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ABSTRACT
Through the application of computer vision anddeep learningmethodologies, real-time
style transfer of images becomes achievable. This process involves the fusion of diverse
artistic elements into a single image, resulting in the creation of innovative pieces of art.
This article centers its focus on image style transfer within the realm of art education
and introduces an ATT-CycleGAN model enriched with an attention mechanism to
enhance the quality and precision of style conversion. The framework enhances the
generators within CycleGAN. At first, images undergo encoder downsampling before
entering the intermediate transformation model. In this intermediate transformation
model, feature maps are acquired through four encoding residual blocks, which are
subsequently input into an attention module. Channel attention is incorporated
through multi-weight optimization achieved via global max-pooling and global
average-pooling techniques. During the model’s training process, transfer learning
techniques are employed to improvemodel parameter initialization, enhancing training
efficiency. Experimental results demonstrate the superior performance of the proposed
model in image style transfer across various categories. In comparison to the traditional
CycleGAN model, it exhibits a notable increase in structural similarity index measure
(SSIM) and peak signal-to-noise ratio (PSNR) metrics. Specifically, on the Places365
and selfi2anime datasets, compared with the traditional CycleGAN model, SSIM is
increased by 3.19% and 1.31% respectively, and PSNR is increased by 10.16% and
5.02% respectively. These findings provide valuable algorithmic support and crucial
references for future research in the fields of art education, image segmentation, and
style transfer.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and
Machine Learning, Neural Networks
Keywords GAN, CycleGAN, Attention mechanism, Image style migration, Visual resource and
artistic communication

INTRODUCTION
In tandem with the advancement of society and the relentless march of scientific and
technological progress, there exists an elevated yearning among the populace for artistic
representations, aligning with the gradual refinement of non-material culture’s quality
of life. An ardent desire prevails for the ability to craft artworks echoing the stylistic
resonance of renowned masterpieces—a feat that remains elusive for those devoid of
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painting prowess (Wang, Li & Vasconcelos, 2021). The extraction of visual resources is
crucial for the dissemination of art. By extracting visual elements such as color, shape,
composition, etc. from artwork, it helps to convey the artist’s intentions and emotions,
enhance the audience’s perception and understanding of the work, deepen communication
and emotional resonance between the artwork and the audience, and further promote the
dissemination and influence of art. Image style migration stands as a prominent branch
within the domain of computational vision, with its fundamental concept centered upon
the transmutation of one image’s aesthetic style into that of another while simultaneously
preserving the intrinsic structural essence of the original image to the utmost degree. By
harnessing the formidable computational prowess of computers, this endeavor proliferates
the capacity for style migration across a multitude of images, even facilitating the emulation
of diverse painting styles through the artistry of AI technology (Kwon & Ye, 2022).

The neural network model, a creation that mimics the interconnections among neurons
in the human brain and the principles governing information transmission, has emerged
as a quintessential construct in the landscape of technology. The deep neural networks,
born from the tenets of deep learning theory, exhibit intricate and profound neuron
linkages, more faithfully mirroring the cognitive dynamics of the human brain. In contrast
to rudimentary neural networks, their deep counterparts possess a heightened capacity for
learning, and trained deep neural networks wield a formidable aptitude for generalization.
This profound duality of learning and generalization endows deep neural networks with
widespread utility, permeating domains such as text analysis, language processing, image
manipulation, and numerous other realms (Singh et al., 2021).

Currently, there has been a gradual emergence of style migration methods rooted in the
realm of deep neural networks, capturing the attention of numerous scholars who have
embarked on the exploration of deep learning techniques to facilitate the transmutation of
artistic painting features into photographic representations, thereby yielding entirely novel
photographic compositions. Deep neural networks serve as the instrumental conduits for
the extraction and translation of these artistic style attributes, endowing the designated
images with these features, thus birthing fresh imagery brimming with artistic allure. Deep
convolutional neural networks (CNNs) have demonstrated unparalleled proficiency in
addressing amultitude of computer vision tasks, transcending the abilities of contemporary
humans and encompassing domains such as image classification and target detection (Singh
et al., 2021). Their prowess extends not only to the realm of static images but also transcends
into more intricate and demanding scenarios. As the field of image processing delves
deeper into the abyss of exploration, visionary scholars have unveiled novel concepts
and perspectives in the domain of image style migration. In recent years, an array of
network architectures, including VGGnet, AlexNet, ResNet, and Neural Style Transfer
Network, have been conceived and established to enhance the sphere of image processing.
In the domain of image style transference, VGGNet typically serves as the prime feature
extractor, deftly capturing both content and stylistic nuances through feature extraction at
various levels within the image. Simultaneously, AlexNet proves instrumental in analogous
feature extraction tasks, focusing primarily on capturing content-related information
within the image (Wang et al., 2015). Meanwhile, residual networks (ResNet), with its
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capacity for more profound feature extraction, excels in enhancing the conveyance of
content nuances within the image, yielding superior results. Moreover, the introduction
of generative adversarial networks (GANs) has heralded a new era in image generation
research. Leveraging the artistry of image generation techniques to craft new images imbued
with distinctive artistic styles based on existing visual compositions currently stands as a
vibrant focal point within the realm of research (Li et al., 2020).

In light of the prevailing disconnect between various artistic styles and their integration
within the realm of art education and correlated research, this article introduces an image
style migration framework, underpinned by GAN networks, to bridge the gap in artistic
style congruence within the art model propagation process, while also addressing the
challenge of style conversion. The contributions of this article are delineated as follows:

1. Pioneering an image style migration technique rooted in deep learning GAN
networks, this approach transforms image styles, thereby enriching available resources
for art education and other relevant applications.

2. Introducing an image-style migration model that employs an attention mechanism
in conjunction with the CycleGAN network, this model undergoes pre-training and
comprehensive testing.

3. By utilizing the proposed image style migration framework to execute style
transmutations across diverse datasets, including public data and self-created datasets,
the empirical results unequivocally confirm the superiority of the methodology outlined
in this article. This is demonstrated by surpassing several performance metrics compared
to existing methodologies. In the remainder of this article, related work is described
in ‘Related works’. ‘Methodology’ established the ATT-CycleGAN model. Experiment
results and related analysis are detailed described in ‘Experiment’, and ‘Discussion’ is the
Discussion. The conclusion is drawn at last.

RELATED WORKS
As visual resource extraction is so important to artistic communication, to design the new
communication model, the original information should be enhanced. In this article, we
will review the related works about image style migration research and the methods used
in this area.

Image style migration
Image style migration is an innovative technique designed to transmute the style of a given
image into that of another designated content image. This approach offers the flexibility to
apply diverse artistic styles to images, enabling the application of landscape-style paintings
to ordinary photographs, thereby realizing a transformative filtering function. The origins
of image-style migration techniques can be traced back to the 1990s when the focus
gradually shifted towards their development. Most texture migration algorithms employ
non-parametric methods to synthesize image textures while simultaneously preserving the
image’s underlying structure, utilizing a variety of distinct techniques. Efros & Freeman
(2001) pioneered the incorporation of texture synthesis concepts to generate stylized
images. Frigo et al. (2016) introduced an instance-based partitioning approach that varied
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patch sizes and sought to identify the optimal patch matches between the target image and
the reference image. Elad & Milanfar (2017) proposed a classical patch-matching-based
style migration technique with adaptive patch enhancements aimed at augmenting image
quality. Traditional style migration algorithms adeptly simulate specific artistic styles but
face limitations when extending to other, unexplored styles. For novel styles, a considerable
investment of time is required to analyze the nuances of the style, drawing upon substantial
human knowledge and experience. Furthermore, traditional style migration approaches
predominantly extract the foundational features of an image. Consequently, the primary
drawback of conventional style migration techniques lies in their inability to produce
satisfactory stylized images when dealing with images characterized by intricate color
palettes and complex textures Before the advent of deep learning, the methodologies
employed for image stylemigrationwere primarily centered around image rendering. These
image rendering techniques are often categorized into stroke rendering, region rendering,
and instance rendering, relying on image processing filter techniques (Hertzmann et al.,
2001). Although these renderingmethods effectively bestow style upon content images, they
predominantly operate on the image’s underlying information, often failing to encapsulate
the abstract features that genuinely encapsulate the content’s essence.

The ascent of CNNmodels within the domain of image processing has been characterized
by remarkable milestones, commencing with AlexNet in 2012 and culminating with
VGGNet in 2014 and ResNet in 2015. As the CNN model matures post-2016, style
migration techniques increasingly adopt deep learning to facilitate the transmutation of
image styles. Gatys, Ecker & Bethge (2015), in their groundbreaking study, discerned the
feasibility of segregating image content and style representations across different layers of
CNN. Building upon this insight, they advanced an image iteration-based style migration
algorithm (Gatys, Ecker & Bethge, 2016). Johnson, Alahi & Fei-Fei (2016) on the other hand,
introduced a swift image style migration technique, wherein the desired stylized image is
generated via the construction of an image generation network. These endeavors collectively
underscore the evolving landscape of style migration, marked by the growing integration
of diverse neural network methodologies aligned with the burgeoning capabilities of
deep learning technology. Consequently, the expansion of research applications in the
realm of style migration through deep learning networks has surged to the forefront of
contemporary research endeavors, affirming its status as a compelling and vibrant area of
exploration in recent years.

Image migration method based on generative adversarial networks
GANs ascertain the fidelity of generated samples by learning the underlying data
distribution, thus addressing the challenge of not having exact sample matches. Instead
of generating an average outcome from all reasonable samples, GANs strive to generate
a more plausible sample within the generative space. In 2014, Goodfellow et al. (2014)
introduced the GAN model, comprising a generator (G) and a discriminator (D). GANs
optimize both the generator and discriminator through adversarial training, whereby the
generator endeavors to produce the most convincing results. Radford, Metz & Chintala
(2017) proposed DCGANs, which integrate GANs with deep CNN architectures and are
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tailored for specialized image generation. Chen, Lai & Liu (2018) presented CartoonGAN,
designed to produce cartoon-style images by incorporating edge facilitation loss. This
technique can generate diverse cartoon images when provided with a real scene as the
content image. Isola et al. (2017) introduced CGAN-based image-to-image translation,
requiring paired data during the training process. Zhu et al. (2017) developed CycleGAN, a
model that eliminates the need for paired images and enables image-to-image conversion.
Hu, Ding & Li (2020) devised a style migration model based on GAN, abandoning the
redundant structure of two GAN models trained by CycleGAN. Instead, they employ
feature maps from the VGG network to constrain the semantic content between the
input image and the generated image. This approach streamlines training, with only one
generator and one discriminator being employed, thereby saving time. Style migration
plays a pivotal role in various fields, including art, film and television post-production, and
game scene development. CycleGAN, DiscoGAN, and DualGAN, all rooted in the concept
of dyadic learning, are parallel efforts in the realm of GAN (Yi et al., 2017). These models
enable style migration tasks with just the dataset, transcending the need for image pairing
and significantly expanding the application scope of style migration. Choi et al. (2018)
proposed the StarGAN model, which can achieve the transfer of multiple styles within
a single GAN. Although the StraGAN model can achieve multiple styles of transfer, the
number of styles is still limited, and cannot achieve the transfer of any style. Xu et al. (2020)
combined the AdaINmodule with the generative adversarial network and added the AdaIN
module to the adversarial network, enabling the network to generate images of any style.
Cho et al. (2019) combined WCT with GAN and proposed the GDWCT model, which
approximates WCT by using regularization and grouping calculations while reducing the
number of parameters.

The studies outlined above vividly illustrate the substantial progress made in the
domain of deep learning-based generative content research, particularly concerning images.
Deep learning-based style migration techniques have exhibited impressive advancements,
significantly enhancing migration speed and migration quality. While various GAN
networks have seen improvements, their fundamental frameworks have remained relatively
consistent (Kim et al., 2017). Consequently, in this study, CycleGAN is selected as the
foundational network model, upon which enhancements and reinforcement training
are employed specifically for character images and landscape images. This approach is
undertaken with the goal of bolstering the applicability of these techniques to forthcoming
research endeavors in the domains of art education and dissemination.

METHODOLOGY
After reviewing related works on image style migration and the application of CycleGAN,
we will introduce the employed method, including CNN and ResNet, CycleGAN, and the
established model.

CNN and ResNet
CNN and ResNet stand as pivotal neural network architectures within the domain of deep
learning, primarily harnessed for computer vision tasks, including image classification,
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Figure 1 The structure for the ResNet.

Full-size DOI: 10.7717/peerjcs.1889/fig-1

target detection, and image segmentation. CNNs, specifically, are purpose-built deep
learning models adept at processing data with a grid-like structure, a prime example being
images. They autonomously acquire salient image features through convolutional and
pooling layers, subsequently leveraging fully connected layers to undertake tasks such as
classification or regression. The core operation in the convolutional phase is encapsulated
in Eq. (1):

C(x,y)=
∑

i
∑

jI (x+ i,y+ j)K (i,j) (1)

where C is the output after the convolution, and I(x,y) is the position of the image and
K is the position of the kernel. Traditional CNN networks often suffer from gradient
explosion and network is too deep and difficult to converge. For this reason, ResNet
was proposed based on residual features (Wightman, Touvron & Jégou, 2021). ResNet’s
fundamental concept revolves around facilitating the training of deep neural networks by
enabling the direct transfer of information between different network layers through skip
connections or jump connections. This structural design simplifies the network’s ability
to effectively capture and learn a wide array of features, rendering it highly successful in
image classification and a multitude of other computer vision tasks (Iqbal & Ali, 2018).
The residual block, serving as the foundational building block, is visually depicted in Fig. 1:

The block consists of two weight layers and a jump join. Assuming the input is x, the
output of the residual block can be expressed as:

F (x)=H (x)+X (2)
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where F(x) is the output, x is the input, and H(x) is the residual function, which represents
the residuals to be learned by the network. By adding x to H(x), the residual block enables
the network to learn the residuals. In terms of gradient, by converting from cumulative
multiplication to cumulative addition, the effectively overcomes the problem of gradient
dispersion, which can be analyzed by Eq. (3):

XL=Xl+

L−1∑
i=1

F(xi,wi) (3)

where XL represents the gradient propagation for the next step and F is the output of the
last output after the convolution.

Attention enhanced CycleGAN for the image style migration
generation
The GAN embodies the concept of a zero-sum game, as rooted in game theory. In this
GAN framework, two principal entities engage in a strategic game: the Generator (G)
and the Discriminator (D) (Din et al., 2020). The primary objective of the Generator
is to create synthetic data that closely matches the distribution of real sample data.
Subsequently, the Generator submits both the generated data and genuine data to the
Discriminator, which must discern whether the presented data originates from real or
generated sources. In generative adversarial networks (GANs), generators create realistic
synthetic data from randomnoise, aiming to deceive discriminators, which, in turn, strive to
accurately distinguish between real and generated data. The adversarial interplay between
these components leads to continuous improvement, culminating in the generation of
high-quality, realistic data. In this process, the discriminator struggles to differentiate
between real and synthetic samples, demonstrating the overall efficacy of GANs in data
synthesis. The adversarial interplay between the Generator and the Discriminator in the
GAN framework is formally captured in Eq. (4):

min
G

max
D

V(D,G)= Ex∼Pdata (x)[logD(x)]+Ez∼Pz(x)[log(1−D(G(x)))] (4)

where x represents the real data, and z is noise, and G(z) is the generated data, and Pdata (x)
is the real data distribution, and Pz(x) denotes the noise distribution.

For the discriminator D, the cost function J(D) is of the form shown below:

J(D)
(
θ (D),θ (G)

)
=−

1
2
Ex∼Pdata logD(x)−

1
2
Ex∼Pz log(1−D(G(z))) (5)

A zero-sum game is played between the generator and the discriminator, the combined
cost of the two is zero, and the cost functions of the generator and the discriminator are
shown in Eq. (6):

J(G)=−J(D). (6)

Thus it can be represented by a value function V to represent J(G) and J(D).

V
(
θ (D),θ (G)

)
= Ex∼Pdata logD(x)+Ex∼Pz log(1−D(G(z))) (7)
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J(G)=−J(D)=
1
2
V
(
θ (G),θ (D)

)
(8)

By finding a suitable V-value function to make the cost function as small as possible,
from completing the definition of the value function as a problem of solving very large
and very small values. That is, the most discriminants D* and G for the problem shown in
Eq. (8) are found:

argmin
G

max
D

V(D,G) (9)

CycleGAN, akin to GAN, operates as an unsupervised learning model, facilitating the
migration of image styles across distinct domains. The model’s innovation lies in its ability
to learnmappings between different domains without the need for paired training data. The
integration of an attentionmechanism further refines its performance by focusing on crucial
regions during style translation, preserving intricate details. The inclusion of pre-training
and comprehensive testing ensures robust generalization to diverse datasets and artistic
styles. Through these features, CycleGAN accomplishes effective image style migration,
making it a valuable tool for applications such as art education, where the unsupervised
learning approach enables the model to autonomously acquire and replicate diverse artistic
styles. The CycleGAN model, along with the DiscoGAN and DualGAN models, stands out
for not requiring dataset matching to achieve cross-domain mapping relationships and
the transmutation of different styles between domains. Within the CycleGAN architecture,
two mapping functions are at play: G and F, complemented by two distinct discriminators,
DX and DY. Here, X and Y denote two image datasets originating from different domains.
The Generator G serves as the mapping from domain X to domain Y, while Generator F
serves as the counterpart, mapping from domain Y to domain X (Gnanha et al., 2022).

CycleGAN uses a cyclic consistency loss such as in Eq. (10) Lcyc to represent this
difference.

Lcyc
(
Gc→p,Gp→c

)
= Ecpdata (c)

[∥∥Gp→c
(
Gc→p(c)

)
−c
∥∥
1

]
+Eppdata (p)

[∥∥Gc→p
(
Gp→c(p)

)
−p

∥∥
1

] (10)

where, the Gc→p denotes the forward generator i.e., G, and Gp→c denotes the backward
generator i.e., F. The cyclic process of CycleGAN is shown in Fig. 2:

The generator structure under this network structure is shown in Fig. 3:
The generative network initiates its operation by downsampling the image through an

encoder before entering the intermediate transformation model. Within the intermediate
transformation model, the image undergoes four encoding residual blocks to derive the
feature map. Subsequently, the feature map is channeled into the attention module, where
the attention mechanism is introduced at the encoding stage. The integration process of
the attention module into the encoding stage is visually depicted in Fig. 4:

As illustrated in Fig. 4, this attention-weighting module introduces attention through
channel weighting. Initially, the encoded feature map undergoes global average pooling
(GAP) and global maximum pooling (GMP) procedures, enabling the extraction of both
global and fine-grained texture information from the image, respectively. Global average
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Figure 2 The cycle consistency for the CycleGAN consistency.
Full-size DOI: 10.7717/peerjcs.1889/fig-2
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Figure 3 The generator G structure.
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Figure 4 The attentionmechanism for the CycleGAN.
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Figure 5 The framework for the image style migration in art evaluation.
Full-size DOI: 10.7717/peerjcs.1889/fig-5

pooling is achieved through sliding window averaging across the feature map, while global
maximum pooling involves selecting the maximum value for each feature map Finally, the
feature map is multiplied by learned parameter weights, assigning distinct weights to each
channel within the encoder feature map. The magnitude of these weights determines the
channel’s significance in the feature, effectively introducing the attention mechanism (Yan
et al., 2022).

Building upon this foundation, we establish an evaluation framework for the image
style migration model based on the proposed ATT-CycleGAN. The overall framework is
outlined in Fig. 5.

Style migration through ATT-CycleGAN is realized using pertinent public datasets and
the art teaching images employed in this study.

EXPERIMENT
Datasets
For the experimental data, two distinct publicly available datasets were chosen to facilitate
comparative testing in this study. Given the specific focus on style migration within the
domain of art, the primary emphasis is placed on style transformation tasks and the
migration of landscape object styles. To that end, the selfie2anime dataset (Torbunov et al.,
2023) is utilized for data analysis in the style transformation process, while the image styles
are acquired from the Places365 dataset (Zhou et al., 2017) for both training and testing
purposes. The Places365 dataset is a comprehensive scene recognition dataset encompassing
over 1.8 million images across 365 scene categories (https://zenodo.org/records/5926442). In
this article, we select a subset of 1,000 paintings from the dataset, as provided by Svoboda,
for model testing. The selfie2anime dataset, on the other hand, comprises selfies and
comics (https://zenodo.org/records/10130356). For the selfie component, over 40,000 selfies
are available, with only women’s photos utilized for training. The anime section involves
over 20,000 face images, and for this dataset, female anime faces from the manga section
are chosen. Similarly, for this data selection, 1,000 samples are selected for training and
testing. Additionally, 100 images are specifically curated, segregating them into sketch
style and original images to align with the design requirements of the art teaching and
communication model. The information for these datasets can be summarized as shown
in Table 1. All dataset splits are executed at a 7:3 ratio.

To assess the model’s performance, classic bilinear interpolation (Gribbon & Bailey,
2004), the approach proposed by Johnson, Alahi & Fei-Fei (2016), the method proposed by
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Table 1 The summarized information for the employed datasets.

Dataset Data size Style

selfie2anime More than 40K Self-portrait and cartoon
Places365 More than 1800k Landscape and Ink Painting

Han et al. (2018), as well as the original unprocessed CycleGAN, are selected for method
comparisons in model validation.

Experiment setup and details
Structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) metrics
are used to evaluate the model performance during the selection process of evaluation
metrics (Hore & Ziou, 2010), and the above performances are calculated as shown in Eqs.
(11) and (12):

SSIM(X,Y)=
(2µXµY+C1)(2σXY+C2)(
µ2
X+µ

2
Y+C1

)(
σ 2
X+σ

2
Y+C2

) (11)

where X and Y denote the images to be measured, the µX and µY denote the images X and
image Y are the mean values of the σ 2

X and σ 2
Y represent the mean values of the images X

and the covariance of Y the covariance of C1 and C2 The value of SSIM ranges from 0 to 1.
The closer the value is to 1, the higher the similarity between the two images, and the more
serious the image distortion is. PSNR is an important index for evaluating the quality of
the image, and its calculation is shown in Eq. (12).

MSE=
1

H×W

H∑
i=1

W∑
j=1

(X(i,j)−Y(i,j))2

PSNR= 10× log10

(
(2n−1)2

MSE

) (12)

where, the MSE denotes the image X and image Y The mean square error between H and
W denote the height and width of the image; and n denotes the number of bits per pixel,
and n The larger the value of PSNR, the smaller the distortion of the image, which means
that the image has higher quality.

After completing the selection of data sets for themodel and the establishment of relevant
evaluation indicators, the modeling algorithm of our proposed method is as follows:

Experiment results and analysis
After completing the training process, as outlined in Algorithm 1, and obtaining the
respective models based on the selected dataset and the self-constructed dataset, we
conductedmodel testing and analysis. In the context ofmodel comparison, a comprehensive
evaluationwas carried out, encompassing the unimprovedCycleGANmodel, alongwith the
methodologies discussed in Section ‘Datasets’. The results obtained from the selfie2anime
dataset are shown in Table 2 and Fig. 6.

Based on the SSIM and PSNR metrics employed in the article, it is evident that the
model proposed in this study achieves a more balanced and improved performance
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Algorithm 1: Training process of ATT-CycleGAN for the Image style migration
Input: The collected image, selected Places365 and selfie2anime
Initialization.
Define the ATT- CycleGAN.
Weights initialization.
Initialization: set batch size, learning rate, epochs, weights, bias.
Model training: Epochs initialization.
while epoch<preset epoch do
Sample data from Input.
Feed data to the proposed model.
Model updates.
End
Parameters Fine tuning
while epoch<preset epoch do
Validation dataset input.
Loss calculation.
Compute SSIM and PSNR
Save the optimal model
end
Output: Trained ATT-CycleGAN network

Table 2 The result comparison among different methods on selfie2anime.

Method Bilinear interpolation Johnson et al. Chu et al. CycleGAN Proposed

SSIM 0.791 0.769 0.839 0.841 0.852
PSNR 18.75 16.38 18.64 19.13 20.09

Notes.
Johnson, Alahi & Fei-Fei, 2016.
Chu & Shih, 2013.
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 Figure 6 The result comparison among different methods on selfie2anime.
Full-size DOI: 10.7717/peerjcs.1889/fig-6

after the integration of the attention mechanism. The results across the two metrics
demonstrate a superior and more consistent performance. After conducting the analysis
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Table 3 The result comparison among different methods on Places365.

Method Bilinear interpolation Johnson et al. Chu et al. CycleGAN Proposed

SSIM 0.697 0.583 0.857 0.846 0.873
PSNR 15.79 17.85 19.38 20.86 22.98

Notes.
Johnson, Alahi & Fei-Fei, 2016.
Chu & Shih, 2013.
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 Figure 7 The result comparison among different methods on Places365.
Full-size DOI: 10.7717/peerjcs.1889/fig-7

Table 4 The result comparison among in different methods on self-established dataset.

Method Bilinear interpolation Johnson et al. Chu et al. CycleGAN Proposed

SSIM 0.701 0.687 0.853 0.849 0.872
PSNR 16.39 17.03 17.34 17.58 19.37

Notes.
Johnson, Alahi & Fei-Fei, 2016.
Chu & Shih, 2013.

on the selfie2anime dataset, a similar analysis was extended to the Places365 dataset, with
the obtained results presented in Table 3 and Fig. 7.

The comparative results presented above highlight the superior performance of the
method proposed, which extends to the Places365 dataset as well. The higher SSIM
scores under the Places365 dataset compared to the selfie2anime dataset suggest that the
proposed method excels in handling landscape-class images. This underscores its robust
image analysis capabilities, particularly when applied to more complex visual content. After
concluding the analysis of the two public datasets, an additional analysis was conducted on
the self-constructed dataset, with the results depicted in Table 4 and Fig. 8.

The self-constructed datasets featured exclusively consist of landscape images. The
outcomes from these datasets closely align with those of the Places365 dataset, signifying the
inherent advantages of CycleGAN-like models for handling data with higher pixel counts
and richer visual content. Furthermore, the proposed method maintains its superiority
over other methods even when an attention mechanism is integrated. Additionally, this
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 Figure 8 The result comparison among in different methods on self-established dataset. Johnson, Alahi
& Fei-Fei, 2016 and Chu & Shih, 2013.

Full-size DOI: 10.7717/peerjcs.1889/fig-8

Proposed CycleGAN
0.80

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

S
S

IM

Proposed CycleGAN
0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

0.86

0.87

S
S

IM

Proposed CycleGAN
0.77

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

S
S

IM

Proposed CycleGAN
15.5

16.0

16.5

17.0

17.5

18.0

18.5

19.0

19.5

20.0

P
S

N
R

Proposed CycleGAN
14

16

18

20

22

24

P
S

N
R

Proposed CycleGAN

18

20

22

24

P
S

N
R

selfie2anime Places365 Self-established  

Figure 9 The performance test for the proposed model and CycleGANwith different batch sizes.
Full-size DOI: 10.7717/peerjcs.1889/fig-9

study conducted data testing with varying batch sizes, and the results are visually presented
in Fig. 9,

Figure 9 primarily serves to contrast the performance of the proposed method with
the CycleGAN method, which lacks the attention mechanism across different datasets
and varying inputs. The boxplot visualizations illustrate that, following the integration of
the attention mechanism, the proposed method consistently outperforms the counterpart
model in terms of both SSIM and PSNR metrics. These findings affirm that the proposed
method excels in both performance and stability, showcasing the advantages of the attention
mechanism’s incorporation.

DISCUSSION
This article introduces the ATT-CycleGAN network, which incorporates an additive
attention mechanism, for the exploration of image style migration and automatic image
generation within the realm of art education and dissemination. The foundational
network architecture of CycleGAN is employed as the base for pixel image style migration.
Addressing the challenge of maintaining linear details in the generated pixel images during
the migration process, the generator structure of CycleGAN is enhanced. Weight addition
is automated by calculating the channel count, ensuring the method robustness. In the
model comparison process, various techniques are assessed, including CycleGAN and basic
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methods like BI, without the attention mechanism. Particular attention is given to methods
such as Johnson, Alahi & Fei-Fei (2016) and Chu (Torbunov et al., 2023), focusing on their
performance in the intended application conditions outlined in this article. Experimental
results underscore that, with the inclusion of the attention mechanism, CycleGAN excels
in the migration of photography style and portrait style, offering a novel avenue for art
teaching and dissemination. Furthermore, this approach extends the range of applicable
data. In conclusion, the incorporation of an attention mechanism into the CycleGAN
network presents a powerful tool for investigating image style migration in the context of
art communication education. This approach is poised to have a profound impact on the
fields of art and education, fostering development and innovation in both domains.

The remarkable performance of deep learning techniques in the realm of computer
vision has substantially reduced the reliance on human resources and effectively tackled
numerous challenges that were prevalent in traditional methods. As generative network
technology continues to mature, areas such as image style migration have seen widespread
utilization, offering extensive opportunities for future research. Notably, CycleGAN
networks, enhanced by the inclusion of the attentionmechanism, demonstrate the potential
to achieve more precise style migration while preserving image content. This enhancement
serves as a technical foundation for prospective applications in the movie media industry,
game development, VR, AR, and various other domains. Art style migration, in particular,
holds the promise of enabling a comprehensive understanding of an artist’s unique artistic
traits. Simultaneously, it accelerates the efficiency of art media dissemination, thereby
fostering greater creativity and expression.

CONCLUSION
This article introduces an intelligent image style migration and image generation model
based on ATT-CycleGAN, aiming to provide algorithmic support for style research
and migration challenges within the domain of art education. The article details the
incorporation of multi-channel attention through Global Average Pooling (GAP) and
Global Maximum Pooling (GMP) in the CycleGAN generator, enabling the extraction
of richer global and texture information from images. After enhancing the network,
training and testing for image style migration were conducted using the selfie2anime and
Places365 datasets, focusing on portraits and landscapes. The results demonstrate the
network’s superior performance, as reflected in SSIM and PSNR metrics. Furthermore,
actual data tests were conducted for the style migration conversion of landscape images,
yielding favorable results in both quantitative metrics and qualitative manual evaluations.
Among them, the SSIM index of 0.872 is better than the single CycleGAN index of 0.849,
while under the PSNR index, the result of 19.37 is still better than the single CycleGAN
index of 17.58. The methodological framework presented herein offers valuable insights
and technical support for future research endeavors in art education and image style
conversion.

In future research, efforts will be directed towards enhancing the model’s generalization
performance by addressing more complex challenges, such as the horse2zebra dataset,
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alongside avatar and landscape data. This includes the pursuit of multi-task objectives,
encompassing target segmentation recognition and style migration. Additionally,
expanding the dataset diversity to accommodate a broader range of image transformation
styles represents another key research objective.
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