can express the sentiment in 

431 image more intuitively to some extent. However, for the condition where ANPs identify 

432 semantic error in image or text-image relevance has a low weight, KEF-TomRoBERTa may 

433 introduce additional interference to the model by directly using irrelevant adjectives. Overall, we 

434 speculate that TISRI performs better on TWITTER-2017 dataset for this reason.

435

436 Ablation Study

437 To further investigate the impact of individual unit in TISRI on model performance, we perform 

438 ablation analysis on TWITTER-2015 and TWITTER-2017 datasets for several important units in 

439 the model: (1) Image Feature Filtering (IFF) method. (2) Image Feature Auxiliary 

440 Reconstruction (IFAR) Layer. (3) Multimodal Feature Relevance Identification (MFRI) Module. 

441 We first remove the above three units respectively, and then remove these units at the same time 

442 leaving only the bone framework, so we can have a clearer and more comprehensive 

443 understanding of the contribution of individual unit to the model performance improvement. The 

444 experimental results are shown in Table 4, where w/o represents the removal of the 

445 corresponding unit.

446 First, we can learn that removing IFF unit decreases Accuracy by about 1.9% and 1.5% on the 

447 two datasets, respectively, which validates that retaining useful information in image and 

448 implementing filtering on text-irrelevant image regions helps reduce the impact of interference 

449 on model performance. Next, removing IFAR unit decreases Accuracy by about 2.1% and 2.5% 

450 on the two datasets, respectively, which proves that the unit has a large contribution to model 

451 performance improvement and validates that adopting ANPs as image auxiliary information can 

452 be more intuitive for semantic expression of visual feature representation. Then, removing the 

453 MFCR unit decreases Accuracy by about 0.7% and 1.8% on the two datasets, respectively, which 

454 validates that assigning image to an inter-modal relevance weight can help to prevent additional 

455 interference to the model from text-irrelevant images. We can also learn that there are more 

456 images with higher text-image relevance weights in TWITTER-2015 dataset than in TWITTER-
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457 2017 dataset, which validates the reason we inferred in Section 4.3. Finally, we remove all above 

458 units and observe that Accuracy decreases by about 2.2% and 4.5% on the two datasets, 

459 respectively, which validates the effectiveness of our proposed units in the model and also 

460 validates that these units contribute to model performance improvement to some extent from 

461 another perspective.

462

463 Parameter Analysis

464 In this section, we provide a detailed introduction and analysis of the process of evaluating 

465 optimal hyper-parameters. All of the above experiments are set based on optimized model hyper-

466 parameters.

467

468 Values of Epoch and Batch Size

469 To analyze the impact of different epoch and batch size on model performance, we determine the 

470 final values of epoch and batch size through experiments in this subsection. Figure 4 and Figure 

471 5 demonstrate the model performance of different epoch and batch size values on the two 

472 datasets, respectively, and we can draw the following inferences. First, we experiment with the 

473 value of epoch. We find that as the value of epoch increases, model performance shows an 

474 upward trend and then gradually stabilizes. The model performance is optimal when epoch 

475 equals 8, and then Accuracy and Macro-F1 of the model start to gradually decrease when epoch 

476 equals 9. Thus, we set the value of epoch to 9 in experiment. Accuracy and Macro-F1 

477 corresponding to the epoch setting of TISRI on TWITTER-2015 and TWITTER-2017 datasets 

478 are shown in Fig. 4(a) and Fig. 4(b).

479 Then, we analyze the value of batch size using 8, 16 and 32, respectively, and experimental 

480 results on the two datasets are shown in Fig. 5(a) and Fig. 5(b). We can clearly find that the 

481 model achieves the best performance on both datasets when batch size equals 16. The possible 

482 reasons are speculated as follows: When batch size equals 8, it is small for the number of 

483 samples in the two datasets, and the training of model is not only time-consuming but also 

484 difficult to converge, which leads to the underfitting of model. In a certain range, the increase of 

485 batch size is conducive to the stability of model convergence. However, when batch size equals 

486 32, the model may fall into local minimum because it is too large, which leads to the 

487 deterioration of model generalization performance. Thus, we set the value of batch size to 16 in 

488 experiment.

489

490 Value of k

491 To explore the impact of ANPs on model performance, we extract the top  ANPs for each k

492 image where  is set as each integer in , and take values for them respectively to k [1,10]

493 experiment. Figure 6(a) and Figure 6(b) demonstrate the model performance of  value on the k

494 two datasets, respectively, and we can draw the following inferences. First, the model 

495 performance is poor without ANPs as image auxiliary information, which indicates that 

496 combining ANPs can improve the performance of TISRI. Second, the model performance shows 
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497 a fluctuating upward trend as the number of ANPs increases and reaches the best state when  k

498 equals 5. However, the model performance no longer improves but shows a trend of decline 

499 when  is greater than 5. The possible reason is speculated as follows: The number of aspects k

500 involved in each text in the two datasets may not exceed 5, and when  is greater than it, image k

501 auxiliary information may introduce additional interference to the model. Therefore, we set the 

502 value of  to 5 in experiment.k

503

504 Value of 
505 To investigate the effect of trade-off hyper-parameter  that controls the auxiliary reconstruction 
506 loss contribution of IFAR layer on model performance, we set  to a decimal number with an 
507 interval of 0.1 in the range of  to experiment. Figure 7(a) and Figure 7(b) demonstrate the [0,1]

508 model performance of  value on the two datasets, respectively. The model performance shows 
509 a fluctuating upward trend as  increases, which has a more obvious effect on TWITTER-2017 
510 dataset. When  equals 0.8, the model performance reaches the best state, and then decreases 
511 gradually as  increases. We speculate that the possible reason is that ANPs as image auxiliary 
512 information only serve to improve the semantic expression of image visual features. When the 

513 trade-off hyper-parameter  exceeds a certain value, image auxiliary information plays a 
514 dominant role in image representation, but these ANPs may have semantic information of image 

515 recognition error, so the model will largely introduce additional interference when  is too large 
516 and produce negative effect. Thus, we set the trade-off hyper-parameter  to 0.8 in the error 
517 back propagation process.

518

519 Case Study

520 In this section, we provide an in-depth analysis of the results of different models on TWITTER-

521 2015 and TWITTER-2017 datasets to better understand the advantages of our model. 

522 Specifically, we first select four samples from test datasets to compare the sentiment prediction 

523 performance of TISRI with other models, and then screen the samples for error analysis in TISRI 

524 and analyze the possible causes of their errors.

525

526 Prediction Results

527 Table 5 demonstrates the comparison results of the sentiment prediction performance of three 

528 models RoBERTa, CapRoBERTa, and TISRI on four samples where we have an advantage. 

529 Since our model uses image gate and ANPs to assist with image information, we demonstrate 

530 them in the table as well. Table 5(a) demonstrates that image has a higher relevance weight with 

531 text, and the noun �team� associated with the aspect �Thunder� in ANPs has positive words 

532 �excellent� and �victorious� as modifiers, so our model can accurately predict the sentiment 

533 polarity as positive, while CapRoBERTa gives a wrong prediction. In Table 5(b), the image also 

534 has a higher relevance weight with text, and the ANPs contain positive words such as 

535 �handsome� and �smile�, so our model also makes correct prediction, while CapRoBERTa 

536 predicts a wrong sentiment label. However, the image content in Table 5(c) is relatively 
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537 complex, and old black and white photo also has certain limitations in image recognition, so the 

538 text-image relevance weight is not high. Fortunately, the ANPs identify nouns such as �team� 

539 relevant to image content, and also have positive adjectives like �successful� as noun modifiers, 

540 so our model successfully predict correct sentiment label, while RoBERTa and CapRoBERTa 

541 give wrong predictions. In Table 5(d), the text-image relevance weight is slightly lower than the 

542 other three samples because the text is too short and less relevant to image content, but the ANPs 

543 have several positive words such as �hot�, �pretty�, and �sexy�, which help our model to make 

544 accurate prediction from another perspective, while CapRoBERTa predicts a wrong sentiment 

545 label.

546 However, we find that multimodal CapRoBERTa model makes all wrong predictions in these 

547 four samples, while unimodal RoBERTa model makes only one wrong prediction, which is 

548 unreasonable from model interpretability perspective. Through investigation, we learn that the 

549 image caption in Table 5(a) is �A man in a tennis outfit is jumping in the air.�, Table 5(b) is �A 

550 woman with a tie and a flower in her hand.�, Table 5(c) is �A group of baseball players standing 

551 next to each other.� and Table 5(d) is �Two women in a field with a dog.�. We find that these 

552 captions not only contain incorrect recognition, but fail to reflect the adjectives or nouns relevant 

553 to facial expression in Table 5(b) and Table 5(d). Furthermore, CapRoBERTa completely relies 

554 on image caption to obtain image representation but discards original image information, so it 

555 cannot accurately reflect the sentiment embodied in image to some extent, and then affect the 

556 final sentiment prediction.

557

558 Error Analysis

559 On the basis of the above experiments, we further perform error analysis on TISRI to deepen our 

560 understanding of model performance. Table 6 demonstrates three types of error prediction 

561 examples, including the following categories: (1) The ANPs are incorrect in image semantic 

562 recognition. (2) The aspect in text cannot find nouns with high similarity in ANPs. (3) The model 

563 cannot recognize deeper sentiment in text and image. First, the ANPs in Table 6(a) incorrectly 

564 recognize image semantics. For an image that does not reflect any positive sentiment, its ANPs 

565 produce positive words such as �laughing� and �funny� that completely hinder correct sentiment 

566 recognition, so the image representation is affected by these words. Then, the aspect �WILD 

567 Women� in Table 6(b) is actually an organization name. Since it cannot be represented 

568 intuitively in image causing ANPs recognizing some aspect-irrelevant nouns, the image cannot 

569 accurately express the sentiment semantics of aspect. Finally, the text in Table 6(c) states an 

570 objective event that Martin St. Louis announced his retirement, and the image demonstrates a 

571 moment he waved his hand on the field. However, our model can only identify semantic features 

572 on the surface of text and image but cannot feel Martin's unwillingness to leave the stadium, so 

573 this problem is also the difficulty for TISRI to further intelligently identify sentiment in the 

574 future.

575

576 Conclusions
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577 In this paper, we propose an Aspect-Based Multimodal Sentiment Analysis (ABMSA) model 

578 TISRI. First, the model calculates text-image semantic relevance and constructs an image gate 

579 that dynamically controls the input of image information. Then, it introduces Adjective-Noun 

580 Pairs (ANPs) as image auxiliary information to enhance the semantic expression ability of image 

581 visual features. Finally, we adopt attention mechanism to interact with text and image 

582 representation to obtain filtered text-relevant image representation for the final sentiment 

583 prediction. Experimental results demonstrate that our proposed model outperforms the majority 

584 of existing advanced models on TWITTER-2015 dataset and all compared baseline models on 

585 TWITTER-2017 dataset, and validate the superiority of our model and the effectiveness of our 

586 methods.

587 We plan to expand our future research in the following directions. First, we aim to apply TISRI 

588 to more multimodal related tasks, where our inter-modal feature relevance identification and 

589 image feature auxiliary semantic enhancement units can be easily extended to other tasks such as 

590 multimodal event extraction and multimodal named entity recognition. Moreover, with the 

591 prevalence of large model, we aim to further explore how to effectively integrate large model 

592 into our work and achieve more specific multiclassification tasks in subsequent research.
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Table 1(on next page)

Representative examples of ABMSA.

Given an image, a text, and an unspecified number of aspects, we aim to predict the
sentiment polarity of each aspect.
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1 Table 1: Representative examples of ABMSA. Given an image, a text, and an unspecified 

2 number of aspects, we aim to predict the sentiment polarity of each aspect.

Image Text Aspect Output

(a)

Taylor posing with her 

Taylor Swift Award at 

the # BMIPopAwards

Taylor (Taylor, Positive)

(b)

RT @ ESPN Numbers : 

Everyone reacting to 

Percy Harvin being 

traded to the JETS . . .

Percy Harvin

JETS

(Percy Harvin, Negative)

(JETS, Neutral)

3

PeerJ Comput. Sci. reviewing PDF | (CS-2023:10:92227:0:1:NEW 26 Oct 2023)

Manuscript to be reviewedComputer Science



Table 2(on next page)

The basic statistics of two TWITTER datasets.
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1 Table 2: The basic statistics of two TWITTER datasets.

TWITTER-2015 TWITTER-2017

Train Dev Test Train Dev Test

Positive 928 303 317 1508 515 493

Negative 368 149 113 416 144 168

Neutral 1883 670 607 1638 517 573

Total 3179 1122 1037 3562 1176 1234

Avg Aspects 1.348 1.336 1.354 1.410 1.439 1.450

Words 9023 4238 3919 6027 2922 3013

Avg Length 16.72 16.74 17.05 16.21 16.37 16.38

2
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Table 3(on next page)

Experimental results on TWITTER-2015 and TWITTER-2017 datasets using different
unimodal and multimodal methods in the ABMSA task.
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1 Table 3� EE���������	 results on TWITTERT
��
 and TWITTERT
��� datasets using didd����� 

2 uni�u��	 and �m	���u��	 ����u�� in the AA��� tast�

3

TWITTER-2015 TWITTER-2017

Method Acc Macro-F1 Acc Macro-F1

Image Only

ResR������ 59.88 46.48 58.59 53.98

Text Only

AER���� 70.30 63.43 61.67 57.97

�M� 71.17 64.21 64.75 61.46

B!"� 74.15 68.86 68.15 65.23

RoB!"�� 76.28 71.36 69.77 68.00

Text and Image

�#� 71.84 65.69 65.88 62.99

E��$ 73.38 67.37 67.83 64.22

V%�B!"� 73.76 69.85 67.42 64.87

To&B!"� 77.15 71.75 70.34 68.03

��S%�'()B!"� 77.03 72.36 69.69 67.19

C�*B!"� 78.01 73.25 69.77 68.42

K!$R�+&B!"� 78.68 73.75 72.12 69.96

K!$R��S%�'()B!"� 78.15 73.54 71.88 68.96

C�*"+B!"�� 77.82 73.38 71.07 68.57

K!$R�+&"+B!"�� 78.75 73.94 72.18 70.21

TI�"# ,-.�/0 78.50 74.42 72.53 71.40
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Table 4(on next page)

Ablation study of TISRI.
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1 Table 41 A256789: study of TI;<=>

TWITTER-2015 TWITTER-2017

Method Acc Macro-F1 Acc Macro-F1

TI?@D 78.50 74.42 72.53 71.40

TI?@D w/o IFF 76.57 72.22 71.07 69.74

TISRI w/o IFAR 76.37 72.54 70.02 68.24

TISRI w/o MFRI 77.82 73.85 70.75 68.76

TISRI w/o IFF & IFAR & MFRI 76.28 71.79 68.07 66.86

2

PeerJ Comput. Sci. reviewing PDF | (CS-2023:10:92227:0:1:NEW 26 Oct 2023)

Manuscript to be reviewedComputer Science



Table 5(on next page)

Case study of RoBERTa, CapRoBERTa, and TISRI.

✓ and ✗ denote the correct and incorrect predictions, respectively.
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1 Table 5: FGHI study of RoBERTa, FGJLNOPLQGU and TIWLXY ✓ and ✗ denote the correct and 

2 incorrect predictionsU respectively.

Image

Text

(a) Z[\ ee]^_ `a] sesb]_ c 
[]eb^ fgsh^` i s 41 pjb^`_ 
l]hk nThoqrvwxyz{|}|~� `j 
111 � 97 eb�`js� oe]s 
Spgs_ b^ �h�] 4 .

��� � Sou^k�hs`]ll kbk a^ 
I^`]seb]� wb`a � 

ntom����vxyz{|}|~� a` � 

spj`�]_`behl a^k b` was 

e]s� �b^k . �] `hl�]k 
a�jg` � Spj`b��f�

��� RT � �ge]^`g_��]^ � 
Two sp]�bhl �]�jsb]_ � 
Z^�ab_fh� � a n���� 

�o�xyz{|}|~� `b`l] b^ 1977 

a^k ous 16`a S�gk]``j b^ 
1975 .

�k� So�] of `ah` fjk�]s 
�h_]�hll ☀ ⚾ � 

naly������ q¡�xyz{|}|~�

Image ¢�¡v 0.703 0.648 0.559 0.478

To�£� A¤¥�

�l]h^ abs
ajl� �sj__
e¦�]ll]^` `]h�
`jg�a sh�]
eb�`jsbjg_ `]h�

ah^k_j�] s�bl]
�asb_`bh^ a]sb`h�]
s`gpbk fa�]
ah^k_j�] �bk
�l]h^ `]]`a

pjjs p]s�js�h^�]
su��]__�gl `]h�
ajl� a^�]l_
fs]_a �]h`
fa^�� ks]__

s`g^^b^� �]hg`�
aj` �bsl_
ps]``� �bsl_
khs� s�b^
se¦� �bsl_

§�¨v� ��ag^k]s© ªj_b`be]� �`j��lj_]© ªj_b`be]� �«�¬­ Cup© ªj_b`be]� �hl�__h�h�b^`j© ªj_b`be]�

®�¯�®°� ��ag^k]s© ªj_b`be]✓� �`j��lj_]© ªj_b`be]✓� �«�¬­ Cup© ±]g`shl✗� �hl�__h�h�b^`j© ªj_b`be]✓�

���®�¯�®°� ��ag^k]s© ±]g`shl✗� �`j��lj_]© ±]g`shl✗� �«�¬­ Cup© ±]g`shl✗� �hl�__h�h�b^`j© ±]g`shl✗�

TI²®³ ´µow�¶ ��ag^k]s© ªj_b`be]✓� �`j��lj_]© ªj_b`be]✓� �«�¬­ Cup© ªj_b`be]✓� �hl�__h�h�b^`j© ªj_b`be]✓�
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Table 6(on next page)

Error cases of TISRI.
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1 Table ·¸ Error cases of TI¹º»¼

Image

Text

(a) Petition to have ½Jessica 

¾¿ÀÁÂÃNeutral coÄÅ ÆÇÈÉ foÊ 
AÄÅÊËÈÇÌ ÍÎÊÊÎÊ SÏÎÊÐ seasoÌ 6

ÑÆÒ TÓËÔ ÄÎÊÌËÌÕ Ö SÓÅË×ÇØÙÊÇÚÏ 
ÓÎÔÏÅÛ a ÆÊÜÌÈÓ aÄÝ ÝÎÜÊÅÛ ËÌÏÎ 
ouÊ ½WI¾Þ ßàáÂÀÃâãäåæåçè ÏÎ ÓÎÌÎÊ 
ÏÓÅÄ foÊ ÏÓÅËÊ ×ÅÇÛÅÊÔÓËÝ ËÌ 2014 é

ÑÈÒ RT Ö êëìÇÌÕÅÊÔ í îïïðÙðñò 

í ½ó¿ôõöÀÃ÷èøùæåçè SÏ . òÎÜËÔ 
aÌÌÎÜÌÈÅÔ ÊÅÏËÊÅÄÅÌÏ fÊÎÄ ÏÓÅ 
êÇÏËÎÌÇ× ÍÎÈÉÅÐ òÅÇÕÜÅ . ú êëì

Image û¿õÂ 0.590 0.494 0.433

Toüýþ AÿA�

×ÇÜÕÓËÌÕ ÆÇÆÐ
cÊÇcÐ caÏ
cÊÇcÐ face

ÝÎÎÊ caÏ
fuÌÌÐ ÆÇÆÐ

awesoÄÅ caÉÅ
×ËÏÏ×Å ÏÊÅÅ
co×ÎÊÚÜ× caÉÅ
ÕÊÅÇÏ fooÛ
jÎ××Ð cÓÊËÔÏÄÇÔ

eeÈËÏÅÛ cÊÎ�Û
Ë×× cÓË×Û
eeÈËÏÅÛ sÏÜÛÅÌÏ
ÓÎ×Ð cÊÎÔÔ
aÄÇcËÌÕ ÊÇÈÅ

¾¿LÂ� Ñ(ÅÔÔËÈÇ òÇÌÕÅ� êÅÜÏÊÇ×Ò Ñ�ðò� �ÎÄÅÌ� PÎÔËÏË�ÅÒ Ñ�ÇÊÏËÌ� êÅÕÇÏË�ÅÒ

TIT�	 
��ô�
 Ñ(ÅÔÔËÈÇ òÇÌÕÅ� PÎÔËÏË�Å✗Ò Ñ�ðò� �ÎÄÅÌ� êÅÜÏÊÇ×✗ Ò Ñ�ÇÊÏËÌ� êÅÜÏÊÇ×✗Ò

2
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Figure 1
The overview of Text-Image Semantic Relevance Identification (TISRI) model
architecture.

TISRI consists of four modules: Unimodal Feature Extraction Module, Multimodal Feature
Relevance Identification Module, Aspect-Multimodal Feature Interaction Module, and
Multimodal Feature Fusion Module.
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Figure 2
The overview of Multimodal Feature Relevance Identification (MFRI) Module
architecture.
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Figure 3
The overview of Image Feature Auxiliary Reconstruction (IFAR) Layer architecture.
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Figure 4
Effect of epoch on TWITTER-2015

Effect of epoch on model Accuracy and Macro-F1.
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Figure 5
Effect of epoch on TWITTER-2017

Effect of epoch on model Accuracy and Macro-F1.
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Figure 6
Effect of batch size on TWITTER-2015

Effect of batch size on model Accuracy and Macro-F1.
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Figure 7
Effect of batch size on TWITTER-2017

Effect of batch size on model Accuracy and Macro-F1.
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Figure 8
Effect of k on TWITTER-2015

Effect of k on model Accuracy and Macro-F1.
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Figure 9
Effect of k on TWITTER-2017

Effect of k on model Accuracy and Macro-F1.
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Figure 10
Effect of λ on TWITTER-2015

Effect of λ on model Accuracy and Macro-F1.
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Figure 11
Effect of λ on TWITTER-2017

Effect of λ on model Accuracy and Macro-F1.
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