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ABSTRACT
Speech enhancement algorithms are applied in multiple levels of enhancement to
improve the quality of speech signals under noisy environments known as multi-
channel speech enhancement (MCSE) systems. Numerous existing algorithms are used
to filter noise in speech enhancement systems, which are typically employed as a pre-
processor to reduce noise and improve speech quality. They may, however, be limited
in performing well under low signal-to-noise ratio (SNR) situations. The speech devices
are exposed to all kinds of environmental noises which may go up to a high-level
frequency of noises. The objective of this research is to conduct a noise reduction
experiment for a multi-channel speech enhancement (MCSE) system in stationary
and non-stationary environmental noisy situations with varying speech signal SNR
levels. The experiments examined the performance of the existing and the proposed
MCSE systems for environmental noises in filtering low to high SNRs environmental
noises (−10 dB to 20 dB). The experiments were conducted using the AURORA and
LibriSpeech datasets, which consist of different types of environmental noises. The
existingMCSE (BAV-MCSE) makes use of beamforming, adaptive noise reduction and
voice activity detection algorithms (BAV) to filter the noises from speech signals. The
proposed MCSE (DWT-CNN-MCSE) system was developed based on discrete wavelet
transform (DWT) preprocessing and convolution neural network (CNN) for denoising
the input noisy speech signals to improve the performance accuracy. The performance
of the existing BAV-MCSE and the proposed DWT-CNN-MCSE were measured using
spectrogram analysis and word recognition rate (WRR). It was identified that the
existing BAV-MCSE reported the highest WRR at 93.77% for a high SNR (at 20 dB)
and 5.64% on average for a low SNR (at −10 dB) for different noises. The proposed
DWT-CNN-MCSE system has proven to perform well at a low SNR with WRR of
70.55% and the highest improvement (64.91% WRR) at −10 dB SNR.
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INTRODUCTION
The speech enhancement system reduces background disturbances/noises while
protecting against any changes to speech features to deal with noisy speech signals.
Speech enhancement distinguishes between the intended speech and background noise
interference (Wang & Chen, 2018). It aims to enhance speech quality to optimize associated
signal processing systems, such as wearables (Takada, Seki & Toda, 2018), automatic speech
recognition (Donahue, Li & Prabhavalkar, 2018), mobile telephony (Hasannezhad et al.,
2021), and hearing prostheses (Syed, Trinh & Mandel, 2018). Many algorithms have been
proposed, and the noise issue has been studied extensively for a very long period (Das
et al., 2020). Spectral subtraction algorithms (Balaji et al., 2020), Wiener filtering (Yang
& Bao, 2018), and nonnegative matrix factorization (Xu et al., 2021) are examples of
traditional speech enhancement algorithms. However, only some of these algorithms pay
attention to speech enhancement at low signal-to-noise ratio (SNR) conditions, which is
more important and challenging than high SNR conditions. Generally, −10 dB to 0 dB
SNR levels refer to low SNR’s, while 5 dB to 15 dB are high-level SNR’s (Wang & Chen,
2018). There are many communication scenarios at low SNR conditions. For instance,
walkie-talkies used by employees in metal-cutting factories, wireless headsets used by
mechanics when testing a helicopter, and so on. The current focus of research is on
improving the performance of communication devices such as microphones, automatic
speech recognition (ASR), Voice over Internet Protocol (VoIP), teleconferencing etc.

While speech enhancement at high SNRmakes the speechmore comfortable for listeners,
speech enhancement at low SNR affects the clarity of the speech. The improvement of
speech at low SNR is not therefore more significant than at high SNR (Xu et al., 2004).
However, dealing with a high noise level in a noisy environment and providing noise-free
communication is a trending research topic in this field. Several algorithms, such as
spectral subtraction, beamforming, adaptive noise reduction, spectral statistical filter,
among others, have been proposed to improve speech quality.

Multi-channel speech enhancement (MCSE) refers to systems that make use of multiple
signal inputs, use noise references in adaptive noise cancellation, phase adjustment to
cancel unwanted noise components, and combine step-by-step schemes (Kokkinakis &
Loizou, 2010). The existing MCSE provides speech recognition at a 71%Word Recognition
Rate (WRR) at 10 dB SNR compared to a single microphone (Xu et al., 2004; Stupakov et
al., 2012). These multi-channel algorithms (beamforming, adaptive noise reduction and
voice activity detection algorithms) suffer from the low performance of recognition rate
when SNR is low (−15 dB, −10 dB, −5 dB, 0 dB) (Pauline, Samiappan & Kumar, 2021;
Kim, 2020). The existing algorithms developed forMCSE systems were only tested for white
Gaussian stationary noise at 0 to 60 dB SNRs and were never tested for non-stationary
environmental noises.

The deep learning algorithm is one of the state-of-the-art algorithms in the speech
enhancement domain (Rownicka, Bell & Renals, 2020; Ochiai, Delcroix & Nakatani, 2020),
which has been proven to have acceptable performance in handling different levels of
noise in speech enhancement based on the computing platform. Among the deep learning
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algorithms, the very deep convolution neural network (VDCNN-conv) reported the highest
WRR at 90.45% and an average WRR of 87.45% for environmental noises (Cherukuru,
Mumtaz Begum & Hema, 2021). However, MCSE systems have never been experimented
with deep learning algorithms. As such, the aim of this research is to propose a MCSE
system using deep learning and preprocessing algorithms and examine the performance of
the proposed system against the existing MCSE system in filtering environmental noises at
low to high SNR conditions.

The rest of the article is structured as follows. The ‘Research background’ provides
an overview of the single-channel and multi-channel speech enhancements and their
limitations which include the existing MCSE and deep learning algorithms. The next
section describes the proposed deep learning based MCSE system. The ‘Methodology’
section describes the approach, experimental design, setup, and evaluation methods used
on both the benchmark MCSE speech enhancement and the proposed approach of MCSE.
The ‘Results’ section presents the findings of this research, while discussions are presented
in the next section. Finally, the last section concludes the proposed work.

RESEARCH BACKGROUND
Many existing algorithms were used to filter noise in MCSE systems and are often used as
a pre-processor to improve speech quality. They have proven to be effective in reducing
interference signals and improving voice quality. There are two categories of speech
enhancement systems, which are single-channel and multi-channel speech enhancement.

Single channel speech enhancement system
The approaches for enhancing speech with only one acquisition channel are known as
‘‘single channel’’ algorithms. A single channel is typically not available in most real-time
applications such as speaker recognition, voice recognition, mobile communications, and
hearing aids, though they are relatively cheaper than multi- channel systems. This is one
of the most difficult situations in speech enhancement domain as there is no reference
signal available for noise, and clean speech/audio signal cannot be preprocessed before it is
affected by the noise (Yadava & Jayanna, 2019; Hossain et al., 2023; Xu, Tu & Yang, 2023).
Despite the challenges, there are several algorithms developed and experimented such
as subtraction algorithms, over subtraction algorithms, non-linear spectral subtraction,
non-linear weighted subtraction, etc. These algorithms improved the performance of
speech quality in noisy environments; however, they’re computationally intensive and not
effective at suppressing noisy audio signals, especially when the SNR is low i.e., −10 dB
to 10 dB (Shanmugapriya & Chandra, 2014; Upadhyay & Karmakar, 2015; Saleem et al.,
2022). This environmental noise is difficult to filter because it has different characteristics
in terms of noisy levels in decibels, frequencies etc. depending on the type of environment.
Therefore, MCSE is very much required (Akhaee, Ameri & Marvasti, 2005).

Recently, researchers have given attention to the convolutional neural network (CNN)
algorithm for single-channel speech enhancement system. The performance of CNN was
measured using various measurement metrics such as mean opinion score (MOS), signal
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distortion (SIG), and intrusiveness of background noise (BAK). A scale from 1 to 5 is used
for SIG, BAK, and MOS, with a higher number being preferred.

While word error rate (WER) or word recognition rate (WRR) is a commonmetric used
to specifically assess the performance of ASR systems, other common objective measures
include segmental signal-to-noise ratio (segSNR), distance measures, source-to-distortion
ratio (SDR), perceptual evaluation of speech quality (PESQ), and short-time objective
intelligibility (STOI).

In Soleymanpour et al. (2023), speech enhancement in a single channel was implemented
using CNN algorithms for complex noisy speeches to improve the speech quality (Passricha
& Aggarwal, 2019) which produces the following result; PESQ = 3.24 (Wang &Wang,
2019; Park & Lee, 2017), CSIG (signal distortion) = 4.34 (Pandey & Wang, 2019; Germain,
Chen & Koltun, 2019), CBAK (background noise interference) = 4.10 (Fu et al., 2018;
Rownicka, Bell & Renals, 2020), COVL (overall quality of speech) = 3.81 (Rethage,
Pons & Serra, 2018), and SSNR (Segmented Signal to Noise Ratio) = 16.85 (Choi et
al., 2019). Additionally, CNN was said to be more effective than recursive neural networks
(RNNs) (Park & Lee, 2017) and traditional feedforward neural networks (Oord et al.,
2016). According to Park & Lee (2017), CNN can perform better with a network that is 12
times smaller than RNN (Park & Lee, 2017). CNN is effective in distinguishing the speech
and noise components of noisy signals because it can handle the local temporal spectral
features of speech. Both in the spectrum and waveform domains, CNN has demonstrated
its efficacy in improving speech.

Multi-channel speech enhancement system (MCSE)
Microphone arrays and speech enhancement components are built into MCSE that
processes multiple channels of audio signals in noisy environments such as outdoor
environments (Palla et al., 2017; Pauline, Samiappan & Kumar, 2021). For example, a
spectral statistics filter is applied to hearing aids to handle stationary noise environments
(Gaussian noise) and unsteady noise environments (factories, babble, and car noises) from
−5 dB to 20 dB (Kim, 2020). The current performance rate at low SNR are 2.16 PESQ
score with babble noise, 2.20 considered as low quality of signal with Gaussian noise, 2.13
considered as low quality of signal with factory noise and 3.67 PESQ score considered as a
medium quality of signal with car noise on an average of −5 dB to 10 db SNR levels (Kim,
2020).

Figure 1 shows the architecture of the existing MCSE system based on beamforming,
adaptive noise reduction, and voice activity detection (BAV-MCSE). The architecture
consists of a microphone array, beamforming, adaptive noise reduction, and voice activity
detection.
• Beamformer

A microphone array can be combined with a spatial filtering signal processor called
Beamformer. Beamforming is achieved with filtering the microphone signal, merging
the outputs to obtain the desired signal, and filtering away interference noise (Van Veen
& Buckley, 1988). Fixed beamforming and adaptive beamforming are the two types of
beamforming. The direction of the input signal is fixed in fixed beamforming, and the
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Figure 1 Architecture of the existing multi-channel speech enhancement (BAV-MCSE).
Full-size DOI: 10.7717/peerjcs.1901/fig-1

distance between the microphones is constant. Fixed beamforming is achievable with delay
and sum beamformers. In adaptive beamforming, the directivity of the input noisy speech
signal varies as the acoustic environment changes (Ramesh Babu & Sridhar, 2021).
• Adaptive Noise Reduction (ANR)
The Least mean square (LMS) filter is used to filter environmental noise using Adaptive

Noise Reduction (ANR) (Soo & Pang, 1990; Valin, 2007). The ANR is fed by the user beam
and reference noise (b1...bn). The ANR component filters the noise from the user beam,
which is connected to the reference noise. However, the audio signal is only present in the
user beam after it has been processed using beamforming but is not attenuated (Widrow et
al., 1975).
• Voice Activity Detection algorithm (VAD)
VAD distinguishes the user’s voice in the user stream (Karita et al., 2019), which is

important for two reasons. The first one is for segmentation, where the system identifies
the precise boundaries of each word in spoken utterances. The second one is for data
reduction, where the system only sends data when it is needed, rather than continuously
transmitting data through the transmission channel.

According toCherukuru, Mumtaz Begum & Hema (2021) onlywhiteGaussian stationary
noise was tested with beamforming, ANR and VAD algorithms in MCSE between 0 dB
to 60 dB SNRs, and proving that MCSE is particularly effective at 20 dB SNR (Palla et al.,
2017). For the stationary white Gaussian noise, the word recognition rate decreased for
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low noises at 15 dB to −10 dB, respectively (Cherukuru, Mumtaz Begum & Hema, 2021).
The negative dB had a lower WRR than the positive dB but low for 15 dB to −10 dB
non-stationary noise. At low SNR conditions, the existing MCSE’s WRR was poor. It did,
however, perform better in a noisy stationary environment than in a noisy non-stationary
environment.

Deep learning-based multi-channel speech enhancement system
Deep neural networks (DNNs) is the first introduced technology for guided speech
improvement, have grown in prominence in recent years (Venkatesha Prasad et al., 2002).
DNN, also known as the feed-forward fully connected layer ormultilayer perception (MLP)
with numerous hidden layers, is one of themost used designs for speech enhancement (Zhao
et al., 2018). The network is characterised as a completely connected network because every
node in the layer has a link with every node in the layer preceding it. Resultantly, DNN
contains many parameters.

Karjol, Kumar & Ghosh (2018) introduced an enhancement strategy based on numerous
DNN-based systems with n number of DNN, each of which contributes to the final
enhanced speech, and a gating network that provides weights to combine the DNN outputs.
The standard metrics can be used to compare the performance of speech enhancement
systems using subjective and objective measures. The model employs n= 4, with each layer
consisting of three layers. An average SNR of −5 dB to 10 dB on the TIMIT corpus, yields
a seen noise PESQ of 2.65 and an unseen noise PESQ of 2.19.

AlthoughDNNhas been used successfully as a regressionmodel for speech enhancement,
its improved speech frequently degrades in low SNR conditions (Gao et al., 2016). To
enhance the effectiveness of DNN-based speech in low SNR environments, some scholars
presented a progressive learning architecture with long short-term memory (LSTM)
network (Gao et al., 2018; Santhanavijayan, Kumar & Deepak, 2021). Each target layer
is built so that the transition speech with a higher SNR is learned at the final layer,
followed by clean speech. Additionally, LSTM-RNN has been used to solve the issues
with reverberation (Weninger et al., 2013), loud multichannel speech and extremely non-
stationary additive noise (Wollmer et al., 2013). InWollmer et al. (2013), bottleneck features
produced by the bi-directional LSTM network (BiLSTM) outperformed manually created
features like MFCC. When employing MFCC, the average word accuracy (WA) is 38.13%,
whereas when using batch-normalized long short-termmemory (BN-BLSTM), it is 43.55%.
The LSTM-RNN has significantly enhanced speech processing systems. However, it is well
known that learning the RNN parameters is challenging and time-consuming (Weninger
et al., 2013;Wollmer et al., 2013).

This research proposed a noise-reduction framework using pre-processing and deep
learning algorithms to overcome the noise issue in MCSE system. Based on Katti &
Anusuya (2011), Labied & Belangour (2021), Ping, Li-Zhen & Dong-Feng (2009), discrete
wavelet transform (DWT) preprocessing algorithm and CNN algorithm are suitable for
filtering noisy environments and improving the quality of speech. According to Labied
& Belangour (2021), DWT is effective in denoising speech signal, and can compress the
speech signal without degrading the speech quality. In Katti & Anusuya (2011), Ping,
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Li-Zhen & Dong-Feng (2009), it was stated that CNN has the capacity to detect patterns
in neighboring speech structures, and compared to RNN and standard DNN, CNN is
more effective in terms of filtering the high level of noise in speech signals. However, it is
unable to maintain invariance when the input data changes. Among all the deep learning
algorithms, CNN reported the highest WRR at 90.45% and the lowest WRR at 87.45% on
average for environmental noises.

Table 1 summarizes the deep learning-based algorithms for single and multi-channel
speech enhancement. CNN with preprocessing algorithms is yet to be experimented with
the MCSE system to improve speech quality mainly under low SNR conditions.

THE PROPOSED CNN-BASED NOISE REDUCTION FOR
MULTI-CHANNEL SPEECH ENHANCEMENT SYSTEM WITH
DWT PRE-PROCESSING
This section presents the proposed architecture for an MCSE system by proposing the
DWT preprocessing and a CNN-based deep learning algorithm (DWT-CNN-MCSE).
DWT algorithm is used as a pre-processing technique to remove selected noise by
decomposing the noisy speech signals. CNN algorithm is used to handle feature extraction
and classification. The proposed architecture is depicted in Fig. 2.

Discrete wavelet transform (DWT) preprocessing
This research adopted DWT among other algorithms as its performance is very effective
in terms of denoising the speech signal and compressing the speech signal without any
significant loss in speech quality (Katti & Anusuya, 2011; Labied & Belangour, 2021; Ping,
Li-Zhen & Dong-Feng, 2009).

This algorithm aims to create by rescaling and iterating through a series of filters. Up-
sampling and down-sampling (subsampling) processes determine the signal’s resolution
(detail information), whereas filtering operations determine its scale (resolution). As there
is a lack of preprocessing algorithms implemented on MCSE systems, this article used the
existing DWT preprocessing algorithm to remove the redundant data from noisy speech
signals.

This research implements a discrete wavelet-based algorithm for the signals obtained
through MEMS microphones. Algorithm 1 explains the step-by-step procedure of DWT
applied in this research. To ensure the wavelet series is properly computed, which is a
sampled form of continuous wavelet transform (CWT), it may take a significant amount
of time and resources. There is evidence that the sub-band coding-based DWT is more
efficient in computing wavelet transforms. It is simple to implement, and it decreases the
time and resources needed for computation. Digital filtering algorithms are used to obtain
a time-scale depiction of the digital signal in DWT. Filters with various cutoff frequencies
and scales are used to evaluate the input signal.

Convolutional Neural Network (CNN)
This research adopted CNN (Katti & Anusuya, 2011; Ping, Li-Zhen & Dong-Feng, 2009)
as it is effective in distinguishing between the speech and noise components of noisy
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Table 1 Summary of deep learning-based algorithms used for single-channel andmulti-channel speech enhancement systems in filtering dif-
ferent types of noises.

Deep learning method References Dataset Evaluation
metrics

Results Advantages/Disadvantages

Zhao et al. (2018) NOISEX and
IEEE corpus

SDR, PESQ,
and STOI

Averaged results with
mismatched SNR
(−3 to 3 dB) PESQ
is 1.99, SDR is 11.35,
and STOI is 90.61%.

Advantages
Being familiar with the
model’s architecture since
Networks are typically simple.
Disadvantages
DNN has relatively big parameters
since every node in each layer is
connected to every node in the layer
before it.

Karjol, Kumar &
Ghosh (2018)

TIMIT +
noises from
AURORA
dataset

STOI,
SegSNR,and
PESQ

For seen noise, the
average best PESQ is
2.65, whereas for un-
seen noise, it is 2.19.

DNN (Deep Neural Network)

Saleem & Khattak
(2020)

Environmental
noises

SegSNR, PESQ,
LLR and STOI

PESQ is 2.27, SNRseg
is 4.24 , LLR is 0.53
and STOI is 84%

Feng, Zhang & Glass
(2014)

CHiME-2 WER Error rate of 34%. Advantages
Dimensional reduction is done
using DAE, and the bottleneck
layer’s features might be helpful.
Disadvantages
Learning temporal information
is a drawback of DNN-based DAE
information.

Deep autoencoder based on
MFCC (DAE-MFCC) Lu et al., (2013) Japanese

corpus +
environmental
noises

PESQ Average PESQ for
factory noise is 3.13,
whereas it is 4.08 for
car noise.

Recurrent neural network-
Long short-term memory
(RNN-LSTM)

Gao et al. (2018) In factories, the
average PESQ
is 3.13, and in
cars, it is 4.08.

SDR, STOI STOI: 0.86 and SDR:
9.46 on average.

Advantages
-Best for handling data that is
sequence-based, like speech signals.
-Contextual data can be
handled by RNN-LSTM.
Disadvantages
It is well known that learning the
RNN parameters is challenging and
time-consuming.

Weninger et al. (2013) CHiME-2 WA, WER Average accuracy is
85%.

Wollmer et al. (2013) Buckeye
(spontaneous
speech) +
CHiME noises

WA Average WA
using BN-
BLSTM: 43.55%.

Maas et al. (2012) AURORA-2 MSE and WER The average error
rate (SNR 0-20 dB) is
10.28% for seen noise
and 12.90% for un-
seen noise.

(continued on next page)
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Table 1 (continued)

Deep learning method References Dataset Evaluation
metrics

Results Advantages/Disadvantages

Wang &Wang (2019) CHiME-2 +
environmental
Noises

WER Magnitude features
provide the best aver-
age error rate of 7.8%
(accuracy of 92.2%).

Park & Lee (2017) TIMIT + en-
vironmental
noises

PESQ, STOI,
SDR

CNN outperformed
DNN and RNN in
terms of accuracy,
with PESQ 2.34,
STOI 0.83, and SDR
8.62.

Plantinga, Bagchi &
Fosler-Lussier (2019)

CHiME-2 Word Error
Rate (WER)

Using ResNet
and mimic loss, a
word error rate of
9.3% is achieved.

Rownicka, Bell & Re-
nals (2020)

AMI and
Aurora-4

Word Error
Rate (WER)

8.31%WER on
Aurora-4

Pandey & Wang
(2019)

NOISEX +
TIMIT + SSN

STOI, PESQ,
and SI-SDR

Results indicate that
Autoencoder CNN
performed better
than SEGAN.

Germain, Chen &
Koltun (2019)

Voice Bank +
DEMAND

SNR, SIG,
BAK, OVL

SNR:19.00, SIG: 3.86,
BAK: 3.33, OVL:
3.22.

Fu et al. (2018) TIMIT + en-
vironmental
noises

PESQ, STOI Fully utilising Con-
vNet yields the best
STOI, while DNN
achieves the best
PESQ.

Donahue, Li & Prab-
havalkar (2018)

WSJ + envi-
ronmental and
Music noise

Word Error
Rate (WER)

17.6% word error
rate.

Baby & Verhulst
(2019)

Voice Bank +
DEMAND

STOI, PESQ,
SegSNR

PESQ: 2.62, SegSNR:
17.68, STOI: 0.942

Ochiai, Delcroix &
Nakatani (2020)

CHiME-4,
Aurora-4

WER, SDR Chime-4: SDR: 14.24,
Aurora-4: 6.3%,
WER: 8.3% (real
data), 10.8% (simu-
lated).

Advantages
-CNN has the capacity
to detect patterns in
neighbouring speech structures.
-Compared to RNN and standard
DNN, CNN is more effective.
Disadvantages
Inability to maintain invariance
when the input data changes

Xu, Elshamy & Fin-
gscheidt (2020)

Grid corpus
+ CHiME-3
noises

PESQ, STOI For seen noises,
PESQ is 2.60 and
STOI is 0.70, while
for unseen noises
only, 2.63 and 0.74.

(continued on next page)
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Table 1 (continued)

Deep learning method References Dataset Evaluation
metrics

Results Advantages/Disadvantages

Choi et al. (2019) Voice Bank +
DEMAND

PESQ, CSIG,
CBAK, COVL,
SSNR

PESQ 3.24, CSIG
4.34, CBAK 4.10,
COVL 3.81, and
SSNR 16.85 are the
values.

Soleymanpour et al.
(2023)

Babble Noise PESQ, STOI PESQ is 1.35 to 1.78
at -8db to 0db and
STOI is 0.56

CNN (Convolution neural
network)

Saleem et al. (2023) VoiceBank-
DEMAND
Corpus + Lib-
rispeech

PESQ, STOI. PESQ is 2.28, STOI is
84.5%.

GAN (generative adversarial
network)

Soni, Shah & Patil
(2018)

Voice Bank +
DEMAND

PESQ, CSIG,
CBAK,
MOS, STOI

PESQ 2.53, SIG 3.80,
BAK 3.12, MOS 3.14,
and STOI 0.93T are
the values.

Advantages:
If GAN is correctly trained,
its combined networks
can be very strong.
Disadvantages:
The adversarial training is
typically challenging and
unstable.

 

 Figure 2 The proposed deep learning-based multi-channel speech enhancement (DWT-CNNMCSE)
architecture using wavelet transform preprocessing technique.

Full-size DOI: 10.7717/peerjcs.1901/fig-2

signals due to its ability to handle the local temporal spectral features of speech. Both in
the spectrum and waveform domains, CNN has demonstrated its efficacy in improving
speech recognition rate. Additionally in this research, the extended CNN with BiLSTM
layer before it applies to fully connected layer is used.

Even though CNNs effectively simulate the structural locality from the feature space,
as CNN adopts the pooling at a limited frequency domain, it reduces the linear variance
and handles disturbances and minor shifts in the feature space. By making use of prior
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Algorithm 1: Preprocessing the input signal using Discrete Wavelet Transform
algorithm

Input: original noisy speech signal, wavelet decomposition bands Output: de-
composed signals and corresponding coefficients

Xdata[] stores the input data vector, and Ydata[ ] is the output data vector that
is returned. N is the length of both data vectors. Before applying this approach,
it is presumable that the wavelet filter parameters G[k] and the scale filter pa-
rameters H[k] have been provided. L is the total number of parameters. N must
be an even number to work with this algorithm.

Step 1: Set s= N
2 // Start index of the input array’s gamma coefficients

Step 2: Allocate ydata[N ]; // Provide a memory space for the output data vec-
tor

Step 3: for (i= 0 while i< N increment i = i+1) do // loop over input data
Step 4: ydata[i]= 0; // Reset summation accumulators.
Step 5: endfor;
Step 6: j = 0; // access/index to the output data array
Step 7: for (i= 0 while i< N increment i = i+1) do // loop over input data.
Step 8: for k = 0 while k < L increment k = k+1) do // convolution loop.
Step 9: didx = (i+k)modN ; // access/index into input data with wraparound.
Step 10: ydata

[
j
]
= ydata[i]+G [k]∗xddata[didx]; // Scaling filter contribu-

tion

Step 11: ydata
[
j+ s

]
= ydata[i+ s]+H [k] ∗ xddata[didx]; // Wavelet filter

contribution

Step 12: endfor;
Step 13: j = j+1; // Update position in output array
Step 14: endfor;

knowledge of the speech signal, they can take advantage of the long-term dependencies
between the speech frames. However, CNNs in speech communication systems cannot
handle many semi-clean data, resulting in reduced performance. To overcome these issues
bidirectional long short-term memory (BiLSTM), which regulates the flow of information
by an individual component called a memory block, was developed by Weninger et al.
(2013).

The fundamental purpose of CNN is to detect local structure in input data. The spectrum
correlations in acoustic features are well-modeled by CNN, which successfully decreases
the spectral fluctuations. Three distinct models such as CNN, BiLSTM, and fully connected
layers are included in the suggested architecture as illustrated in Fig. 3.

Convolutional layers are used to reduce the frequency variance in the input signal at
first. Two CNN layers with 256 feature mappings in each convolutional layer were chosen
at first. This is because speech has a tiny feature dimension (i.e., 40). The behavior of
the high- and low-frequency zones is vastly different. Nearly 16% of the feature map’s
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Figure 3 CNN-BLSTM architecture applied for multi-channel speech enhancement system.
Full-size DOI: 10.7717/peerjcs.1901/fig-3

original size has been decreased using two convolutional layers. As a result, modeling
locality and eliminating invariance is no longer necessary. Sainath et al. (2013) states that
the first convolutional layer has a 9 by 9 frequency-time filter, while the second layer has a
4 by 3 frequency-time filter. A 9 by 9 frequency-time filter is used in the first convolution
layer, and a 4 by 3 frequency-time filter is used in the second. In the beginning, our model
employs solely the frequency-domain pooling using max pooling. Similarly, the pooling
size is 2 for both layers, and the stride value is 2. The next layer in CNN has a greater
dimension since the set of feature maps, time, and frequency is proportional to the layer’s
size. Therefore, the feature dimensions must be reduced. After CNN layers, a linear layer
is applied to reduce the layer’s size without sacrificing accuracy.

Algorithm 2 shows the processes involved in CNN through different layers. Frequency
modeling is an algorithm for reducing the data dimensionality of 236 suitable outputs
by using linear layers. To simulate the signal in time, the output of the CNN layer is
passed to the BiLSTM layer. In this case, two BiLSTM and three FC layers would be ideal.
However, the number of layers can vary depending on the experiment. Each BiLSTM
layer has 832 cells and 512 units (256 LSTM units per direction) of the projection layer
for feature extraction (256 LSTM units). Twenty-times steps are pre-trained into the
BiLSTM, and backpropagation is truncated. The output of BiLSTM layers is sent to FC
layers after frequency and timing modeling. Higher-order feature representations that are
easily distinguishable between classes can be generated by using these layers. 1024 hidden
units can be found in all fully connected layers.

Speech variation results from the accent, volume, and other characteristics can
distinguish distinct speakers. The proposed approach uses shared weights obtained by
applying several convolution operations. These convolutions generate features and are
supplied to the Max pooling layer. The shared weights mechanism helps retain the top-
level and low-level attributes as well as improve the accuracy in terms of WRR. Further,
these attributes are processed through the Linear Layer, which supplies these features
to CNN-BiLSTM layer (Sermanet, Chintala & LeCun, 2012; Passricha & Aggarwal, 2019).
In most CNN work, FC layers discriminate between classes based on local knowledge.
CNN-BiLSTM module is used for energy and timing modeling, and the softmax layer is
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utilized to distinguish between different classes. The entire model is trained at the same
time.

Algorithm 2: Processing DWT output signals through CNN-BLSTM Algorithm
Input: speech signals, Deep learning parameter (batch size, feature dimension, classes,
train test ratio).

Output: enhanced speech signal with recognition rate performance.
Step 1: capture speech signals by using DMA microphone array
Step 2: Apply an analogue to digital converter to convert an analogue signal into a digi-
tal signal.

Step 3: apply wavelet transform by applying X (a,b) = 1
√
a

∫∞
−∞
ψ
( t−b

b

)
x (t)dt

• Decompose signal into LL, HL, LH, and HH bands by computing the wavelet
coefficients as cjk =

[
Wψf

](
2−j,k2−j

)
Step 4: Input these coefficients to deep learning

• Process through convolutional layers nout =
[
nin+2p−k

s

]
+ 1, nin denotes the input at-

tributes, nout denotes the output features, k convolution kernel size, p padding size, s is
the stride

• Process the convolved data through pooling layer hlxy =maxi=0,...s,j=0,..shl−1(x+1)(y+j)

• Perform linearization by applying linear layer
• Apply BiLSTM layer
• Process the memory unit data through fully connected layer z l =W lhl−1

• Soft max layer softmax (zi)= ezi∑
j e

zj

Step 5: obtain the final output speech data and measure the performance

RESEARCH METHOD
This research aims to examine the performance of the proposed MCSE systems in filtering
stationary and non-stationary environmental noises with low to high SNRs environmental
noises (−10 dB to 20 dB). The experiments compare the ability of the proposed DWT-
CNN-MCSE system against the existing BAV-MCSE in filtering the noise environment at
low SNR conditions. The existing and the proposed MCSE systems were evaluated in terms
of spectrogram analysis and WRR.

Experimental design
The experimental design of this research was based on the researchers’ previous
work Cherukuru, Mumtaz Begum & Hema (2021), which was for environmental noises
at different levels of SNRs to determine the limitations of the existing algorithms in
handling environmental noises. From our previous work (Cherukuru, Mumtaz Begum &
Hema, 2021), we found that the existingMCSE shows an acceptable recognition rate at high
SNR levels but not for low SNR levels. To overcome the problem of low recognition rate
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Table 2 Experimental design.

Technique Techniques used
in the multi-channel
speech enhancement
system

Speech
database

SNR/dB Noises

The existing
BAV-MCSE

Beamforming, ANR and VAD AURORA −10 dB,
−5 dB,
0 dB, 5 dB,
10 dB,
15 dB

Stationary
Noise:White
Gaussian noise

Non-stationary
Noises:
Airport, Babble,
Car, Exhibition,
Restaurant

AURORA −10 dB,
−5 dB,
0 dB, 5 dB,
10 dB,
15 dB

Stationary
Noise:White
Gaussian noise

Non-stationary
Noises:
Airport, Babble,
Car, Exhibition,
RestaurantProposed DWT-

CNN-MCSE
Convolution neural
network (CNN) and
discrete wavelet feature
extraction (DWT) technique

LibriSpeech −10 dB,
−5 dB,
0 dB, 5 dB,
10 dB,
15 dB

N/A Dog bark noise,
Fan noise, Am-
bulance noise

for low SNR levels, this research proposed a deep learning-based algorithms to improve
the recognition accuracy of the MCSE system. The experimental design of the proposed
DWT-CNN-MCSE system is shown in Table 2. The experiment adds noise to the original
signals at levels of −10 dB, −5 dB, 0 dB, 5 dB, 10 dB, and 15 dB before processing them
through the considered MCSE system.

Speech dataset
The AURORA and the LibriSpeech datasets were used to train the deep learning models to
test the MCSE systems (benchmark and the proposed systems) in noisy environments at
various SNR levels of voice signals.
• AURORA
There were 13 distinct male voices and 16 distinct female voices among the 25 utterances

taken from the AURORA noisy sample (Karjol, Kumar & Ghosh, 2018). Even though the
number of trials changes based on the noise level, at least 25 samples were taken for each
dB level.

Five types of non-stationary environmental noise are represented in the noisy speech
utterances, which are airport, babble, exhibition, car, and restaurant noises. One stationary
noise type, white Gaussian noise, was examined at seven different SNRs: −10 dB, −5 dB,
0 dB, 5 dB, 10 dB, 15 dB, and 20 dB. Other noise types that were investigated included
babble, car, exhibition, and restaurant noises, while −10 dB was for loud speech signals.
A total of 25 utterances from the AURORA clean training dataset were selected, and −10
dB noise signals were purposefully mixed with it. For every 25 utterances, 42 different
conditions were prepared.

In the proposed experiment, the AURORA database, which is taken from the
internationally recognized NOIZEUS database for the evaluation of speech enhancement
algorithms was used. This database includes the speech recordings of speakers, three men,
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and three women, reciting 30 sentences from the IEEE sentence database. The University
of Texas at Dallas’ Speech Processing Lab used Tucker Davis Technology (TDT) to capture
each speaker’s five words at a sampling frequency of 25 kHz, which was later down sampled
to 8 kHz. Every sentence is accompanied by a variety of background noises, including those
from an airport, a restaurant, a car, an exhibition, and an AWGN. To get both clean and
noisy signals, this research employed intermediate reference system (IRS) filters (Loizou,
2009). To achieve the appropriate SNR levels, the recovered noise segments were artificially
introduced to the clean speech signal. The entire dataset was split into two sets: the training
dataset and the testing dataset. 20% of the dataset was used for testing, while the remaining
80% was used to train the CNN algorithm (Gholamy, Kreinovich & Kosheleva, 2018).
• LibriSpeech
LibriSpeech noisy dataset consists of a single male voice with 6 different conditions

under 3 different noises (Panayotov et al., 2015; Park et al., 2020). Three types of noises;
Dog bark, Ambulance and fan noises, were examined at seven different SNRs: −10 dB,
−5 dB, 0 dB, 5 dB, 10 dB, 15 dB, and 20 dB. 1 utterance from the LibriSpeech which is
a clean speech signal was selected for training the CNN algorithm and 1 utterance with
18 different conditions was prepared with different noises at different levels of SNR. This
entire dataset was used for both testing and training. 20% of the dataset was used to test
the CNN algorithm and 80% of the dataset was used for training the CNN algorithm. We
also considered this dataset to evaluate the performance accuracy of the proposed MCSE
system in terms of spectrogram analysis and word recognition rate. This dataset is used to
evaluate the performance of the proposed system.

The details of the AURORA and LibriSpeech datasets used in the experiments are
presented in Table 3.

The experimental setup
This research conducted two types of experiments namely the (1) benchmark MCSE based
on beamforming, ANR and VAD algorithms (BAV-MCSE) and (2) the proposed MCSE
based on deep learning algorithm with DWT pre-processing (DWT-CNN-MCSE).

The benchmark MCSE system
In the benchmark experiment, the BAV-MCSE system is experimented with using
Beamforming, ANR, and VAD algorithms (BAV). In this experiment, MEMS microphone
array captures the noisy speech signals and sends the signals to fixed beamforming to
separate the audio and noisy beams, the output of the beamforming goes to ANR to filter
the noise based on reference noise, and finally, VAD separates the voiced speech signals
and the result is evaluated with an ASR engine.

The experimental setup is as follows:
• Device configuration is based on the researchers’ previous work Cherukuru, Mumtaz

Begum & Hema (2021)
(a) Controller: stm32f103CBT6
(b) Main clock: 72MHz
(c) Memory: 128 KB ROM/20 KB RAM
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Table 3 Dataset used for experimenting multi-channel speech enhancement.

Speech en-
hancement

Speech
database

Training
and test
data

SNR/dB Types of noises

The existing
BAV-MCSE

AURORA • 25 ut-
terances
of clean
speech sig-
nals for
training
• 42 sets
of noise
mixed sig-
nals used
for testing

−10 dB,
−5 dB,
0 dB,
5 dB, 10
dB, 15 dB

Airport, Babble,
Car, Exhibition,
restaurant and
white Gaussian
noise

AURORA • 80% of
signals
used for
training
to train
the CNN
model.
• 20% of
signals
used for
testing

−10 dB,
−5 dB,
0 dB, 5
dB, 10 dB,
15 dB

Airport, Babble,
Car, Exhibition,
restaurant and
white Gaussian
noise

The proposed
DWT-CNN-
MCSE

LibriSpeech • 80% of
signals
used for
training
to train
the CNN
model.
• 20% of
signals
used for
testing

−10 dB,
−5 dB, 0
dB, 5 dB,
10 dB, 15
dB

Dog bark noise,
Fan noise, Am-
bulance noise

(d) External storage: Transcend 8 GB class 4 memory card.
(e) Transducers: capacitive electret microphones
(f) Servos: 9G servo
• Sampling setup
For sampling, we used pre-amplified two transducers output, which were passed to a

single-stage bandpass filter (80 Hz–16 kHz), gain adjusted, level shifted to 1.75 V, and then
fed to individual ADCs (analog to digital converter).

For this research, the ADCs were configured at 12-bit vertical resolution and 16,000
Samples per second (+/- 50). Data is saved in SD card using Conversion complete interrupt
linked to theDMAchannel that writes in SD card andBuffer variable defined inRAM,where
both sampling times were synchronized. The amplifier used was LM358 general-purpose
Opamp.
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• Variability setup
Due to the increased ARM deflection of the Servos, the Timer 1 PWM channels were

used to connect two 9G servos with 16-bit resolution. There is a 10 mm gap between each
microphone.
• Setup of the noise and sample utterance system
Edifier 2.0, a channel speaker, served as the main noise maker. The noise samples

were continuously looped and transferred from the BeagleBone Black Single Board to the
amplifier, where the speech is altered. Only the left channel of the Logitech USB speakers
were used to enter the samples into the Beagle Bone Black single-board computer.
• SNR setup
The required SNR (−10 dB,−5 dB, 0dB, 5 dB, 10 dB, 15 dB, and 20 dB) was derived by

adjusting the noise sound amplifier gain and the sample utterance amplifier gain control.

The proposed MCSE system
In the experiment, the proposed DWT-CNN-MCSE system is experimented using DWT
as a pre-processing and CNN-based deep learning technique.

The proposed algorithm is implemented using MATLAB 2021a. This tool is widely
adopted for various signal-processing tasks such as image processing, speech-processing,
and ECG signals. DWT preprocessing algorithm is used to create the signal’s detailed
information by rescaling and iterating through a series of filters. Up-sampling and down-
sampling (subsampling) processes determine the signal’s resolution, whereas filtering
operations determine its scale (resolution). In simple terms, DWT decomposes the signal
into different frequency bands. It effectively denoises the speech signal and compresses the
speech signal without any significant loss in speech quality. The output of the DWT goes to
CNN in which data is processed through multiple layers such as convolution, pooling fully
connected, max pooling, linear layer, BiLSTM, fully connected layer and softmax layer to
learn its attributes and improve the recognition accuracy.

In this study, this research employed these tools for speech-processing tasks. The
proposed algorithm uses the following toolboxes:
• Audio toolbox:
Audio Toolbox offers audio processing, speech analysis, and acoustic measurement

tools. It provides algorithms to evaluate acoustic signal metrics, and to train machine
learning and deep learning models. Researchers can import, categorise, and enhance audio
data sets using Audio Toolbox.
• Data acquisition toolbox:
The Data Acquisition ToolboxTM includes programs and features for configuring data

collection devices, reading data into MATLAB and Simulink, and publishing data to DAQ
analogue and digital output channels.
• Digital signal processing toolbox
With the DSP System Toolbox, researchers can create and examine FIR, IIR, multi-rate,

multistage, and adaptive filters.
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•Wavelet toolbox
Wavelet Toolbox offers functions and applications to analyze and synthesize signals

and images. Researchers can analyze signals and images at various resolutions using
discrete wavelet analysis to find changepoints, discontinuities, and other events that are
not immediately visible in raw data.
• Deep learning toolbox
With methodologies, pre-trained models, and applications, the deep Learning Toolbox

was used for developing and integrating deep neural networks into applications.

Evaluation methods
This research evaluates the performance of a multi-channel speech enhancement system
in a noisy environment (stationary and non-stationary noise) using spectrogram analysis
and WRR.
• Spectrogram analysis
The amplitude of speech signals is analyzed using spectrogram analysis (Haykin et

al., 1991). MATLAB is used for time-domain spectrogram analysis for both stationary
noises (white Gaussian noise) and non-stationary noises in the environment (Babble,
Car, Exhibition, Airport, and Restaurant) from the AURORA database and ambulance
noise from the LibriSpeech database. The spectrogram reflects the change in amplitude,
frequency, wavelength and time at different levels of SNR’s. In this experiment, we analyzed
the spectrograms with signals amplitude in time domain.
•Word recognition rate (WRR)
The word recognition rate is used to assess the performance of multi-channel speech

enhancement systems. WRR measures the performance accuracy of multi-channel speech
enhancement system. The following formula is used to calculate WRR:

Word Recognition Rate (WRR)= 1−WER (1)

Word Error Rate (WER)=
S+D+ I

N
(2)

N is the total amount of words or letters in the sentence, S the number of times other
words have been substituted for them, and D denotes the number of words that have been
deleted. In a sentence, I represent the number of insertions.

RESULTS
Spectrogram analysis
Figure 4 shows the spectrograms of clean speech and Table IV shows and compares the
spectrograms of a sample utterance under six different conditions from the AURORA
database which include the spectrogram analysis: (a) Noisy speech at various SNR levels,
and (b) enhanced speech applying benchmark BAV-MCSE (c) enhanced speech using
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Figure 4 Clean speech signal.

Full-size DOI: 10.7717/peerjcs.1901/fig-4

proposed DWT-CNN-MCSE for airport noise, babble noise, restaurant and white Gaussian
noise.

The spectrogram of clean speech signal reflects the change in amplitude, wavelength
and time and it represents high intelligibility and high word recognition rate. When this
clean speech signals mixed with different types of noises such as airport, babble, car,
exhibition, restaurant and ambulance noise, the changes in spectrograms of noisy speech
signal in terms of amplitude and time domain differs compared to clean speech signal
which is depicted in Table 4(a), (b), Table 5(a) and (b). After processing the noisy speech
signals with the proposed method (DWT-CNN-MCSE), we observed the spectrograms of
enhanced signals are close to the amplitude, wavelength and time of clean speech signals
which are depicted in Tables 4(c) and 5(c).

TheDWT-CNN-MCSEprovides substantial noise suppression compared to unprocessed
speech and theDWT-CNNalgorithms eliminate almost all the noises in the entire frequency
range.

This research has also experimented with the proposed DWT-CNN-MCSE using
LibriSpeech. Table 5 shows the spectrograms of the original signal, noisy speech signal
and enhanced speech signal under ambulance noise at −10 dB SNR level. As compared
to ambulance original noisy speech signal, the proposed MCSE offers significant noise
reduction, and the DWT-CNN algorithms nearly eliminate all noises over the whole
frequency band.

Word recognition rate (WRR)
Tables 6 and 7 present the results of the benchmark BAV-MCSE and proposed DWT-
CNN-MCSE tested using the AURORA dataset at different levels of SNRs under stationary
and non-stationary noisy environments. By comparing the performance of the developed
noise reduction system in filtering various SNR of environmental noises, the following are
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Table 4 Spectrograms Analysis of Noisy Speech Signal and Enhanced Signal of AWGN, Airport, Babble, Car, Exhibition and Restaurant Noises.

Noise at−5db
SNR level

(a): Noisy Speech Signal (b): Enhanced Signal/
Reconstructed Signal (BAV-MCSE)

(c): Enhanced Signal/
Reconstructed Signal
(DWT-CNN-MCSE)

AWGN

Airport

Babble

(continued on next page)
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Table 4 (continued)
Noise at−5db
SNR level

(a): Noisy Speech Signal (b): Enhanced Signal/
Reconstructed Signal (BAV-MCSE)

(c): Enhanced Signal/
Reconstructed Signal
(DWT-CNN-MCSE)

Car

Exhibition

Restaurant
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Table 5 Spectrograms analysis of original, noisy speech signal and enhanced signal of ambulance noise.

Type of Noise
at−5db

(a): Original Signal (b): Noisy Speech Signal (c): Enhanced speech signal
(DWT-CNN-MCSE)

Ambulance Noise
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Table 6 WRR Performance of benchmarkMCSE and the proposedMCSE under non-stationary noises
of the AURORA dataset.

Database Noise SNR/dB BAV-MCSE DWT-CNN-MCSE DIFFERENCES
WRR (%) WRR (%) WRR (%)

−10 5.82 70.55 64.73
−5 12.32 72.51 60.19
0 19.06 78.75 59.69
5 36.14 77.44 41.3
10 67.26 67.15 −0.11

Airport

15 88.88 75.44 −13.44
−10 4.04 68.50 64.46
−5 7.12 70.25 63.13
0 17.56 70.32 52.76
5 35 66.44 31.44
10 74.18 73.79 −0.39

Babble

15 90.64 61.49 −29.15
−10 7.26 72.50 65.24
−5 13.26 74.60 61.34
0 16.55 80.49 63.94
5 35.16 77.44 42.28
10 67.2 81.49 14.29

Car

15 92.02 78.8 −13.22
−10 6.54 65.15 58.61
−5 11.54 68.25 56.71
0 20.23 80.45 60.22
5 44.66 77.73 33.07
10 77.72 76.42 −1.3

Exhibition

15 91.46 73.75 −17.71
−10 4.54 72.50 67.96
−5 6.38 73.50 67.12
0 12.12 80.39 68.27
5 38.24 77.75 39.51
10 55.56 76.35 20.79

AURORA
(Non-
Stationary
Noises)

Restaurant

15 75.2 74.48 −0.72

obtained: a WRR of 70.55% at−10 dB SNR and 75.44% at 15 dB SNR, while 5.82% at−10
dB and 88.8% at 15 dB by the BAV-MCSE system.

For non-stationary noises, Fig. 5 demonstrates the variations in the WRR for both
the BAV-MCSE and the proposed DWT-CNN-MCSE. In comparison to BAV-MCSE,
the proposed MCSE is particularly good in recognizing speech in non-stationary noisy
conditions. Finally, to determine if the results for BAV-MCSE and proposed DWT-CNN-
MCSE differed significantly, we used Analysis of Variance (ANOVA), and the results are
presented in Fig. 6. From Fig. 6, the result shows that the proposed algorithms’ scores
are significantly different from the existing algorithm (BAV-MCSE) under non-stationary
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Table 7 WRR performance of the benchmarkMCSE and the proposedMCSE under stationary noises
of the AURORA dataset.

Database SNR/dB BAV-MCSE DWT-CNN-MCSE Difference
WRR (%) WRR (%) WRR (%)

−10 42.6 74.48 31.88
−5 58.3 72.51 14.21
0 63.4 73.55 10.15
5 68.5 79.78 11.28
10 72.6 75.79 3.19

AURORA
Stationary Noise:
Additive white Gaus-
sian noise (AWGN)

15 74.08 74.38 0.3
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Figure 5 WRR of existing BAV-MCSE Vs proposed DWT-CNN-MCSE under non- stationary environ-
ment.
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environment. This further reveal that the proposed algorithm (DWT-CNN-MCSE) has
statistically different result at p-value less than 0.05.

For stationary noises, Fig. 7 demonstrates the changes in the WRR for both the BAV-
MCSE and the proposedDWT-CNN-MCSE. In comparison to the existing BAV-MCSE, the
proposed DWT-CNN-MCSE is good in recognizing speech in stationary noisy conditions.
Finally, to determine if the results for BAV-MCSE and proposed DWT-CNN-MCSE were
significantly different, we used Analysis of Variance (ANOVA), and the results are depicted
in Fig. 8. From Fig. 8, the result shows that the proposed DWT-CNN-MCSE scores are
significantly different from the existing BAV-MCSE under stationary environment at p
value less than 0.05.

Table 8 presents the results of the proposed DWT-CNN-MCSE tested using the
LibriSpeech dataset at different levels of SNRs for the ambulance, dog bark and fan
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ANOVA 
      

Source of Variation SS Df MS F P-value F crit 

Between Groups 3925.964225 1 3925.964225 6.707204873 0.026957951 4.964602744 

Within Groups 5853.353669 10 585.3353669 
   

Total 9779.317895 11         

Figure 6 Results of ANOVA.
Full-size DOI: 10.7717/peerjcs.1901/fig-6
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Table 8 WRR performance of proposedWSE under non-stationary noises.

Database Noise SNR/DB WRR

−10 dB 65.55
−5 dB 63.25
0 dB 74.38
5 dB 70.68
10 dB 67.45

Dog bark Noise

15 dB 66.58
−10 dB 65.55
−5 dB 63.25
0 dB 72.88
5 dB 70.65
10 dB 66.45

Ambulance Noise

15 dB 65.48
−10 dB 62.20
−5 dB 61.25
0 dB 73.89
5 dB 69.88
10 dB 67.86

LibriSpeech

Fan Noise

15 dB 66.75

noises. We noticed that among all the three noises, the highest WRR of 74.38% is obtained
at 0dB under dog bark and lowest WRR of 61.25% is obtained at−5 dB under fan noise.

DISCUSSION
In this study, we carried out spectrogram analysis and WRR on MCSE systems. The
spectrograms of noisy speech signals and enhanced speech signals of different noisy speech
signals at −5 dB SNR from the AURORA dataset are presented for both the benchmark
and proposedMCSE system. As compared to the benchmark system, the proposed system’s
enhanced spectrograms have clear signals and are closer to the clean speech signals under
stationary and non-stationary environmental noise. Similarly, for the LibriSpeech dataset,
spectrograms of noisy speech signals and enhanced speech signals were analyzed and the
proposed MCSE showed a clear signal and closer to the clean signal under ambulance
noises. We noticed the spectrograms of the enhanced speech signals by DWT-CNN-MCSE
offer significant noise reduction when compared to raw noisy speech, and the DWT-CNN
algorithms filtered maximum noise throughout the whole signal spectrum.

The spectrograms of the enhanced speech obtained with all processing methods are
depicted in Tables 4 and 5. The spectrograms of BAV-MCSE have lost some important
speech contents such as some of the speeches are missing, hence provided less speech
recognition rate as compared to DWT-CNN-MCSE which is evident in Tables 4(c) and
5(c). If we note the spectrogram of DWT-CNN-MCSE, we obtained a close replica of
the clean speech spectrogram and important speech contents are effectively preserved.
Also, low noise is observed in the spectrogram of DWT-CNN-MCSE output speech. The
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time-domain waveforms of the enhanced speech utterances obtained with all the processing
methods are depicted in Tables 4 and 5. The waveforms of BAV-MCSE have some noise,
hence provided less recognition rate as compared to DWT-CNN-MCSE which is evident in
Tables 4(b), (c) and 5(b), (c). Low noise is observed in the waveform of DWT-CNN-MCSE
output speech.

The result of word recognition shows that the benchmark MCSE could not function
adequately in low SNR settings. However, MCSE performed better in a noisy stationary
environment than non-stationary environment. It was also discovered that the MCSE
algorithms perform well in both stationary and nonstationary noisy environments at high
SNR. The linear relationship between SNR and WRR shows that MCSE successfully filters
noise at higher SNR and not at lower SNR, as the strength of the noise is too low for MCSE
to filter it out as beamforming, ANR and VAD algorithms are more sensitive at low SNR
conditions.

We also analyzed the proposed system in terms of WRR at different levels of SNR under
stationary and non-stationary noises from the AURORA and LibriSpeech databases. The
result of the WRR shows MCSE could function adequately in low and high SNR conditions
under stationary and non-stationary noisy environments. However, there is a need to make
the DWT-CNN-MCSE robust noisy free system.

The proposed framework in MCSE, which included a pre-processing algorithm based
on DWT and a deep learning algorithm based on CNN, outperformed the benchmark
algorithms in detection in noisy environments, especially at low SNR conditions in terms of
word recognition rate accuracy. We noticed that WRR of the benchmark MCSE provided
good results only at 15dB SNR compared to the proposedMCSE. It shows that the proposed
MCSE is sensitive at 15dB SNR level under non-stationary environments. We also noticed
that the proposed MCSE has a WRR that is twice as high as the benchmark MCSE at
−10 dB, −5 dB, 0 dB, and 5 dB SNR levels under both stationary and non-stationary
environments.

CONCLUSION
The multi-channel speech activity-related devices are commonly used in various real-time
applications, and the communication or speech quality performance of these devices
is degraded by various types of noises. Thus, improving the quality of speech signals is
important for these multi-channel devices. To deal with various environmental noises,
we propose an MCSE using deep learning and preprocessing algorithms and examine the
performance of the proposed MCSE system in filtering the environmental noises at low
to high SNR. A new architecture is presented, which considers wavelet transform, deep
learning (CNN), and BiLSTM model to learn the data pattern and trained to obtain the
filtered signals. The proposed system shows considerable performance when compared to
related studies. By comparing the performance of the proposed system in handling various
SNRs of environmental noises, it achieved a WRR of 70.55% at −10 dB SNR and 75.44%
at 15 dB SNR, as compared to the existing MCSE system at 5.82% at −10 dB and 88.8% at
15 dB. It can be inferred from the comparison that the proposed system has outperformed
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the benchmark MCSE system. From the ANOVA analysis, the result indicated that the
proposed MCSE’s scores are significantly different from the existing MCSE system. The
word recognition accuracy is achieved at an acceptable rate at low SNR.

FUTURE DIRECTIONS
Our current work focuses on deep learning algorithms, where the proposed system
outperforms the benchmark system.However, one of the limitations of deep learning-based
algorithms is the high computational costs. As such, implementing deep learning-based
approaches in portable communication devices may be difficult due to the low computing
power of these devices. In this regard, one possible way is to combine the existing filters and
deep learning approaches to enhance the speech quality and intelligibility of the output.
We plan to conduct more investigations into wider types of noises and more effective
speech enhancement algorithms to improve the performance of the multi-channel speech
enhancement system.
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