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ABSTRACT
The aim of this article is to propose a defect identification method for bare printed
circuit boards (PCB) based onmulti-feature fusion. This article establishes a description
method for various features of grayscale, texture, and deep semantics of bare PCB
images. First, themulti-scale directional projection feature, themulti-scale grey scale co-
occurrencematrix feature, and themulti-scale gradient directional information entropy
feature of PCB were extracted to build the shallow features of defect images. Then,
based on migration learning, the feature extraction network of the pre-trained Visual
Geometry Group16 (VGG-16) convolutional neural networkmodel was used to extract
the deep semantic feature of the bare PCB images. Amulti-feature fusionmethod based
on principal component analysis and Bayesian theory was established. The shallow
image feature was then fused with the deep semantic feature, which improved the
ability of feature vectors to characterize defects. Finally, the feature vectors were input
as feature sequences to support vector machines for training, which completed the
classification and recognition of bare PCB defects. Experimental results show that
the algorithm integrating deep features and multi-scale shallow features had a high
recognition rate for bare PCB defects, with an accuracy rate of over 99%.

Subjects Artificial Intelligence, Computer Vision
Keywords Printed circuit board, Defect identification, Feature extraction, Migration learning

INTRODUCTION
The printed circuit board (PCB) is an important carrier of electronic components and
plays an important role in modern electronic equipment. The quality of PCBs is not only
related to the reliability of electronic products but can also reflect the developmental level
of a regional electronic industry. With the rapid upgrading and iteration of electronic
technology, the demand for various types of electronic products continues to grow, leading
to rapid growth of the PCB industry.

The quality of bare PCB determines whether electronic products can operate normally.
During the production process of PCBs, it is difficult to avoid factors such as environmental
interference, equipment aging, andmanual operation errors. Each PCB production process
may cause defects. Therefore, it is particularly important to conduct quality inspections and
defect identification on bare PCBs during the PCB production process. An efficient bare
PCB defect detection method can prevent defective bare PCBs from entering the next phase
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of the production process, which improves process efficiency, reduces the scrap rate of bare
PCBs, and allows designers to analyze the defects for future improvements (Liu & Wen,
2021; Zhang, Jiang & Li, 2021).With the increasing accuracy and complexity of PCB design,
the task of detecting and classifying defects has become even more challenging (Huang et
al., 2020).

Machine vision technology is currently a research hotspot, and has great potential
for application in the field of PCB defect detection (Kim et al., 2021). Machine vision
technology uses image acquisition equipment to obtain visual information about objects
and perform analysis and processing (Zhao et al., 2022; Sivaranjani & Senthilrani, 2023).
It can achieve automated testing, improve production efficiency, and reduce production
costs (Dong et al., 2022). Research on bare PCB defect detection algorithms based on
machine vision theory can provide new ideas for machine vision technology, promote
technological progress in related fields, and help expand the application field of machine
vision and defect detection technology to areas such as medical (Coraci, Tognolo &
Masiero, 2023; Gao et al., 2023), security (Mallaiyan Sathiaseelan et al., 2021; Ge, Dan &
Li, 2020), and smart home technology (Yu & Pei, 2021; Talaat, Arafa & Metwally, 2020).
The continuous improvement of this technology can also promote the cross-integration
of machine vision and other disciplines, further promoting the improvement of industrial
automation (Kshirsagar et al., 2022).

Image processing algorithms are key technologies in machine vision detection (Devi &
Shitharth, 2021). Song, Kim & Park (2019) proposed amethod based on a genetic algorithm
to optimize the extraction of regions. This method extracts color features from solder joint
images and then uses support vector machine (SVM) to classify solder joint defects.
However, this proposed method is only applicable to defect detection of capacitors and
resistors, and only uses component images obtained from RGB illumination for defect
classification.Tsai & Huang (2018)proposed a global Fourier image reconstructionmethod
based on traditional template matching techniques for detecting and locating small defects
in non-periodic PCB images. This algorithm is insensitive to translation and lighting
changes and can detect subtle defects one pixel wide in various non-periodic PCB images.
It can also detect defects in themanufacturing environment. However, for very large images
and images with high duplicate components, the detection efficiency and computational
efficiency are not high. Li & Li (2017) proposed a bare PCB defect detection algorithm
based on image edge features. The algorithm extracts gradient direction information
entropy and the edge pixel density features of edge pixels, then combines SVM classifiers
to achieve defect location. However, the calculation of neighborhood gradient direction
information entropy is very sensitive to changes in gradient direction, and the defect
feature extraction algorithm proposed in the article does not consider the impact of actual
image distortion on this calculation. Lu et al. (2018) proposed a non-reference comparison
framework for PCB defect detection that extracts the directional gradient histogram
(HOG) and local binary patterns (LBP) features of PCB images, inputs them into SVM
for supervised learning, and obtains two independent classification models. According
to Bayesian fusion theory, the two models are then fused for defect classification. Lu et
al. (2018) proved the effectiveness of fused features in defect classification problems, but
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their proposed algorithm cannot detect specific defect positions on the PCB surface. Jia
& Liu (2022) improved the LeNet-5 network model for PCB character defect detection by
changing the layer depth to examine the impact of different network architectures onmodel
efficiency and adding a combination classifier in the fully connected layer to enhance the
feature expression performance. However, this proposed method does not reduce the need
for human intervention during the training process, and it is still a significant challenge
to study the segmentation of overlapping character clusters. Shen, Liu & Sun (2020)
established the ‘‘lightweight component category detection model’’ for lightweight PCB
detection. This method enhanced the detection accuracy and achieved online monitoring
of PCBs. Combined with a character recognition model, called component character, these
two models were used for PCB component defect detection and recognition.

There are various types of defects in bare PCB boards, and most current algorithms
only focus on a single feature in feature extraction, which makes it difficult to accurately
describe the defects. Moreover, the dimension of feature extraction is usually too high.
Defect detection methods based on deep learning rely on a large dataset of defects, and
cannot guarantee the accuracy of detection for certain defects with smaller datasets. The
key research focuses of the present study are feature extraction, feature reduction, and
multi-feature fusion methods. This article proposes a bare PCB defect detection algorithm
that combines multi-scale shallow features with deep features extracted by neural networks.
Compared to single-scale features, multi-scale features have richer texture features and can
better identify the detail information of an image. Convolutional neural network (CNN)
can automatically learn features from datasets, allowing it to obtain new effective feature
representations from new training data (Li, Kuo & Guo, 2020).

Building and training a deep learning network model requires a significant amount
of time, expensive hardware, and a large number of labeled images. In the absence of a
large number of datasets, transfer learning is a better solution (Hu, 2023). This article
uses the VGGl6-Net network model trained on the ImageNet (Fang et al., 2021) dataset as
the pre-trained model (Althubiti et al., 2022). The model was then fine-tuned, including
adjusting network structure and parameters, to better fit the target dataset.

The first stage of this model is the extraction and fusion of defect features. To reduce
the influence of background interference pixels on feature extraction, defect areas were
segmented through image differentiation and morphological operations. Next, the multi-
scale directional projection feature, themulti-scale gray-scale co-occurrencematrix feature,
and the multi-scale gradient directional information entropy feature of the bare PCB defect
image were extracted. Deep features were then extracted from defect images using a
pre-trained VGG-16 convolutional neural network. Finally, using naive Bayesian theory,
the feature information extracted by multiple algorithms was weighted and fused to
construct a new feature vector.

The second stage of this model is defect classification and identification. The fused new
feature vectors were used as training samples to train the support vector machine model
and then complete the classification and recognition of bare PCB defects.

The rest of this the article is organized as follows: ‘Related work’ analyzes related
work, including image preprocessing and feature extraction; ‘Method’ provides specific
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Figure 1 Image registration results.
Full-size DOI: 10.7717/peerjcs.1900/fig-1

methods for feature extraction of defects and feature fusion; ‘Experimental result and
discussion’ evaluates the performance of the proposed method and presents the defect
detection accuracy and classification results using different algorithms; and ‘Conclusion’
summarizes the findings of this article and proposes future areas of research.

RELATED WORK
mage preprocessing
The proposed model uses image enhancement and Gaussian filtering algorithms to
preprocess the original image of the bare PCB to reduce the impact of lighting and noise
on the image. Next, the PCB template images and PCB test images are registered using
the Förstner corner detection algorithm (Naji et al., 2023). The pose correction and image
registration of the image to be measured are completed through projection transformation.
As shown in Fig. 1, the rectangular box represents the defect area obtained after calculating
the difference between the template image and the test image.
The defect area of the image to be tested is then cropped on the bare PCB board. To

reduce the impact of interfering pixels on feature extraction, the pixel value of the image
area outside the defect area is set to 0. Some examples of defect images are shown in Fig. 2.

Feature extraction
Image recognition is actually a classification process. To identify the category to which
an image belongs, the image must be distinguished from images of different categories.
Feature extraction requires the selected features of an image to both describe the image
well and distinguish it from different types of images. In order to increase the gap between
feature information classes and improve the classification performance of feature vectors
for bare PCB defect images, this article proposes a defect extraction algorithm based on
multi-scale feature fusion.

Figure 2 shows that the cropped bare PCB defect image makes it difficult to extract
rich feature information at a single resolution. Therefore, the proposed model performs
down-sampling on the defect images. Based on the Gaussian pyramid, a multi-scale defect
image is constructed. The image resolution is gradually reduced with the down-sampling,
and the information is gradually enriched. Four down-sampling operations are performed
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Figure 2 Examples of defect images.
Full-size DOI: 10.7717/peerjcs.1900/fig-2

on each image, 1–4 layers of pyramid images are constructed, and the features from each
scale image are extracted, separately.

The technology roadmap of this model is shown in Fig. 3.

METHOD
Multi-scale grey scale co-occurrence matrix feature extraction
The grey scale co-occurrence matrix features are extracted in the 0◦ direction of each
layer pyramid image. This model uses the following statistics as features of the grey scale
co-occurrence matrix:

Width represents the width of the co-occurrence matrix; cij represents the term in the
co-occurrence matrix.

Angular secondmoment (Asm) refers to the sum of squares of the values of the elements
in the grayscale co-occurrence matrix, which reflects the uniformity of the image grayscale
distribution and the texture thickness:

Asm=
width∑
i,j=0

c2ij (1)
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Figure 3 Technology roadmap.
Full-size DOI: 10.7717/peerjcs.1900/fig-3

Correlation (Cor) measures the similarity of elements in the spatial gray level co-
occurrence matrix in the row or column direction:

Cor=

∑width
i,j=0 (i−ux)

(
j−uy

)
cij

sx sy
(2)

where,

ux =
width∑
i,j=0

i · cij (3)

uy =
width∑
i,j=0

j · cij (4)

s2x =
width∑
i,j=0

(i−ux)2cij (5)

s2y =
width∑
i,j=0

(
i−uy

)2cij (6)
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Homogeneity (Hom) measures the number of local changes in image texture:

Hom=
width∑
i,j=0

1
1+ (i− j)2

cij (7)

Contrast (Con) reflects the clarity of the image and the depth of the texture grooves:

Con=
width∑
i,j=0

(i− j)2cij (8)

The grey scale co-occurrence matrix features of the 1–4 layers of pyramid images are
calculated separately. The multi-scale grey scale co-occurrence matrix feature vectors are
obtained by concatenating the feature vectors.

Multi-scale directional projection feature extraction
Directional projection refers to the horizontal and vertical projection of regional grayscale
values. The calculation formula is as follows:

PVert(c)=
1

n(c+ c ′)

∑
(r+r ′,c+c ′)∈R

I
(
r+ r ′,c+ c ′

)
(9)

PHor(r)=
1

n(r+ r ′)

∑
(r+r ′,c+c ′)∈R

I
(
r+ r ′,c+ c ′

)
(10)

where R refers to region and represents the target area; I refers to image, which represents
the image where the region is located;

(
r ′,c ′

)
represents the top left corner of the bounding

rectangle parallel to the smallest axis in the input area; n(x) represents the number of region
points in the corresponding row (r+ r ′) or column (c+ c ′). Horizontal projection returns
a one-dimensional function that reflects changes in vertical grayscale values. Similarly,
vertical projection returns a function that reflects changes in horizontal grayscale values.
Horizontal and vertical projection functions for 1–4 layers of pyramid images are then
drawn separately, using open circuit defects as an example, as shown in Fig. 4.

The directional projection function cannot effectively characterize the shape features
of defects. The directional projection function is also directly input into the classifier as
a feature vector, which may cause data redundancy. The known one-dimensional curve
can be regarded as a one-dimensional signal in time-domain space. Therefore, this model
extracts the time-domain features of the multi-scale directional projection functions of
each defect image as feature vectors. The time-domain feature representation method is as
follows:

Root mean square:

XRMS=

√√√√ 1
N

N∑
i=1

g 2i (11)

Root amplitude:

Xr =

[
1
N

N∑
i=1

√∣∣gi∣∣]2 (12)

Han et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1900 7/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1900


Figure 4 Multi-scale directional projection function for open circuit images.
Full-size DOI: 10.7717/peerjcs.1900/fig-4

Skewness:

Xsk=
1
N

N∑
i=1

g 3i (13)
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Average amplitude:

Xmean=
1
N

N∑
i=1

∣∣gi∣∣ (14)

Peak value:

Xpeak=max
∣∣gi∣∣ (15)

Kurtosis:

Ku=

1
N
∑N

i=1
(
gi−g

)4
X 4
RMS

(16)

Waveform factor:

SF =
XRMS

Xmean
(17)

Pulse factor:

IF =
Xpeak

Xmean
(18)

Margin:

L=
Xpeak

Xr
(19)

Crest factor:

ICF=
Xpeak

XRMS
(20)

where N represents the number of pixel sequences, gi represents the directional projection
function value corresponding to the ith pixel sequence. The time-domain characteristics of
the directional projection function of the 1–4 layers of pyramid images are then calculated
and the time-domain features are concatenated to obtain the multi-scale directional
projection feature vectors of the image.

Multi-scale gradient direction information entropy feature extraction
Gray information entropy
Entropy refers to the degree of chaos in a system, which is used to measure the uncertainty
of information. The smaller the entropy, the more certain the information, so entropy also
reflects the amount of information. Assuming there is a discrete random variable X with
a probability distribution function of p(x), its entropy H (X) can be represented by the
following equation:

H (X)=−
∑
x∈χ

p(x)logp(x) (21)

Image entropy reflects the average amount of information in an image, and describes
the number and frequency of occurrences of grayscale values based on the analysis and
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statistics of the obtained image grayscale values. The one-dimensional grayscale entropy of
a grayscale image can be represented by the following equation:

H =−
255∑
i=0

Pi logPi (22)

Based on one-dimensional entropy, this model uses a feature quantity that can reflect
the spatial characteristics of the gray distribution to form the two-dimensional entropy of
an image:

Pij = f (i,j)/N 2 (23)

where f (i,j) is the frequency of the occurrence of feature binary (i,j) andN isthe size of the
image. The definition Eq. (24) represents the two-dimensional entropy of discrete images:

H =
255∑
i=0

Pij logPij (24)

This equation can reflect the grayscale value at a certain pixel position and the
comprehensive characteristics of the gray distribution of its surrounding pixels.

Image gradient
The image gradient represents the axis and partial derivative of the current pixel point
to the axis, and can also be understood as the change speed of the pixel gray value. In
mathematics, the Sobel mask operator is used to calculate the approximate gradient of
changes in the horizontal and vertical directions of an image. The following common
operators can be used, with A defined as the source image, and Gx and Gy defined as the
approximate horizontal and vertical gradients of an image, respectively. The calculation
method is as follows:

Gx =

−1 0 1
−2 0 2
−1 0 1

∗A, Gy =

1 2 1
0 0 0
−1 −2 −1

∗A (25)

where ∗ represents the convolution operation between the operator and the image.
The gradient direction feature is reflected in the image in the form of grayscale values.

First, the original image is converted to a grayscale image, and then the pixels under the
mask are calculated according to the formula. The obtained results replace the values of
pixels at the center of the mask, and after calculating all pixels, the original image gradient
direction feature map is obtained. One image was selected for each type of defect for
experimentation, and the obtained gradient direction feature map is shown in Fig. 5.

This model calculates the grayscale information entropy of the gradient direction feature
map of bare PCB defects based on the two-dimensional grayscale entropy calculation
method of the image. Then, based on the multi-scale image construction method studied
in the previous section, the gradient direction information entropy is calculated for the 1–4
layers of pyramid images. The obtained results are then serialized as multi-scale gradient
direction information entropy features for bare PCB defects.
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Figure 5 Gradient direction feature map.
Full-size DOI: 10.7717/peerjcs.1900/fig-5

Deep semantic feature extraction based on transfer learning
To further explore the deep semantic features of bare PCB defect images, the model
proposed in this article uses a convolutional neural network to extract features from the
datasets. The VGG-16 network, proposed by Simonyan & Zisserman (2014) was selected
as the pre-training model. The VGG-16 model consists of a convolutional layer, a pooling
layer, and a fully connected layer. The network model structure is shown in Table 1.

Each convolutional layer applies a series of convolutional checks to the input data
through convolutional operations for feature extraction, generating a feature mapping
set. The maximum pooling layer aggregates input data through sliding windows to reduce
feature mapping. Pooling operations can also improve the ability of features to describe
images. The fully connected layer is used to generate feature vectors. After each layer,
there is a nonlinear layer, ReLU, represented as f (x)=max(0,x), used to achieve rapid
convergence of network training.

In the process of transfer learning, there are twomodels for fine-tuning. The first method
is to freeze all convolutional feature extraction layers of the pre-trained model and only
perform fine-tuning training operations on the classification layer; the second method is
to fine tune all convolutional feature extraction and classification layers of the pre-trained
model (Lamsiyah et al., 2023).

This model uses the first fine-tuning method. The known convolutional layer feature
maps are output in the form of matrix sets. If directly converted into a one-dimensional
vector, the dimensionality of the vector is very large, leading to overfitting problems
and affecting classification efficiency (Bai & Tang, 2018). In order to reduce the risk of
overfitting, the number of parameters and computational complexity are reduced. This
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Table 1 VGG-l6 network structure.

Number
of layers

Model Kernel configuration

Size Quantity Step size

1 Convolution 3×3 64 1
2 Convolution 3×3 64 1
3 Max-pooling 2×2 – 2
4 Convolution 3×3 128 1
5 Convolution 3×3 128 1
6 Max-pooling 2×2 – 2
7 Convolution 3×3 256 1
8 Convolution 3×3 256 1
9 Convolution 3×3 256 1
10 Max-pooling 2×2 – 2
11 Convolution 3×3 512 1
12 Convolution 3×3 512 1
13 Convolution 3×3 512 1
14 Max-pooling 2×2 – 2
15 Convolution 3×3 512 1
16 Convolution 3×3 512 1
17 Convolution 3×3 512 1
18 Max-pooling 2×2 – 2
19 Full-connection 4096 – –
20 Full-connection 4096 – –
21 Full-connection 1000 – –
22 SoftMax – – –

Figure 6 Schematic diagram of global pooling layer.
Full-size DOI: 10.7717/peerjcs.1900/fig-6

model removes the last five layers of the VGGl6-Net network model and replaces them
with a global average pooling layer and a fully connected layer with 512 nodes.

The function of global average pooling is to add all the pixel values of the feature map
and find a balance to obtain a numerical value. By using this numerical value to represent
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Figure 7 The VGG-l6 model after fine tuning.
Full-size DOI: 10.7717/peerjcs.1900/fig-7

the corresponding feature map, the spatial parameters are reduced, and the robustness of
the network is improved (Hsiao et al., 2019). The schematic diagram is shown in Fig. 6.

The feature maps output from the global average pooling layer are used as inputs to the
fully connected layer, and the 512-dimensional feature vectors outputted from the fully
connected layer are used as the deep features of the bare PCB defect images. The structure
of the adjusted VGGl6 net model is shown in Fig. 7.

Feature fusion
The different semantic features extracted from the same bare PCB defect image reflect
different image information. This model integrates multi-scale grayscale co-occurrence
matrix features, multi-scale directional projection features, multi-scale gradient directional
information entropy features, and deep semantic features extracted by the VGG-l6 neural
network to increase the diversity of feature information. If each group of feature vectors
were simply added or subtracted, it would cause problems, such as high dimensionality
of feature vectors and high computational complexity, so it is necessary to reduce the
dimensionality of the feature vectors. It is also necessary to assign different weights to
different feature vectors because different feature vectors have different scale ranges and
classification performance, and direct addition and subtraction would ignore the imbalance
of the data.

This model uses principal components analysis (PCA) to reduce the dimensionality of
the extracted feature vectors (Jiang & Sun, 2023), and the high contribution features are
extracted as effective features for bare PCB defect images.

Assuming there are M samples
{
X1,X2,,...,XM

}
andeach sample has an N-dimensional

feature vector Xi=
(
x i1,x

i
2,...,x

i
N
)T , then each feature xj has its own characteristic value.

The steps for the PCA are as follows:
Step 1: All features are centralized using demeaning.
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Each feature is averaged and then its own mean is subtracted.

xn=
1
M

M∑
i=1

x in (26)

Step 2: The Covariance matrix C , is calculated taking features A and S as examples.

C =

[
cov(x1,x1) cov(x1,x2)
cov(x2,x1) cov(x2,x2)

]
. (27)

In the above matrix, the variances of features x1 and x2 are on the diagonal, and the
covariance is found on the non-diagonal. A covariance greater than 0 indicates that if one
of x1 and x2 x2 increases, the other also increases; a covariance less than 0 means when one
increases, the other decreases; when the covariance is 0, the two are independent. The larger
the absolute value of covariance, the greater the impact the two have on each other. The
solution formula for cov(x1,x1) is shown in Eq. (28), and the same applies to the others.

cov(x1,x1)=
∑M

i=1
(
x i1−x1

)(
x i1−x1

)
M−1

(28)

The covariance matrix C of M samples under N-dimensional features are obtained in
this covariance calculation formula.

Step 3: The eigenvalues of the covariance matrix are and the corresponding eigenvectors
are identified.

The eigenvalue λ of the Covariance matrix C and the corresponding eigenvector µ(each
eigenvalue corresponds to a eigenvector) is calculated with the following formula:

Cµ= λµ. (29)

There are N eigenvalues λ, and each λi corresponds to a feature vector µi. The feature
values are sorted in descending order, with the largest k selected, producing a set of
{(λ1,µ1),(λ2,µ2),...,(λk,µk)}.

Step 4: The original features are projected onto the selected feature vector to obtain the
new K-dimensional features after dimensionality reduction.

Dimensionality reduction is performed by selecting and projecting the largest eigenvalues
and corresponding eigenvectors. For each sample X i, the original feature is

(
x i1,x

i
2,...,x

i
n
)T ,

and the projected new feature is
(
y i1,y

i
2,...,y

i
k
)T . The new feature is calculated using Eq. (30):



y i1
y i2
·

·

·

y ik


=



µT
1
(
x i1,x

i
2,...,x

i
n
)T

µT
2
(
x i1,x

i
2,...,x

i
n
)T

·

·

·

µT
k
(
x i1,x

i
2,...,x

i
n
)T


(30)

so that each sample X i is changed from the original X i
=
(
x i1,x

i
2
)T to the current X i

= y i1.
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This model selects appropriate features by determining the amount of information
contained in the feature values. According to Eq. (30), the new feature vectors calculated by
principal component analysis are arranged in descending order. The size of the eigenvalues
corresponds to the amount of information contained in the eigenvalues, which also
indicates the contribution rate of the principal components. This model selects the feature
values with a cumulative contribution rate of over 99.8% and ranking first as the fusion
feature values. After the principal component calculation, the first six principal components
of the multi-scale gray level co-occurrence matrix feature vector, the first seven principal
components of the multi-scale directional projection feature vector, the first two principal
components of the multi-scale gradient directional information entropy feature vector, and
the first 68 principal components of the deep feature vector were used as the dimensionality
reduced feature vectors for feature fusion.

The naive Bayesian theory is then used to calculate the weights of each group of feature
vectors (Shitharth et al., 2022). The posterior probability of each group of eigenvectors
is calculated through the dataset, and then their respective weight values are calculated.
The dataset is first divided and then the conditional probability and prior probability of
each category are calculated according to the training set. The posterior probability of
the eigenvector is then calculated using the Bayesian formula. The maximum posterior
probability is used as the final posterior probability of the eigenvector (Krishna & Divya,
2022).

The specific steps to calculate the posterior probability of eigenvectors and assign weights
to each group of eigenvectors are as follows:

Step 1: Assuming there is a feature vector x = {x1,x2,...,xn} and a category set
C = c1,c2,...,ck , then the posterior probability calculation formula of the Naive Bayes
classifier is as follows:

P(ci|x)=
P(ci)P(x|ci)

P(x)
(31)

where P(ci) represents the prior probability of the category in the training set, P(x|ci)
represents the conditional probability of eigenvector x under category ci, and P(x)
represents the marginal probability of feature vector x . According to the naive Bayesian
theory, denominator a is a constant in classification and can be omitted, so the posterior
probability can be simplified as P(ci|x)∝ P(ci)P(x|ci).

Step 2: The prior probability P(ci) and conditional probability P(x|ci) are calculated.
The prior probability P(ci) represents the frequency of occurrence of category ci in the
training set, and the calculation method is as follows:

P (ci)=

∣∣Dci
∣∣

|D|
(32)

where |Dci | represents the number of samples belonging to category ci in the training set
and |D| represents the total number of samples in the training set. The calculation of
conditional probability P(x|ci) is based on the naive Bayesian classifier assumption, also
called the feature conditional independence assumption. According to this assumption,
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conditional probability can be defined as the product of the conditional probability of each
feature, as shown in the following formula:

P(x|ci)=
n∏

j=1

P(xj |ci) (33)

where xj represents the jth feature of feature vector x and P(xj |ci) represents the conditional
probability of the occurrence of feature xj under category ci. For discrete features, P(xj |ci)
can be directly defined as the frequency of feature xj appearing under category ci, and the
calculation formula is as follows:

P(xj |ci)=
|Dci,xj |

|Dci |
(34)

where |Dci,xj | represents the number of samples in the training set that belong to category
ci and feature xj appears, and |Dci | represents the number of samples belonging to category
ci in the training set. For continuous features, assuming that they conform to the Gaussian
distribution, the conditional probability P(xj |ci) can be calculated using the probability
density function of the Gaussian distribution, as shown in the following formula:

P(xj |ci)=
1√

2πσ 2
ci,j

exp

(
−
(xj−µci,j)

2

2σ 2
ci,j

)
(35)

where µci,j and σci,j represent the mean and standard deviation of feature xj under category
ci, respectively, as calculated from the training set.

Step 3: The posterior probability of the feature vector is calculated according to the
naive Bayesian classifier, as follows:

P(ci|x)∝ P(ci)
n∏

j=1

P(xj |ci) (36)

where P(ci) represents the prior probability of category ci in the training set and P(xj |ci)
represents the conditional probability of the occurrence of feature xj under category ci. Then
the maximum a posteriori estimation is the final posterior probability of the eigenvector,
and is calculated as follows:

Pmax(ci|x)= argmaxci∈CP(ci)
n∏

j=1

P(xj |ci) (37)

Step 4: The weight coefficients wi of each group of feature vectors, defined as the
normalization result of the maximum a posteriori estimation, are calculated as follows:

wi=
Pmax(ci|x)∑n
i=1Pmax(ci|x)

(38)

Due to the presence of four sets of feature vectors in this model, n= 4.
After feature dimensionality reduction and weight allocation, the feature vectors need

to be connected together to complete feature fusion. This model uses parallel fusion as the
feature vector stitching method. Assuming there is a bare PCB defect image sample I , after
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Table 2 The pseudocode of the proposed algorithm.

AlgorithmMulti-feature fusion based on principal component analysis and Bayesian
theory

1:Intput: Image I of PCB bare board defects to be detected
2:Construct 4-layer Gaussian pyramid image

{
I1,I2,,I3,I4

}
of defect image I of PCB bare

board to be detected
3:Calculate the multi-scale gray level co-occurrence matrix feature vector
GLCM= [GLCM1,GLCM2,GLCM3,GLCM4] of I via Eqs. (1)–(8)
4:Calculate the multi-scale directional projection feature vectors
pro=

[
XRMS,Xr ,Xsk,Xmean,Xpeak,Ku,SF ,IF ,L,ICF

]
for I via Eqs. (9)–(20)

5:Calculate the multi-scale gradient direction information entropy feature vector
Ent= [H1,H2,H3,H4] of I for I via Eqs. (21)–(25)
6:Calculating the deep semantic feature vector D= [d1,d2,d3,...,dn],n= 512 of I based
on the improved VGG-16 neural network
7:Extract features from image I to obtain M feature vectors

{
X1,X2,,...,XM

}
8:Reduce the dimension of

{
X1,X2,,...,XM

}
via Eqs. (26)–(30), obtain N feature vectors{

X1,X2,,...,Xn
}

9:Calculate the weight
{
W1,W2,,...,Wn

}
of each feature vector of

{
X1,X2,,...,XN

}
via

Eqs. (31)–(38)
10:Calculate the feature vector V after parallel weighted fusion via Eq. (39)
11:Output: the feature vector V ={C1,C2,...,Cn} after parallel weighted fusion

dimensionality reduction and weighting, A= {A1,A2,...,An} and B= {B1,B2,...,Bn} are
obtained, and the feature vector after parallel fusion is V = {C1,C2,...,Cn}, where Ci is
defined as the following equation:

Ci=
√
(Ai)2+ (Bi)2 (39)

If the number in digits of feature vectors A and B is not equal, then 0 is added to the low
dimensional feature vectors.

Before dimensionality reduction, the parallel fusion dimension of feature vectors had
a total of 512 dimensions. After dimensionality reduction, the parallel fusion dimension
of feature vectors was reduced to 68 dimensions. The feature dimensionality was reduced
significantly, and the noise was eliminated. Different weight coefficients were assigned to
each group of feature vectors based on different classification performance; the important
features were strengthened and the non important features were weakened.

The pseudocode of the proposed algorithm is shown in Table 2.

EXPERIMENT RESULTS AND DISCUSSION
The Open Laboratory of Intelligent Robotics at Peking University has a bare PCB dataset
with various defects (leaks, mouse bites, open circuits, short circuits, burrs, and residual
copper) (Huang et al., 2020), which can be used for image detection, classification, and
registration tasks. Each type of defect is distributed on 10 different bare PCB images, with a
total of 690 defect images in the database. Each image has 2–6 defective areas. After defect
extraction, the sample size statistics are shown in Table 3.
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Table 3 Statistics of defect sample quantity.

Defect type Number of
images/piece

Number of defect
samples/piece

Leaks 115 442
Mouse bites 115 442
Open circuits 116 419
Short circuits 116 499
Burrs 114 424
Residual copper 114 434
Total 690 2660

This experiment used the following hardware: an Intel(R) Core(TM) i5-8300H CPU @
2.30 GHz 2.30 GHz with a GTX 1050Ti graphics card. Bare PCB defect detection requires
machine vision algorithms that can be developed quickly and efficiently, as well as a stable
operating environment. This article proposes a newly-designed and developed bare PCB
defect detection algorithm based on the Halcon platform. Halcon is a commercial software
with powerful machine vision capabilities and high scalability, which supports multiple
programming languages and development environments.

The experiments were conducted on the Halcon and Matlab platforms. First, based
on the feature extraction method outlined previously, the multi-scale gray level co-
occurrence matrix feature vector GLCM= [GLCM1,GLCM2,GLCM3,GLCM4] of 1∼4
layers of Gaussian pyramid image were extracted for each bare PCB defect image.
The feature vector of gray level co-occurrence matrix of the first layer Gaussian
pyramid image was GLCM1 = [Asm1,Cor1,Hom1,Con1], the feature vector of gray
level co-occurrence matrix of the second layer Gaussian pyramid image was GLCM2 =

[Asm2,Cor2,Hom2,Con2], the feature vector of gray level co-occurrence matrix of
the third layer Gaussian pyramid image was GLCM3 = [Asm3,Cor3,Hom3,Con3],
and the feature vector of gray level co-occurrence matrix of the fourth layer Gaussian
pyramid image was GLCM4 = [Asm4,Cor4,Hom4,Con4]. The multi-scale gradient
direction information entropy eigenvector of 1∼4 layers of Gaussian pyramid image
was Ent= [H1,H2,H3,H4], and the multi-scale directional projection feature vector
was pro=

[
XRMS,Xr ,Xsk,Xmean,Xpeak,Ku,SF ,IF ,L,ICF

]
. Fused in parallel with the deep

semantic feature vector D= [d1,d2,d3,...,dn],n= 512 extracted from the convolutional
neural network to form a new feature vector. Then, the new feature vector was used as
input to SVM, and the SVM classifier model was trained to classify bare PCB defect images.

The dataset was divided as follows: 70% of the dataset was used as the training set, 10% as
the validation set, and 20% as the testing set. To verify the superiority of the multi-feature
fusion algorithm in image description compared to a single feature, the extractedmulti-scale
gray level co-occurrence matrix feature vector, multi-scale gradient direction information
entropy feature vector, multi-scale direction projection feature vector, and deep feature
vector were respectively input into the SVM classifier for classification and recognition.

The confusion matrix obtained based on deep feature recognition is shown in Table 4.

Han et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1900 18/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1900


Table 4 Deep feature confusionmatrix.

Leaks Mouse
bites

Open
circuits

Short
circuits

Burrs Residual
copper

FP

Leaks 88 0 1 2 0 0 3
Mouse bites 0 78 15 0 0 0 15
Open circuits 0 0 68 0 0 0 0
Short circuits 0 2 0 95 0 0 2
Burrs 0 8 0 1 80 0 9
Residual copper 0 0 0 0 4 87 4
FN 0 10 16 3 4 0 33

Table 5 Multi-scale gradient direction information entropy feature confusionmatrix.

Leaks Mouse
bites

Open
circuits

Short
circuits

Burrs Residual
copper

FP

Leaks 88 0 1 8 3 1 13
Mouse bites 0 75 9 12 1 0 22
Open circuits 0 11 72 7 3 1 22
Short circuits 0 1 2 68 4 0 7
Burrs 0 1 0 3 73 0 4
Residual copper 0 0 0 0 0 85 0
FN 0 13 12 30 11 2 68

Table 6 Multi-scale gray co-occurrence matrix feature confusionmatrix.

Leaks Mouse
bites

Open
circuits

Short
circuits

Burrs Residual
copper

FP

Leaks 66 0 0 0 0 0 0
Mouse bites 0 82 1 0 0 0 1
Open circuits 0 0 63 0 0 0 0
Short circuits 22 5 20 98 48 6 101
Burrs 0 1 0 0 36 0 1
Residual copper 0 0 0 0 0 81 0
FN 22 6 21 0 48 6 103

The confusion matrix obtained based on multi-scale gradient direction information
entropy feature is shown in Table 5.

The confusion matrix obtained based on multi-scale gray co-occurrence matrix feature
is shown in Table 6.

The confusion matrix obtained based on multi-scale directional projection feature is
shown in Table 7.

The analysis results of different confusion matrices show that fused features can better
describe image detail features compared to single features, with a significant improvement
in accuracy.
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Table 7 Multi-scale directional projection feature confusionmatrix.

Leaks Mouse
bites

Open
circuits

Short
circuits

Burrs Residual
copper

FP

Leaks 80 6 0 1 0 0 7
Mouse bites 0 81 11 1 0 0 12
Open circuits 5 0 68 10 0 0 15
Short circuits 0 1 0 80 8 0 9
Burrs 3 0 5 3 76 3 14
Residual copper 0 0 0 3 0 84 3
FN 8 7 16 18 8 3 60

To verify the classification effect of the SVM fusionmulti-feature classification algorithm
on bare PCB defect images, the algorithm proposed in this article was compared with the
CNN algorithm using AlexNet (Kavitha & Rao, 2019), VGG-16, and ResNet-50 as the
selected CNN network models. Accuracy (acc), precision (pre), recall, and F1 score were
used as evaluation indicators for classification performance and were calculated, as follows:

acc(A,B)=
A
B

(40)

pre=
TP

TP+FP
(41)

recall(Ai,Bi)=
Ai

Bi
(42)

F1=
2 ·pre · recall
pre+ recall

(43)

where, A represents the sum of the correct number of sample discrimination, Brepresents
the total number of samples,Bi represents the number of samples of each type, TP represents
the number of correctly identified samples in the category, FP represents the number of
cost class samples misjudged by other class samples, and FNrepresents the number of
samples in this category that were mistakenly classified as other categories.

The comparative classification results are shown in Table 8.
Figure 8 shows the detection and recognition results of defects in the tested images

of different types of bare PCB boards using the algorithm proposed in this article. The
rectangle in the figure represents a short circuit, the ellipse represents an open circuit,
the diamond represents a burr, the square represents a leak, the circle represents a mouse
bite, and the square with rounded corners represents residual copper. The comparative
experimental results (Table 8) shows that, compared to traditional CNN classification
algorithms, the SVM classification algorithm that integrates multi-scale shallow features
and deep semantic features had a significant improvement in the accuracy of bare PCB
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Table 8 Comparative classification results.

Algorithm Evaluating
indicator

Leaks Mouse
bites

Open
circuits

Short
circuits

Burrs Residual
copper

Average
value

Accuracy Rate/% 99.43
Precision Rate/% 100 100 98.82 100 97.67 100 99.42
Recall rate/% 100 97.73 100 98.98 100 100 99.45

Algorithm
in
this
article F1 score/% 100 98.85 99.41 99.49 98.82 100 99.43

Accuracy Rate/% 97.16
Precision Rate/% 92.63 97.67 100 96.04 97.65 100 97.33
Recall rate/% 100 95.45 95.24 98.98 98.81 94.25 97.12

AlexNet

F1 score/% 96.17 96.55 97.56 97.49 98.22 97.04 97.17
Accuracy Rate/% 98.11
Precision Rate/% 100 98.84 98.75 96.00 95.45 100 98.17
Recall rate/% 100 96.59 94.05 97.96 100 100 98.10

VGG-
16

F1 score/% 100 97.7 96.34 96.97 97.67 100 98.11
Accuracy Rate/% 98.68
Precision Rate/% 100 96.67 100 97.00 100 98.86 98.76
Recall rate/% 100 98.86 96.43 98.98 97.62 100 98.65

ResNet-
50

F1 score/% 100 97.75 98.18 97.98 98.8 99.43 98.69

Figure 8 Defect identification results.
Full-size DOI: 10.7717/peerjcs.1900/fig-8

defect image classification, demonstrating that the feature extraction algorithm proposed
in this article can obtain more effective information about defects.

CONCLUSION
Aiming at the problems existing in the field of bare PCB defect detection, this article
proposes a multi-scale feature extraction method based on Gaussian pyramid that extracts
multi-scale gray level co-occurrence matrix features, multi-scale directional projection
features, and multi-scale gradient direction information entropy features, and uses a
convolutional neural network to further extract image deep semantic features to enrich
feature information. This article establishes a feature fusion method based on principal
component analysis and Bayesian theory. First, based on principal component analysis,
the extracted feature vectors are dimensionally reduced, greatly reducing both feature
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dimension and computational complexity. Then, Bayesian theory is used to calculate
the weight values of different feature vectors, and multiple sets of vectors are fused in
parallel. Compared to a single feature, fused features have stronger image representation
capabilities. In addition, SVM has unique advantages in handling small sample problems.
The proposedmodel fuses all the extracted features into a new feature vector to enhance the
ability of the features to describe the image and converts it into a feature sequence, which
is input into SVM for training to achieve bare PCB defect classification and recognition.
The experimental results prove that the proposed algorithm can quickly and accurately
identify leaks, mouse bites, open circuits, short circuits, burrs, and residual copper defects,
with an accuracy rate of over 99% and a certain degree of stability.

The research in this article provides some ideas for bare PCB detection, but
improvements are needed in future work. This article only focuses on some specific
issues of bare PCB defect detection, and the proposed method is not yet suitable for
all complex production environments. The interference mode, interference type, and
interference degree in actual production environments cannot be predicted, such as lens
interference, electromagnetic interference, or light source interference, which were not
considered in the research process of this article. Therefore, improving the anti-interference
ability of PCB defect detection algorithms in complex noise environments has significant
practical significance. In addition, the defect detection algorithm proposed in this article
can detect bare PCB boards in production and quickly detect defects that occur during
the production process, but cannot evaluate the severity of defects. Future research should
include measuring the size of different defects and evaluating the impact of defects on the
quality of bare PCBs to better improve the production process.
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