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ABSTRACT
Aspect-based multimodal sentiment analysis (ABMSA) is an emerging task in the
research of multimodal sentiment analysis, which aims to identify the sentiment of
each aspect mentioned in multimodal sample. Although recent research on ABMSA
has achieved some success, most existing models only adopt attention mechanism to
interact aspect with text and image respectively and obtain sentiment output through
multimodal concatenation, they often neglect to consider that some samples may
not have semantic relevance between text and image. In this article, we propose a
Text-Image Semantic Relevance Identification (TISRI) model for ABMSA to address
the problem. Specifically, we introduce a multimodal feature relevance identification
module to calculate the semantic similarity between text and image, and then construct
an image gate to dynamically control the input image information. On this basis, an
image auxiliary information is provided to enhance the semantic expression ability
of visual feature representation to generate more intuitive image representation.
Furthermore, we employ attention mechanism during multimodal feature fusion to
obtain the text-aware image representation through text-image interaction to prevent
irrelevant image information interfering our model. Experiments demonstrate that
TISRI achieves competitive results on two ABMSA Twitter datasets, and then validate
the effectiveness of our methods.

Subjects Artificial Intelligence, Computer Vision, Data Mining and Machine Learning,
Natural Language and Speech, Sentiment Analysis
Keywords Aspect-based multimodal sentiment analysis, Semantic relevance identification,
Image gate, Image auxiliary information

INTRODUCTION
With the rapid development of Internet technology, online social and service platforms
have gradually become an important part of people’s lives (Yu, Zhou & Gong, 2019;; Fuji &
Matsumoto, 2017). Nowadays, instant posts and sharing personal thoughts on platforms like
Twitter and Instagram are ubiquitous, the content posted by users is gradually diversified
with the prevalence of social media and various service products, and people are more
inclined to express their sentiment in multimodal ways such as text and image for different
topics and events (Xiao et al., 2023). Since sentiment analysis is an effective method to
extract valuable information from massive data (Zhu et al., 2022), multimodal sentiment
analysis (MSA) task is becoming increasingly important in research communities. As an
important fine-grained task in sentiment analysis, aspect-based sentiment analysis (ABSA)
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has attracted extensive attention from both academia and industry in the past decade for
its ability to detect the sentiment polarity of the specific aspect in sample (Zhang, Wang &
Liu, 2018; Cao & Huang, 2023).

Aspect-based multimodal sentiment analysis (ABMSA) is a new subtask of ABSA
(Pontiki et al., 2016). In this article, we treat image as another modality to assist the text
semantic expression, and then predict the sentiment polarity of the aspect involved in text
and image. For example, given a text ‘‘Taylor posing with her Taylor Swift Award at the
# BMIPopAwards’’ with ‘‘Taylor’’ as the aspect and an image of Taylor holding a trophy
in her hand with a smile on her face, we can combine the context of aspect in text and the
facial expression in image to predict the aspect ‘‘Taylor’’ as positive sentiment. Overall,
ABMSA is a more refined and challenging task compared to global multimodal sentiment
analysis, which can capture the sentiment polarity of text internal entities that cannot be
obtained in the global tasks.

Given the importance of this task, researchers have proposed numerous methods for
ABMSA. For example, Xu, Mao & Chen (2019) adopted attention mechanism to model
interactions between aspect and text, as well as image. Yu & Jiang (2019), Yu, Jiang & Xia
(2019), andWang et al. (2021) further modeled the interactions of text-image, aspect-text,
and aspect-image by employing pre-trained language and vision models. These research
results demonstrate that integrating image into traditional text sentiment analysis can utilize
more comprehensive sentiment information to achieve better sentiment identification
effect.

Although MSA and ABSA are already popular research tasks today, ABMSA is still a
relatively new research task. Employing MSA and ABSA research methods to the ABMSA
task may present the following challenges: (1) Some samples in datasets have no semantic
relevance between text and image. (2) Compared to text, visual feature representation
extracted from image is more difficult to perform semantic expression intuitively. (3) In
text-relevant images, there may also be regions that are irrelevant to the text semantics that
may introduce additional interference to the model.

To address the above challenges, we propose a general multimodal architecture named
Text-Image Semantic Relevance Identification (TISRI) for ABMSA. Compared with
traditional ABMSA models, our model mainly achieves controlling the input of image
information beforemultimodal feature interaction, which addresses the problems of feature
complexity and interference existing in current methods, and our main contributions to
TISRI are summarized as follows:
1. To improve the interaction between aspect and text as well as image, we propose
a Multimodal Feature Relevance Identification (MFRI) module, which determines
the relevance between text and image semantics. Since image is only used as auxiliary
information for text in our research, we construct an image gate to implement dynamic
input for image information to prevent text-irrelevant image interference for the model.
2. To enhance the semantic expression of visual feature representation, we construct an
Image Feature Auxiliary Reconstruction (IFAR) layer that introduces adjective-noun pairs
(ANPs) extracted from each image in the adopted datasets as image auxiliary information.
By fine-tuning the semantic bias between image visual representation and image auxiliary
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information, we can improve the image visual representation in terms of sentiment from
the text level.
3. To prevent the model being influenced by irrelevant image region content, we further
interact text and image representation through attention mechanism during the final
multimodal feature fusion, and then obtain text-relevant image representation to achieve
image feature filtering (IFF). Experimental results demonstrate that TISRI outperforms
most existing advanced unimodal and multimodal methods, and achieves competitive
results on two ABMSA Twitter datasets.

RELATED WORK
Early research on sentiment analysis mainly focused on unimodal sentiment analysis of text
(Chen, 2015; Li & Qian, 2016; Shin, Lee & Choi, 2016) and image (You, Jin & Luo, 2017; Li
et al., 2018; Wu et al., 2020). Recently, MSA has gradually become an important focus in
sentiment analysis research, and ABMSA has further developed and improved on the basis
of ABSA.

Multimodal sentiment analysis (MSA)
In recent years, MSA task has attracted widespread attention in academic community
(Cambria et al., 2017; Poria et al., 2020), which aims to model text and other non-text
modalities (e.g., visual and auditory modalities), and generally involves two subtasks:
MSA for conversation and MSA for social media. In MSA for conversation, existing
methods mainly focus on adopting different deep learning models (e.g., long short-
term memory network (Hochreiter & Schmidhuber, 1997), gate recurrent unit (Chung et
al., 2014), and Transformer (Vaswani et al., 2017)) to interact the information between
different modalities, which have demonstrated better performance in various MSA tasks
(e.g., sentiment analysis (Zadeh et al., 2017; Poria, Cambria & Gelbukh, 2015; Poria et al.,
2017; Liang et al., 2018), emotion analysis (Busso et al., 2004; Lee et al., 2011), and sarcasm
detection (Castro et al., 2019; Cai, Cai & Wan, 2019)). In MSA for social media, it mainly
includes sentiment analysis of social media image (Chen et al., 2014b; You et al., 2015;
Yang et al., 2018a; Yang et al., 2018b) and multimodal sentiment analysis of text-image
integration (You et al., 2016; Kumar & Garg, 2019; Kumar et al., 2020; Xu, Mao & Chen,
2018). However, the above research methods mainly focus on coarse-grained sentiment
analysis (i.e., identifying the global sentiment reflected by each sample) and cannot be
directly employed for fine-grained ABMSA tasks.

Aspect-based sentiment analysis (ABSA)
As an important fine-grained sentiment analysis task, ABSA has been widely researched
and applied in Natural Language Processing (NLP) field over the past decade (Cambria
et al., 2017), and its current methods can be broadly divided into two categories: discrete
feature-based method and deep learning-based method. Discrete feature-based method
focuses on designing multi-specific features to train learning classifiers for sentiment
analysis (Vo & Zhang, 2015; Pontiki et al., 2016). Deep learning-based method mainly
adopts various neural network models to encode aspects and corresponding context

Zhang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1904 3/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1904


information, including the method based on recursive neural network (Dong et al., 2014),
convolutional neural network (Xue & Li, 2018), recurrent neural network (Ma, Peng &
Cambria, 2018; Chen et al., 2017), attention mechanism (Wang et al., 2018; Yang et al.,
2019; Meškele & Frasincar, 2020; Zhao et al., 2021), graph convolutional network (Wang
et al., 2020; Zhang & Qian, 2020), and pre-trained BERT model that has achieved great
success in the past few years (Xu et al., 2019; Sun, Huang & Qiu, 2019). However, the above
research methods mainly focus on text-based unimodal information, and do not take into
account the fact that relevant information from other modalities (e.g., visual modality) can
also contribute to sentiment analysis.

Aspect-Based Multimodal Sentiment Analysis (ABMSA)
To conduct research on ABSA utilizing information from different modalities, researchers
have developed numerousmodels for ABMSA in recent years by employing various effective
methods in different tasks. Xu et al. (2019) first explored the ABMSA task and proposed a
multi-interactive memory network model MIMN based on bidirectional long short-term
memory (BiLSTM) network, which extracts specific aspect sentiment information from
text and image, while also constructed an e-commerce comment dataset for the task. Yu &
Jiang (2019) proposed anABMSAmodel TomBERTbased on the BERT (Devlin et al., 2018)
architecture that is the basis formost extendedmodels at present, andmanually constructed
two ABMSA Twitter datasets. Yu & Jiang (2019) proposed an ABMSAmodel ESAFN based
on entity-sensitive attention and fusion network, which captures the relationship between
aspect, text, and image information effectively. Lu et al. (2019) proposed a pre-trained
visual language model ViLBERT that takes aspect-text pairs as input text, and the model
can also be employed for the ABMSA task. Khan & Fu (2021) proposed an innovative
model CapBERT that employs cross-modal transformation to convert the image content
into text caption, and performs final sentiment analysis based on text modality only.Wang
et al. (2021) proposed a recurrent attention network model SaliencyBERT also based on
BERT, which effectively captures both intra-modal and inter-modal dynamics by designing
a recurrent attention mechanism. Zhao et al. (2022) proposed a knowledge enhancement
framework KEF based on adjective-noun pairs (ANPs) to incorporate into various models,
which improves the visual attention and sentiment prediction capabilities in the ABMSA
task. Although the above ABMSA methods have been validated to be effective, they often
neglect to identify whether the semantics between modalities are relevant. Inspired by the
above KEF framework, our model introduce ANPs as image auxiliary information, but
capture the semantic relevance between modalities by calculating the similarity between
text and image features before multimodal interaction, which facilitates the effective
development of subsequent work.

METHODOLOGY
In this chapter, we first formulate our task, and introduce the overall architecture of our
Text-Image Semantic Relevance Identification (TISRI) model, then delve into the details
of each module in TISRI.
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Task formulation: Given a set of multimodal samples D= (x1,x2,...,xd) as input, each
sample xi ∈D contains an m-word text S= (w1,w2,...,wm), an associated image I , and an
n-word aspect T = (w1,w2,...,wn) that is a word subsequence of S. Our task is to predict
the sentiment label y ∈Y of each given aspect, where Y consists of three categories: positive,
negative, and neutral.

Overview
Figure 1 illustrates the overall architecture of TISRI, which contains the following modules:
(1) Unimodal Feature ExtractionModule. (2)Multimodal Feature Relevance Identification
Module. (3) Aspect-Multimodal Feature Interaction Module. (4) Multimodal Feature
Fusion Module.

As shown at the bottom of Fig. 1, for a given multimodal sample, we first extract word
feature representations from the input text and aspect, respectively, and visual feature
representation from the input image, then interact aspect representation with text and
image representation to generate aspect-aware text representation and aspect-aware image
representation.

Next, we obtain the semantic similarity between text and image by constructing a
multimodal feature relevance identification module. The overall method is shown in Fig. 2,
where the fusion representations of text and image are obtained through cross-modal
interaction, and then an image gate is constructed in a specific way to dynamically control
the input image information.

To enable better semantic expression of image features, we propose an image feature
auxiliary reconstruction layer. As shown in Fig. 3, the image visual representation is
fine-tuned by introducing ANPs extracted from each image in the adopted datasets as
image auxiliary information to minimize their representation differences.

Finally, to prevent the model being influenced by irrelevant image region content, we
interact aspect-aware text representation with aspect-aware image representation, and
then generate the final image representation. As shown at the top of Fig. 1, we further
concatenate aspect-aware text representation and final image representation, and obtain
the final sentiment label through a sentiment analysis linear layer.

Unimodal feature extraction module
In this module, we adopt two pre-trained models to extract unimodal feature
representations from aspect, text and image, respectively.

Aspect and text representation
Given an input text, we divide it into two parts: aspect T and its corresponding context C ,
and replace the aspect position in C with a special character ‘‘$T$’’. For text encoding, we
employ pre-trained language model RoBERTa (Liu et al., 2019) as the text encoder of our
model, which has been proven to achieve more competitive performance in various NLP
tasks including ABSA as an enhancement to the BERT architecture (Dai et al., 2021). For
T and C , we follow the implementation mechanism of RoBERTa by inserting two special
tokens into each input (i.e., ‘‘<s>’’ at the beginning and ‘‘</s>’’ at the end), and then
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Figure 1 The overview of the Text-Image Semantic Relevance Identification (TISRI) model architec-
ture. TISRI consists of four modules: Unimodal Feature Extraction Module, Multimodal Feature Rele-
vance Identification Module, Aspect-Multimodal Feature Interaction Module, and Multimodal Feature
Fusion Module.

Full-size DOI: 10.7717/peerjcs.1904/fig-1

feeding them into text encoder to obtain the hidden representations of aspect and context:

HT =RoBERTa(T ) (1)

HC =RoBERTa(C) (2)

where HT ∈Rd×t and HC ∈Rd×c , d is the hidden dimension, t is the length of aspect, and
c is the length of context.

Next, we concatenate C with T as sentence S. For S, we use the token ‘‘</s>’’ to separate
C from T , and then obtain the hidden representation of sentence through RoBERTa as
follows:

HS=RoBERTa(S) (3)
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Figure 2 The overview of the Multimodal Feature Relevance Identification (MFRI) Module architec-
ture.

Full-size DOI: 10.7717/peerjcs.1904/fig-2

whereHS ∈Rd×s, s= c+t is the length of sentence. The implementations of aspect, context,
and sentence encoding are shown at the bottom of Figs. 1 and 2.

Image representation
For image encoding, we employ residual network (ResNet) (He et al., 2016) as the image
encoder of our model. Compared to the previous VGG network (Simonyan & Zisserman,
2014), ResNet adopts residual connections to avoid gradient vanishing problem as the
number of layers increases, which allows for deeper extraction of semantic information in
image recognition tasks. Specifically, given an input image I , we first resize it to I

′

with
224×224 pixels, and then take the output of the last convolutional layer in pre-trained
152-layer ResNet as the image visual representation:

HI =ResNet(I
′

) (4)

where HI ∈R2,048×49, 49 is the number of visual blocks with the same size by dividing I
′

into 7×7, and 2,048 is the vector dimension of each visual block.
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Figure 3 The overview of Image Feature Auxiliary Reconstruction (IFAR) layer architecture.
Full-size DOI: 10.7717/peerjcs.1904/fig-3

Since we will subsequently conduct cross-modal interaction with text and image, it is
necessary to project image representation to the same semantic space as text representation.
We employ a linear transformation function for HI to obtain the projected image
representation:

HV =W T
I HI +bI (5)

where W T
I ∈Rd×2,048 and bI ∈Rd is the learnable parameters. The implementation of

image encoding is shown at the bottom of Fig. 1.

Multimodal feature relevance identification module
For images in multimodal samples, while they can provide information beyond text, our
purpose is to use image to assist in analyzing the sentiment polarity of aspect in text,
and images that are irrelevant to text semantics may lead to misalignment of aspects
and introduce additional interference to the model. Therefore, we propose a Multimodal
Feature Relevance Identification (MFRI) module, which provides an image gate when
integrating text and image, and dynamically controls the input image information based
on its relevance to text semantics. The module is divided into two layers: (1) Text-Image
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Cross-Modal Interaction layer. (2) Image Gate Construction layer. As shown in Fig. 2, we
provide a detailed introduction to the implementation methods of these two layers in the
following sections.

Text-image cross-modal interaction layer
To better learn sentence feature representation in image, we introduce a Multi-head
Cross-modal Attention (MC-ATT) mechanism (Tsai et al., 2019) layer, which treats image
representationHV as query, and sentence representationHS as key and value, then involves
two layer normalization (LN) (Ba, Kiros & Hinton, 2016) and a feedforward network (FFN)
(Vaswani et al., 2017) as follows:

ZV→S= LN(HV +MC-ATT(HV ,HS)) (6)

HV→S= LN(ZV→S+FFN(ZV→S)) (7)

where HV→S ∈Rd×49 is the image-aware sentence representation generated by MC-ATT
layer. However, image representation is treated as query in the above MC-ATT layer,
and each vector in HV→S represents a visual block rather than a word representation in
sentence. We expect that image-aware sentence representation can reflect on each word in
sentence. Given this problem, we introduce another MC-ATT layer that treatsHS as query,
and HV→S as key and value, then generates the final image-aware sentence representation
H
′

V→S, where H
′

V→S ∈Rd×s.
To obtain the image representation for eachword in sentence, we adopt the samemethod

as above for cross-modal interaction, treating HS as query, and HV as key and value, then
generating the sentence-aware image representation HS→V , where HS→V ∈Rd×s.

Image gate construction layer
Yu et al. (2020) introduced visual gate to dynamically control the contribution of image
visual features to each word in text in the multimodal named entity recognition task, and
achieved effective experimental results. Inspired by this work, we construct a gate for the
input image in ourmodel, which is responsible for dynamically controlling the contribution
of image information by assigning a weight in [0,1] to each image based on its relevance to
corresponding sentence, (i.e., preserving the higher relevance image by assigning a higher
weight, and filtering the lower relevance image by assigning a lower weight) Specifically,
we first concatenate H ′V→S and HS→V , and then construct the gate based on text-image
relevance weight through linear transformation and nonlinear activation function:

g = σ (W T
S→V [H

′

V→S;HS→V ]+bS→V ) (8)

where W T
S→V ∈Rd×2d and bS→V ∈Rd is the learnable parameters, σ is the element-wise

nonlinear activation function, which is used to control the output of g in [0,1].
Based on the above image gate g , we can obtain the image representation that assigns

relevance weight:

H
′

V = g ·HS→V (9)
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Aspect-multimodal feature interaction module
After obtaining the feature representations of aspect, context, and image, we analyze the
relationships between aspect and image as well as context, respectively. Furthermore, we
design an Image Feature Auxiliary Reconstruction (IFAR) layer, which serves as an auxiliary
supervision for visual representation. The specific technical scheme of this module is shown
at the middle part of Fig. 1, and the internal architecture of IFAR layer is shown in Fig. 3.
We provide detailed implementation methods for them in the following sections.

Aspect interaction layer
The main purpose of this layer is to obtain aspect-aware image representation and aspect-
aware context representation, so we introduce MC-ATT layer to interact with aspect
and image as well as context, respectively, to promote information integration between
modalities. Specifically, we first conduct cross-modal feature interaction between aspect
and image, treating aspect representation HT as query, and image representation HV as
key and value:

ZT→V = LN(HT +MC−ATT(HT ,HV )) (10)

HT→V = LN(ZT→V +FFN(ZT→V )) (11)

whereHT→V ∈Rd×t is the aspect-aware image representation generated byMC-ATT layer.
Similarly, we can also obtain the aspect-aware context representation HT→C , where

HT→C ∈Rd×t .

Image feature auxiliary reconstruction layer
To improve the effectiveness of visual feature representation, we introduce ANPs extracted
from image in each sample. Since the nouns and adjectives in ANPs can reflect real content
and sentiment in image to some extent, we employ them as auxiliary supervision for visual
representation to obtain a more intuitive image semantic expression. Specifically, we adopt
DeepSentiBank (Chen et al., 2014a) to generate 2,089 ANPs for each image and select the
top k ANPs as image auxiliary information. As the example in ‘Introduction’, the top five
ANPs are ‘‘hot blonde’’, ‘‘sexy blonde’’, ‘‘great smile’’, ‘‘pretty dress’’ and ‘‘sexy model’’.

However, the extraction of image ANPs is essentially a coarse-grained extractionmethod,
so ANPs may contain the content of image regions that are irrelevant to aspect or semantic
information that is incorrectly recognized for image, and directly using these ANPs can
significantly introduce additional interference to the model due to their inaccuracy.
Zhao et al. (2022) obtained nouns relevant to aspect by calculating semantic similarity
between aspect representation and ANPs noun representation in the construction of
ABMSA knowledge enhancement framework, and achieved excellent alignment effect
in their experiment. Inspired by this work, we concatenate the above k ANPs and their
corresponding nouns, respectively, and feed them into text encoder to obtain the ANPs
representation HANPs and the noun representation HN , and then we employ cosine
similarity to calculate the semantic similarity between HT and HN to achieve the aspect
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alignment:

α=
HT

T ·HN

‖HT‖·‖HN‖
(12)

where α is the similarity score between HT and HN , which we use as a weight vector
representing the semantic relevance of ANPs to the aspect in image. Next, we assign each
individual in ANPs representation with its corresponding relevance weight to obtain the
image auxiliary information representation:

H
′

ANPs=α ·HANPs (13)

Furthermore, based on the construction of image gate g in MFRI module, we also treat
g as image auxiliary information gate to dynamically control the contribution of ANPs to
the model, and then obtain the final image auxiliary information representation:

H
′′

ANPs= g ·H
′

ANPs (14)

To enable visual attention to be more intuitive and accurate in representing the visual
features of aspect in image, we introduce a reconstruction loss function based on mean
square error (MSE) to minimize the difference between aspect-aware image representation
HT→V and final image auxiliary information representation H

′′

ANPs:

LR=
1
|D|

|D|∑
i=1

(H
′′

ANPs−HT→V )2 (15)

Multimodal feature fusion module
In this module, we fuse aspect-aware context representation HT→C and aspect-aware
image representation HT→V with our Image Feature Filtering (IFF) method to obtain
the final aspect output representation. The implementation is shown at the top of Fig. 1.
First, we introduce MC-ATT layer to implement the interaction between HT→C and
HT→V to obtain the visual feature representation corresponding to aspect-aware context
in aspect-aware image as the final aspect-aware image representation, and then filter the
irrelevant region content in image:

ZT→C→V = LN(HT→C+MC−ATT(HT→C ,HT→V )) (16)

HT→C→V = LN(ZT→C→V +FFN(ZT→C→V )) (17)

Next, we concatenate HT→C and HT→C→V , and then feed them into a multimodal
self-attention layer based on Transformer for feature fusion between modalities:

H =Transformer(HT→C ;HT→C→V ) (18)

Finally, we feed the first token representation H 0 into Softmax layer to obtain the final
sentiment label:

P(y |H )= Softmax(W TH 0
+b) (19)
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Table 1 The basic statistics of two Twitter datasets. Train, Dev, and Test are short for train set, devel-
opment set, and test set.

TWITTER-2015 TWITTER-2017

Train Dev Test Train Dev Test

Positive 928 303 317 1,508 515 493
Negative 368 149 113 416 144 168
Neutral 1,883 670 607 1,638 517 573
Total 3,179 1,122 1,037 3,562 1,176 1,234
Sentence 2,101 727 674 1,746 577 587
Avg Aspects 1.348 1.336 1.354 1.410 1.439 1.450
Words 9,023 4,238 3,919 6,027 2,922 3,013
Avg Length 16.72 16.74 17.05 16.21 16.37 16.38

We adopt the cross entropy loss constructed by predicted values of aspect-based
sentiment labels and their true values as the training loss function for the model sentiment
analysis task:

LS=
1
|D|

|D|∑
j=1

logP(y j
∣∣H 0 ) (20)

To further optimize all parameters of our model, we train the loss function for sentiment
analysis jointly with image auxiliary reconstruction, and then construct the final training
loss function combining the two tasks:

L=LS+λLR (21)

where λ is the tradeoff hyper-parameter used to control the contribution of reconstruction
loss.

Experiment
In this chapter, we conduct extensive experiments on two ABMSA datasets to validate the
effectiveness of our TISRA model.

Experimental settings
Datasets
We adopt two benchmark datasets of ABMSA TWITTER-2015 and TWITTER-2017
proposed by Yu & Jiang (2019) in our experiments, which are composed of multimodal
tweets posted on Twitter in 2014–2015 and 2016–2017, each sample consists of a text,
an image associated with text, a given aspect extracted from text, and the sentiment label
(positive, negative, and neutral) corresponding to the aspect. For aspect selection, the two
datasets manually extract specific noun phrases in sentence as aspects, and each sentence
contains one or more aspects as sentiment analysis objects. For example, the sentence
‘‘David Gilmour and Roger Waters playing table football.’’ treats the noun phrases ‘‘David
Gilmour’’ and ‘‘Roger Waters’’ as aspects. The relevant information of these two datasets
is shown in Table 1.
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Table 2 Hyper-parameter value setting of TISRI.

Hyper-Parameter TWITTER-2015 TWITTER-2017

Batch Size 16 16
Training Epoch 9 9
k Value 5 5
λ Value 0.8 0.8
Learning Rate 1e−5 1e−5
Maximum Sentence Length 128 128
Maximum Context Length 128 128
Maximum Aspect Length 32 32
Hidden Dimension 768 768
Attention Head Number 12 12

Implementation details
For TISRI, we adopt RoBERTa-base (Liu et al., 2019) as the encoder for sentence, context,
and aspect in text, andResNet-152 (He et al., 2016) as the image encoder.During alternating
optimization process, we use AdamW as the learner to optimize parameters. The hyper-
parameter values we set for our model are described in Table 2. In the experiments, we
employ test set results corresponding to the optimal results on development set as the final
results, and demonstrate the average results of three independent training runs for our
experimental models. All the models are implemented based on Python 3.7 and PyTorch,
compiled on PyCharm, and run on an NVIDIA Tesla V100 GPU.

Compared baselines
In this section, we evaluate the performance of TISRI by comparing it to various existing
methods. Specifically, we consider comparing the following unimodal and multimodal
methods with our model:
• Res-Target: a baseline method for obtaining the visual feature representation of input
image directly from the ResNet model.
• AE-LSTM (Wang et al., 2016): an attention-based LSTM model for obtaining important
context relevant to aspect.
• MGAN (Fan, Feng & Zhao, 2018): a multi-grained attention network that fuses aspect
and context at different granularity.
• BERT (Devlin et al., 2018): a pre-trained language model with stacked Transformer
encoder layers for the interaction between aspect and text.
• RoBERTa (Liu et al., 2019): a further improved BERT model by adopting better training
strategies and larger corpus.
•MIMN (Xu et al. 2019): a multi-interactive memory network for the interaction between
aspect, text, and image.
• ESAFN (Yu & Jiang, 2019): an entity-sensitive attention and fusion network for obtaining
inter-modal dynamics of aspect, text, and image.
• ViLBERT (Lu et al., 2019): a pre-trained visual language model that takes aspect-text
pairs as input text.
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• TomBERT (Yu & Jiang 2019): an aspect-aware ABMSA method based on multimodal
BERT model architecture.
• SaliencyBERT (Wang et al., 2021): a recursive attention network based on multimodal
BERT model architecture for ABMSA.
• CapBERT (Khan & Fu 2021): a method of converting image into text caption and feeding
it with the input text to a pre-processed BERT model.
• KEF-TomBERT (Zhao et al., 2022): an extended baseline to apply a proposed knowledge
enhancement framework KEF to TomBERT.
• KEF-SaliencyBERT (Zhao et al., 2022): an extended baseline to apply a proposed
knowledge enhancement framework KEF to SaliencyBERT.
• CapRoBERTa: an extended baseline that replaces BERT with RoBERTa in CapBERT.
• KEF-TomRoBERTa: an extended baseline that replaces BERT with RoBERTa in KEF-
TomBERT.

EXPERIMENTAL RESULTS AND ANALYSIS
Table 3 demonstrates the performance of our model and each compared baseline model
on TWITTER-2015 and TWITTER-2017 datasets. We adopt accuracy (Acc) and macro-
F1 as evaluation metrics. As shown in the fifth and sixth last columns of Table 3, we
compare our model with the latest proposed best performing KEF-TomBERT and KEF-
SaliencyBERT. First, we replace the RoBERTa in TISRI with BERT, and then obtain TISRI-
BERT to demonstrate the superiority of our adoption with RoBERTa as text encoder.
More importantly, we also select the best performing CapBERT from original baseline
model and better performing KEF-TomBERT from the two knowledge enhancement
models, and replace the BERT in them with RoBERTa then obtain CapRoBERTa and KEF-
TomRoBERTa to implement a more significant and fairer direct comparison of TISRI. The
hyper-parameter values of CapRoBERTa and KEF-TomRoBERTa are described in Tables 4
and 5.

Based on all the experimental results in Table 3, we can conclude as follows: (1) The
performance of Res-Target is lower than that of all text language models, which may be
explained by the fact that image relevant to aspect mostly serve as an auxiliary role for text
and do not perform well as an independent modality for sentiment prediction. (2) Most
multimodalmethods generally performbetter than unimodalmethods, which indicates that
image information can complement text information to obtain more accurate sentiment
prediction. (3) TomBERT, SaliencyBERT and CapBERT perform much better than other
original multimodal models, and we speculate that adopting multi-head cross-modal
attention and self-attention mechanism to do cross-modal interaction on aspect can obtain
more robust feature representation. (4) Among all original baseline models, CapBERT
achieves the best performance due to image caption, which indicates that text has a more
intuitive semantic representation than image. (5) The performance of KEF-TomBERT and
KEF-SaliencyBERT is better than that of all original baseline models, which indicates that
the knowledge enhancement framework KEF can improve the performance of original
model by introducing image adjective and noun information to some extent and has
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Table 3 Experimental results on TWITTER-2015 and TWITTER-2017 datasets using different uni-
modal andmultimodal methods in the ABMSA task. The last three columns are where we focus our
comparison, and the fifth and sixth last columns are the latest proposed of all demonstrated baselines. The
best scores for each metric are in bold.

TWITTER-2015 TWITTER-2017

Method Acc Macro-F1 Acc Macro-F1

Image Only
Res-Target 59.88 46.48 58.59 53.98

Text Only
AE-LSTM 70.30 63.43 61.67 57.97
MGAN 71.17 65.51 64.75 61.46
BERT 74.15 68.86 68.15 65.23
RoBERTa 76.28 71.36 69.77 68.00

Text and Image
MIMN 71.84 65.69 65.88 62.99
ESAFN 73.38 67.37 67.83 65.52
ViLBERT 73.76 69.85 67.42 64.87
TomBERT 77.15 71.75 70.34 68.03
SaliencyBERT 77.03 72.36 69.69 67.19
CapBERT 78.01 73.25 69.77 68.42
KEF-TomBERT 78.68 73.75 72.12 69.96
KEF-SaliencyBERT 78.15 73.54 71.88 68.96
TISRI-BERT 78.21 74.10 72.12 70.63
CapRoBERTa 77.82 73.38 71.07 68.57
KEF-TomRoBERTa 78.75 73.94 72.18 70.21
TISRI (Ours) 78.50 74.42 72.53 71.40

Table 4 Hyper-parameter values of CapRoBERTa.

Hyper-Parameter TWITTER-2015 TWITTER-2017

Batch Size 16 16
Training Epoch 6 6
Learning Rate 5e−5 5e−5
Tokenizer Maximum Length 80 80
Hidden Dimension 768 768
Attention Head Number 12 12

excellent compatibility effect. (6) Since RoBERTa is more powerful than BERT, intuitively
the overall performance of CapRoBERTa and TISRI is generally better than that of
CapBERT and TISRI-BERT on the above evaluation metrics. (7) Compared to the best
performing KEF-TomRoBERTa, TISRI achieves competitive results on the two datasets,
which has about 0.5% higher macro-F1 on TWITTER-2015 dataset, and about 0.4% and
1.2% higher accuracy and macro-F1 on TWITTER-2017 dataset, respectively. The results
indicate that our model can improve the overall performance by dynamically controlling
the input image information while adopting ANPs as image auxiliary information.
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Table 5 Hyper-parameter values of KEF-TomRoBERTa.

Hyper-Parameter TWITTER-2015 TWITTER-2017

Batch Size 16 16
Training Epoch 8 5
Learning Rate 2e−5 2e−5
Maximum Sentence Length 64 64
Maximum Aspect Length 32 32
Hidden Dimension 768 768
Attention Head Number 12 12

Table 6 Ablation study of TISRI. IFF, IFAR, andMFRI are our main designed units. The best scores
for each metric are in bold.

TWITTER-2015 TWITTER-2017

Method Acc Macro-F1 Acc Macro-F1

TISRI 78.50 74.42 72.53 71.40
TISRI w/o IFF 76.57 72.22 71.07 69.74
TISRI w/o IFAR 76.37 72.54 70.02 68.24
TISRI w/o MFRI 77.82 73.85 70.75 68.76
TISRI w/o IFF & IFAR &MFRI 76.28 71.79 68.07 66.86

For the slightly lower accuracy of our model on TWITTER-2015 dataset compared to
KEF-TomRoBERTa, we speculate the possible reason is that KEF-TomRoBERTa applies
adjectives in the obtained ANPs directly to aspect-aware image representation, while the
overall text-image relevance weights on TWITTER-2015 dataset are relatively higher than
those on TWITTER-2017 dataset, which is also validated in the TISRI w/o MFRI part of
ablation study in ‘Value of k’, so the direct use of adjectives can express the sentiment
in image more intuitively to some extent in this case. However, for the condition where
text-image relevance has a low weight, KEF-TomRoBERTa may introduce additional
interference to the model by directly using irrelevant adjectives, so we speculate that TISRI
performs better on TWITTER-2017 dataset for this reason.

Ablation study
To further investigate the impact of individual unit in TISRI on model performance, we
perform ablation analysis on TWITTER-2015 and TWITTER-2017 datasets for the main
designed units in our model: (1) Image Feature Filtering (IFF) method. (2) Image Feature
Auxiliary Reconstruction (IFAR) layer. (3) Multimodal Feature Relevance Identification
(MFRI) module. We first remove the above three units respectively, and then remove these
units at the same time leaving only the bone framework, so we can have a clearer and
more comprehensive understanding of the contribution of individual unit to the model
performance improvement. The experimental results are shown in Table 6, where w/o
represents the removal of corresponding unit.

First, we can learn that removing IFF unit decreases accuracy by about 1.9% and 1.5%
on the two datasets, respectively, which validates that retaining useful information in image
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and implementing filtering on text-irrelevant image region content helps reduce the impact
of interference on model performance. Next, removing IFAR unit decreases accuracy by
about 2.1% and 2.5% on the two datasets, respectively, which proves that the unit has
a large contribution to model performance improvement and validates that adopting
ANPs as image auxiliary information can be more intuitive for semantic expression of
visual feature representation. Then, removing the MFCR unit decreases accuracy by about
0.7% and 1.8% on the two datasets, respectively, which validates that assigning image to
an inter-modal relevance weight can prevent additional interference to the model from
text-irrelevant images. We can also learn that there are more images with higher text-image
relevance weights in TWITTER-2015 dataset than in TWITTER-2017 dataset, which
validates the reason we inferred in ‘Values of epoch and batch size’. Finally, we remove
all above units and observe that accuracy decreases by about 2.2% and 4.5% on the two
datasets, respectively, which validates the effectiveness of our designed units in the model
and also validates that these units contribute to model performance improvement to some
extent from another perspective.

Parameter analysis
In this section, we provide a detailed introduction and analysis of the process of evaluating
optimal hyper-parameters. All the above experiments are set based on optimized model
hyper-parameters.

Values of epoch and batch size
To analyze the impact of different epoch and batch size on model performance, we
determine the final values of epoch and batch size through experiments in this subsection.
Figures 4 and 5 demonstrate the model performance of different epoch and batch size
values on the two datasets, respectively, and we can draw the following inferences. First,
we experiment with the value of epoch. We find that as the value of epoch increases,
the model performance shows an upward trend and then gradually stabilizes. The model
performance is optimal when epoch equals 8, and then accuracy and macro-F1 start to
gradually decrease when epoch equals 9. Thus, we set the value of epoch to 9 in our
experiments. Accuracy and macro-F1 corresponding to the epoch setting of TISRI on
TWITTER-2015 and TWITTER-2017 datasets are shown in Figs. 4A and 4B.
Then, we analyze the value of batch size using 8, 16 and 32, respectively, and experimental

results on the two datasets are shown in Table 7.We can clearly find that the model achieves
the best performance on both datasets when batch size equals 16. The possible reasons
are speculated as follows: When batch size equals 8, it is small for the number of samples
in the two datasets, and the model training is not only time-consuming but also difficult
to converge, which leads to the underfitting of model. In a certain range, the increase of
batch size is conducive to the stability of model convergence. However, when batch size
equals 32, the model may fall into local minimum because it is too large, which leads to the
deterioration of model generalization performance. Thus, we set the value of batch size to
16 in our experiments.
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Figure 4 Effect of epoch onmodel accuracy andmacro-F1.
Full-size DOI: 10.7717/peerjcs.1904/fig-4

Figure 5 Effect of k onmodel accuracy andmacro-F1.
Full-size DOI: 10.7717/peerjcs.1904/fig-5

Table 7 Effect of batch size onmodel accuracy andmacro-F1. The best scores for each metric are in
bold.

TWITTER-2015 TWITTER-2017

Batch
size

Acc Macro-F1 Acc Macro-F1

8 77.05 72.89 70.99 69.89
16 78.50 74.42 72.53 71.40
32 76.37 71.80 69.85 68.11

Value of k
To explore the impact of ANPs on model performance, we extract the top k ANPs for
each image where k is set as each integer in [1,10], and take values for them respectively
to experiment. Figures 5A and 5B demonstrate the model performance of k value on
the two datasets, respectively, and we can draw the following inferences. First, the model
performance is poor without ANPs as image auxiliary information, which indicates that
combining ANPs can improve the performance of TISRI. Second, the model performance
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shows a fluctuating upward trend as the number of ANPs increases and reaches the best
state when k equals 5. However, the model performance no longer improves but shows a
trend of decline when k is greater than 5. The possible reason is speculated as follows: The
number of aspects involved in each text in the two datasets may not exceed 5, and when
k is greater than it, image auxiliary information may introduce additional interference to
the model. Therefore, we set the value of k to 5 in our experiments.

Value of λ

To investigate the effect of trade-off hyper-parameter λ that controls the auxiliary
reconstruction loss contribution of IFAR layer on model performance, we set λ to a
decimal number with an interval of 0.1 in the range of [0,1] to experiment. Figures 6A and
6B demonstrate the model performance of λ value on the two datasets, respectively. The
model performance shows a fluctuating upward trend as λ increases, which has a more
obvious effect on the TWITTER-2017 dataset. When λ equals 0.8, the model performance
reaches the best state, and then decreases gradually as λ increases. We speculate that
the possible reason is that ANPs as image auxiliary information only serve to improve
the semantic expression of image visual features. When the trade-off hyper-parameter
λ exceeds a certain value, image auxiliary information plays a dominant role in image
representation, but these ANPs may have semantic information of image recognition
error, so the model will largely introduce additional interference when λ is too large and
produce negative effect. Thus, we set the trade-off hyper-parameter λ to 0.8 in the error
back propagation process.

Error analysis
On the basis of the above experiments, we further perform error analysis on TISRI to
deepen our understanding of model performance. The error prediction reasons for TISRI
are broadly divided into the following categories: (1) The ANPs are incorrect in image
semantic recognition. For example, given a text ‘‘Petition to have Jessica Lange come back
for American Horror Story season 6’’ with ‘‘Jessica Lange’’ as the aspect and an image
of Jessica Lange with a cigarette in her mouth, but the ANPs produce words such as
‘‘laughing’’ and ‘‘funny’’ that completely hinder correct sentiment recognition, so TISRI
introduces incorrect word information into the image representation adjustments during
model training, which affects the model performance to some extent. (2) The aspect in text
cannot find nouns with high similarity in ANPs. For example, given a text ‘‘This morning
@ SheilaGCraft hosted a brunch amp poured into our WILD Women to honor them for
their leadership in 2014 !’’ with ‘‘WILD Women’’ as the aspect and an image of a group of
women dining together, but ‘‘WILDWomen’’ is actually an organization name that cannot
be represented intuitively in image, which causes ANPs to recognize some aspect-irrelevant
nouns, so the image is also affected by these ANPs and cannot accurately express the
sentiment semantics of aspect. (3) The model cannot recognize deeper sentiment in text
and image. For example, given a text ‘‘RT @ NYRangers: OFFICIAL: Martin St . Louis
announces retirement from the National Hockey League . # NYR’’ with ‘‘Martin’’ as the
aspect and an image of Martin waving on the field with the crowd cheering, but our model
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Figure 6 Effect of λ onmodel accuracy andmacro-F1.
Full-size DOI: 10.7717/peerjcs.1904/fig-6

can only identify semantic features on the surface of text and image combined with ANPs,
and cannot feel the deeper sentiment of Martin’s unwillingness to leave the stadium, so
this problem is also the difficulty and challenge for existing models to further intelligently
identify sentiment in the future.

CONCLUSIONS
In this article, we propose an aspect-based multimodal sentiment analysis (ABMSA) model
TISRI, which mainly dynamically inputs image information before multimodal feature
interaction to prevent text-irrelevant image interference comparedwith the current research
in this task. First, the model calculates text-image semantic relevance and constructs an
image gate that dynamically controls the input of image information. Then, it introduces
adjective-noun pairs (ANPs) as image auxiliary information to enhance the semantic
expression ability of image visual features. Finally, it adopts attentionmechanism to interact
with text and image representation to obtain filtered text-relevant image representation for
the final sentiment prediction. Experimental results demonstrate that TISRI outperforms
the majority of existing advanced models on the TWITTER-2015 dataset and all compared
baseline models on the TWITTER-2017 dataset, and then validate the superiority of our
model and the effectiveness of our methods.

However, our existing research still has the following limitations: (1) TISRI adopts
ANPs as auxiliary image information, which enables visual attention to be more intuitive
and accurate in representing the visual features of aspect in image, but there still exists
inaccurate image descriptions in ANPs that may introduce additional interference to the
image representation. (2) The two Twitter datasets adopted for the experiments are both
constructed by English-based social media platforms, which are small and homogeneous,
and the sentiment prediction performance of ourmodel is unknown for datasets of different
fields, languages and scales.

Considering the above limitations, we plan to expand our future research in the following
directions. First, we aim to construct a more efficient method to incorporate ANPs into our
model while preserving the original image features. Then, we hope to apply TISRI to more
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multimodal related tasks and keep the datasets diverse to test the availability of our model
in different fields and scenes, where our designed units can be easily extended to other tasks
such as multimodal event extraction and multimodal named entity recognition. Moreover,
with the prevalence of large language model (LLM), we intend to further explore how to
effectively integrate LLM into our work and achieve more specific multiclassification tasks
in subsequent research.
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