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ABSTRACT
Background. In Complementary Metal-Oxide Semiconductor (CMOS) technology,
scaling down has been a key strategy to improve chip performance and reduce power
losses. However, challenges such as sub-threshold leakage and gate leakage, resulting
from short-channel effects, contribute to an increase in distributed static power.
Two-dimensional transition metal dichalcogenides (2D TMDs) emerge as potential
solutions, serving as channelmaterials with steep sub-threshold swings and lower power
consumption. However, the production and development of these 2-dimensional
materials require some time-consuming tasks. In order to employ them in different
fields, including chip technology, it is crucial to ensure that their production meets the
required standards of quality and uniformity; in this context, deep learning techniques
show significant potential.
Methods. This research introduces a transfer learning-based deep convolutional neural
network (CNN) to classify chemical vapor deposition (CVD) grown molybdenum
disulfide (MoS2) flakes based on their uniformity or the occurrence of defects affecting
electronic properties. Acquiring and labeling a sufficient number of microscope images
for CNN training may not be realistic. To address this challenge, artificial images were
generated using Fresnel equations to pre-train the CNN. Subsequently, accuracy was
improved through fine-tuning with a limited set of real images.
Results. The proposed transfer learning-based CNN method significantly improved
all measurement metrics with respect to the ordinary CNNs. The initial CNN, trained
with limited data and without transfer learning, achieved 68% average accuracy for
binary classification. Through transfer learning and artificial images, the same CNN
achieved 85% average accuracy, demonstrating an average increase of approximately
17%. While this study specifically focuses on MoS2 structures, the same methodology
can be extended to other 2-dimensional materials by simply incorporating their specific
parameters when generating artificial images.
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INTRODUCTION
In recent years, there has been a growing focus on two-dimensional (2D) materials,
spurred by the seminal discovery of graphene (Geim & Novoselov, 2007) and resulting in a
prominent area of research (Zhang et al., 2019c). Ongoing investigations have unveiled
the exceptional and superior properties inherent to these 2D materials, leading to
significant progress in their characterization and practical implementation (Novoselov
et al., 2005). Transition metal dichalcogenides (TMDs) have garnered substantial interest
from researchers in bothmaterials science and device applications, owing to their distinctive
optoelectronic attributes, including a direct bandgap in their monolayer form (Geim &
Novoselov, 2007; Zhang, 2018). Moreover, 2D TMDs exhibit considerable potential as
channel materials in metal-oxide-semiconductor field-effect transistors (MOSFETs) due
to their noteworthy ability to reduce off-state current and scale dimensions, addressing a
critical aspect of power dissipation in future electronic chips (Hua et al., 2020).

To overcome the limitations of gapless graphene for future switching devices, monolayer
TMDs offer a solution with their relatively large bandgap. Among TMDs, molybdenum
disulfide (MoS2) has been one of the most extensively studied materials (Perea-López et al.,
2014). It comprises covalently bonded Mo and S atoms, forming layers held together by
weak van der Waals forces (Fortin & Sears, 1982; Zhang, Wan & Yang, 2019b).

Transitioning these 2D materials from lab-scale studies to device implementation and
mass production poses a challenge in achieving large-scale and controlled growth. While
initial 2D materials were obtained through mechanical exfoliation (Yi & Shen, 2015),
other methods (Bonaccorso et al., 2012) have also been proposed. Presently, chemical
vapor deposition (CVD) stands out as the most promising technique for producing large
and uniform 2D films or flakes with desired properties (Liu, Wong & Chi, 2015), given
its compatibility with microelectronic processes (Liu et al., 2019). This method enables
the growth of high-quality, larger-area, and single-layer TMDs, including MoS2 flakes
(Perkgoz & Bay, 2016). Nevertheless, scalability and wafer-size industrial fabrication persist
as challenges, along with other issues such as contact resistance, doping, and charge transfer
problems (Lin et al., 2016). Therefore, considering various perspectives and objectives, it is
imperative to cultivate 2D TMDs on diverse substrates and conduct their characterization
in a practical and expeditious manner for the development of various device architectures.

In general, the initial and cheapest characterization tool used for identifying 2Dmaterials
is an optical microscope, facilitating the easy capture of images of the synthesized films and
flakes (Yorulmaz et al., 2019). Additionally, various characterization techniques, including
Raman scattering spectroscopy, atomic force microscopy (AFM), and photoluminescence
(PL) spectroscopy, are employed to reveal the structural, vibrational, and optical properties
of these materials (Özden et al., 2016; Zhang et al., 2019a). However, in order to achieve
ambitious goals in 2D materials research, such as attaining low-energy electronics (Pal et
al., 2021) and integrated circuits utilizing atomically-thin or 2D van der Waals materials
(Jiang et al., 2019), it becomes imperative to cultivate large-area and uniformly grown 2D
materials. Consequently, a thorough analysis of the deposited 2D structures across the entire
substrate surface is essential. On the other hand, conventional characterization techniques
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like AFM and Raman spectroscopy become cumbersome and time-consuming when
applied to such expansive areas. In this context, the utilization of an optical microscope for
2D material identification proves immensely advantageous due to its simplicity and speed.

From another perspective, manually distinguishing normal or defective structures can
be both challenging and time-consuming, and naturally the effectiveness of the optical
microscope will depend on the experience of the operator. For these reasons, researchers
have increasingly shifted their focus in recent years towards the development of deep
learning-based methods for detection processes (Al-Waisy et al., 2022; Lin et al., 2018;
Ngome Okello et al., 2021; Zhang et al., 2023). In a general sense, deep learning constitutes
a subset of machine learning based on artificial neural networks, encompassing specialized
architectures designed for deep learning (Saito et al., 2019). Presently, such methods find
application in diverse fields such as biology, physics, medicine, and electronics (Dong et al.,
2023; Masubuchi & Machida, 2019; Shinde & Shah, 2018; Shorten, Khoshgoftaar & Furht,
2021). The acceleration and automation of scientific discoveries through the utilization of
deep learning techniques have been a subject of research and practical implementation for
numerous years. Furthermore, deep learning methods prove valuable for tasks like image
processing, image classification, image interpretation, and image generation (Masubuchi et
al., 2020). Notably, one of themost prominent algorithms within the realm of deep learning
is deep convolutional neural networks (CNN) (Alzubaidi et al., 2021; Yao, Lei & Zhong,
2019), which has demonstrated remarkable success and performance in image recognition
and classification. Consequently, it is frequently favored over alternative approaches in the
realm of deep learning, especially when dealing with image-related tasks (Bhuvaneswari et
al., 2021; Shi et al., 2023).

In order to effectively use CNNs, acquiring a sufficient number of images is essential.
However, as previously mentioned, generating images of CVD-grown 2D material
structures, and labeling the data is a labor-intensive and demanding process, resulting
in limited training data for image classification. Transfer learning offers a strategy to
acquire additional data and knowledge from related domains and apply it to the specific
problem (Bozinovski, 2020; Bozinovski & Fulgosi, 1976; Tan et al., 2018; West, Ventura &
Warnick, 2007). However, due to the unique nature of the problem in this study, it is
more appropriate to generate realistic artificial images using Fresnel equations. These
artificially generated images are then used for pre-training, effectively alleviating the data
constraint issue for CNN algorithms. Subsequently, fine-tuning is performed using real
images obtained via optical microscopy. In summary, the aim of this article is to utilize
a transfer learning-based CNN method to automatically classify 2-dimensional MoS2
structures, obtained by CVD technique, as normal or defective. Although there are a few
studies on the analysis of 2D materials using deep learning, they either aim to estimate the
thickness of the 2D materials (Lin et al., 2018) or determine the defects on atomic-level
images by scanning transmission electron microscopy analysis, which is a very expensive
and time-consuming process (Ngome Okello et al., 2021). In the literature, a deep learning
approach that analyzes normal or defective 2D MoS2 materials obtained by CVD and
utilizes Fresnel equations to generate data for the transfer learning method has not been
encountered.
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While numerous research groups have investigated 2D materials using exfoliation
techniques, it is evident that these exfoliated materials are not optimally suited for
the design of electronic devices, particularly chip technology due to their small size
and low yield in production. As a result, many research laboratories have turned to
chemical vapor deposition (CVD) techniques to obtain such 2D materials also because
of their compatibility in microelectronics. However, despite the high potential of CVD
for achieving such innovative materials, the obtained structures are not fully uniform,
and their analysis is critical for their wide usage in different applications. It will be highly
beneficial to simplify this time-consuming task of 2D material analysis, often requiring
specialized expertise. Hence, there is a research gap that lies in the methods capable of
expediting the analysis of materials, specifically 2D ones, produced through CVD. Up to
present, deep learning methods have only been utilized in exfoliated flakes or ALD grown
structures. Addressing this gap, the present study contributes significantly to two key
areas: (1) Artificial two-dimensional MoS2 images are efficiently generated using Fresnel
equations, offering a novel approach to data augmentation; and (2) the study proposes a
two-stage convolutional neural network (CNN) that employs transfer learning to enhance
classification accuracy, especially in scenarios with limited datasets, which is the case in
experimental research laboratories. These contributions aim to automatize and advance
the analysis of two-dimensional materials, which are among the promising alternatives
that can replace silicon-based chip technology.

This article unfolds in the following manner: ‘Materials & Methods’ delves into the
methodology for creating artificial images and introduces the concept of CNN. ‘Results
and Discussions’ covers the experiments and their respective results, while ‘Conclusions’
provides concluding remarks.

MATERIALS & METHODS
The primary objective of this research is to employ artificial intelligence in determining
the suitability of 2D structures grown through CVD technique for electronic device
applications. Traditionally, the initial step involves the manual analysis of the produced 2D
structures using an optical microscope, representing one of the most labor-intensive
methods available. While other methods do exist, they tend to be expensive and
may not be practical for analyzing large areas. In contrast, the proposed approach
leverages computational tools, specifically convolutional neural networks, to automatically
characterize and label these images based on defects or irregularly shaped flakes, thereby
assessing their viability for device fabrication. However, training a CNN is contingent on
the availability of a substantial amount of data, which may prove challenging to collect
and label manually for each sample. Furthermore, in many research centers, acquiring
sufficient data remains a hurdle. To augment the dataset, Fresnel equations, tailored to the
specific optical properties of the aforementioned materials, can be employed to generate
artificial images of MoS2 flakes on a substrate (SiO2/Si), which can then be utilized in the
transfer learning process. This section will begin by providing an explanation of transfer
learning, followed by a discussion on the application of Fresnel equations to produce
synthetic images. Finally, the concept and architecture of the CNN will be presented.
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Transfer learning
While machine learning methods exhibit remarkable capabilities in solving complex
problems, their effectiveness hinges on the availability of sufficient amount of training data.
Challenges in data acquisition may arise due to factors such as high costs, time constraints,
and confidentiality concerns. In cases where acquiring specific data is challenging, data
obtained from any analogous system, device, or process, related to the existing problem in
need of a solution can be used in deep learning as a preliminary training process before
training with data specific to the problem (Tan et al., 2018). For instance, addressing an
issue with a spacecraft’s engine might require more data than is currently available. In
such cases, data from aircraft engines, which share similarities, can be employed in the
pre-learning task. Similarly, the characterization of 2D materials faces a parallel challenge,
and obtaining a sufficient number of images is a demanding process. Additionally, analyzing
enlarged MoS2 flakes for classification demands significant time from researchers due to
the high pixel count even in a single image. However, finding analogous images for
pre-training in the transfer learning method may not be feasible due to the uncommon
nature of the problem in this study. On the other hand, leveraging Fresnel equations
to artificially generate images offers a more precise and reliable means to mitigate this
dependency. Data generation can be swiftly accomplished within seconds with the aid
of an algorithm capable of generating realistic 2D material images using mathematical
expressions. Subsequently, these artificially generated data serve as the foundation for
pre-training of the CNN algorithm. Then, the limited real optical microscope images can
be used to fine-tune the parameters in the CNN. In this study, the Fresnel equations,
elaborated upon in the subsequent section, were initially employed to generate artificial
images based on the reflection’s light intensity values from various regions within an image,
which were then utilized in the pre-training phase.

Fresnel equations
In a brightfield optical microscope image, structures become visible due to the contrast
in reflected light from various regions on the examined samples. When examining 2D
materials with this type of microscope, they become visible due to the contrast (Eq. (1))
between the material and the substrate on which they are grown (Fig. 1), enabling their
analysis.

As shown in Fig. 1, there are two distinct regions, with region A containing an additional
MoS2 layer on SiO2 and Si layers. For the sake of readability, the layers of air,MoS2, SiO2 and
Si are indexed as 0, 1, 2 and 3, respectively. A SiO2 layer of 300 nm and Si are commonly
chosen as a substrate due the high contrast observed with the 2D material (region A)
compared to the absence of the material (region B) (Ciregan, Meier & Schmidhuber, 2012).
The contrast (C) for these regions is as follows:

C =
IA− IB
IA+ IB

(1)

where IA and IB are the light intensities in regionA and region B, respectively. The intensities
can be expressed as in Eqs. (2) and (3).
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Figure 1 Cross-section of a grown 2Dmaterial (MoS2) on a substrate (SiO2/Si).
Full-size DOI: 10.7717/peerjcs.1885/fig-1

IA = |rArA| (2)

IB = |rBrB| (3)

where, rA and rB are the reflection Fresnel coefficients for the related regions and can
be calculated using the refractive indices and phase shifts (Blake et al., 2007; Zhang et al.,
2021), as given in Eqs. (4) and (5).

rA =
r01e iα+ r12e−iβ+ r23e−iα+ r01r12r23e iβ

e iα+ r01r12e−iβ+ r01r23e−iα+ r12r23e iβ
(4)

rB =
r01− r12e−i281

1+ r01r12e−i281
(5)

where α=81+82 and β =81−82.
Fresnel coefficients (rij) are functions of refractive indices (ni and nj), where layer i is

above layer j, as given in Eq. (6). Specifically, there are three coefficients: r01, r12, and r23.
These coefficients represent the relative refractive indices between air and MoS2, MoS2 and
SiO2, and SiO2 and Si, respectively.

rij =
(ni−nj)
(ni+nj)

(6)
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Due to the varying thickness of different layers, a phase shift 8i occurs in each layer
during the propagation of light in each medium. This phase shift is defined by Eq. (7):

8i=
2πnidi
λ

(7)

where ni, di and λ represent the refractive index, the thickness of the medium i, and the
wavelength of the light, respectively.

As a result, when a stack of layersmade of differentmaterials is observed under brightfield
optical microscope lighting, varying intensities will be obtained, as illustrated in Fig. 1.
The upper layers of region A and B consist of 2D material (MoS2) and SiO2, respectively.
The thickness of SiO2 is chosen to be 300 nm, providing high contrast, and used as the
standard thickness in the growth experiments (Blake et al., 2007). The light propagates
through different materials, taking paths of different lengths, which results in a phase
shift. Consequently, regions A and B will exhibit different total reflection intensity values
as defined in Eqs. (4) and (5). The red, green, and blue channels of an RGB image are
obtained by using the wavelength corresponding to these colors. These RGB intensity
values can then be used to construct the artificial images of a sample, analogous to real
images produced experimentally.

In optical microscopy, tungsten-filament light bulbs, white LEDs, xenon, and mercury
lamps can be used as white light sources for illuminating the specimen. These artificial
sources combine appropriate amounts of red, blue, and green light to generate white
light. While the spectral distribution curves vary for each of these sources, a common
characteristic among them is the broad spectral range, particularly in the green and red
parts (Tawfik, Tonnellier & Sansom, 2018). Therefore, to achieve this effect and align with
the typical spectra of various white light sources, the intensities of red, green, and blue
are adjusted accordingly. Various color filters can be used to make images more visible in
microscopes. During the pre-training phase, generating images by manipulating intensity
across different wavelengths, as opposed to images produced within a specific spectrum of
light, contributes to increased diversity in the dataset. This, in turn, mitigates overfitting
during the pre-learning phase by preventing algorithms from memorizing encountered
instances, thereby addressing overfitting challenges in AI algorithms.

Convolutional neural networks
The convolutional neural network is a specialized type of artificial neural network designed
specifically for computer vision tasks, such as image classification and object detection. Early
studies on CNNs originated from the discovery of simple, complex, and hyper-complex
cells in the visual cortex of animals, which play a role in recognizing objects through their
eyes (Hubel & Wiesel, 1959;Hubel & Wiesel, 1968). Based on these studies, the neocognitron
was introduced, describing the layers of a CNN to imitate such complex and simple cells
(Fukushima, 1980). To identify patterns, CNN employs mathematical operations from
linear algebra, particularly matrix multiplications, demanding substantial computational
power. This computational complexity initially hindered the immediate adoption of CNNs
and other neural network techniques following their invention. However, advancements
in computer technology have paved the way for CNNs to address various challenges
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through diverse architectures in numerous fields (Alzubaidi et al., 2021), including image
processing (Schmidhuber, Meier & Ciresan, 2012), video analysis (Ji et al., 2012), medical
image analysis (Tajbakhsh et al., 2016), natural language processing (Collobert & Weston,
2008), and time series analysis (Tsantekidis et al., 2017). Compared to other neural network
techniques, CNNs involve fewer computations, as they utilize a shared set of weights (filters
or kernels) for different regions within an input matrix, such as images. These filters slide
over the input matrix, performing convolution operations to extract features.

Essentially, a CNN architecture comprises a convolution layer, a pooling layer, and a
fully connected layer, in addition to the input and output layers (Fig. 2). The distinctive
properties of a CNN, distinguishing it from other types of neural networks, are the inclusion
of a convolution layer responsible for feature extraction from an image and a pooling layer
that reduces the size of the input following the convolution operation. These layers can
be applied iteratively, capturing low-level features in earlier layers and high-level features
in subsequent ones, with the information extracted at each level progressing through the
layers.

A CNN is trained using a labeled dataset. In each iteration, forward operations are
conducted through the layers, resulting in an output vector. Subsequently, an error is
calculated using the desired outputs provided with the dataset. Optimization techniques
are then applied to adjust the parameters (filter weights, biases) of the network through
backward operations. This process aims to reduce the total error at the end of the subsequent
forward operations. The training concludes when the error falls below a predetermined
level. At this point, the network possesses optimal parameters and can be tested on unseen
data to evaluate its success. The functions of typical layers of a CNN are explained in the
following.

Input layer
The typical input for a CNN is an image, where the values of this image are organized into a
matrix, creating the input layer. An RGB image, for instance, can be represented as a matrix
with dimensions M × N × 3, where M is the height, N is the width of the image, and 3
represents the depth for the red, green, and blue channels. Normalizing the elements of the
input matrix at the beginning of the algorithm facilitates the rapid discovery of optimized
parameters during training.

Convolution layer
The key layer in a CNN structure is the convolution layer, responsible for performing
the convolution operation on the input matrix using a set number of filters. Each filter
is designed to detect a distinct feature, mapping it to the next layer. This process entails
sliding the filter across the image and applying it to different areas, essentially performing
a dot product of the receptive field and the filter at each step. The step size (stride) can be
any positive integer. For an M × N × d size image, an m × n × d size filter, and a stride
of 1, the convolution layer’s output will generate a new matrix with dimensions (M−m
+1) × (N−n +1). The algorithm may involve the application of multiple filters, and if k
number of filters are applied to the image, the output of this convolution layer will be a
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Figure 2 A CNN structure.
Full-size DOI: 10.7717/peerjcs.1885/fig-2
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Figure 3 Input and output of a convolution operation with Sobel filter.
Full-size DOI: 10.7717/peerjcs.1885/fig-3

tensor of size (M −m +1) ×(N −n +1) ×k. The convolution equation is provided below:

Ck
i,j =

d∑
c=1

n∑
b=1

m∑
a=1

I(i+a−1),(j+b−1),c f
k
a,b,c (8)

where C denotes the feature map, which is the outcome of the convolution between I and
f. I is the input matrix, f is the filter matrix,m is the height and n is the width of the filter. d
is the depth of both the input matrix and filter. As an example, the outcome of convolving
an image with a Sobel filter, designed to detect horizontal edges, is illustrated in Fig. 3. As
mentioned earlier, a CNN incorporates numerous filters, each responsible for extracting
distinct low-level or high-level features.

Pooling layer
The result of a convolution operation is still a matrix, with the data number being the
product of their height and width. The pooling layer aims to reduce the feature map’s size,
a process also known as sub-sampling. This not only enhances the algorithm’s speed by
reducing the number of parameters but also offers advantages in preventing overfitting and
promoting network generalization. Pooling is executed by filters that operate differently
from convolution filters, depending on their types. Various pooling operations exist, such
as max pooling, average pooling, and global pooling. Maximum and average pooling
are the most common, where the maximum or average value of a defined sub-matrix is
transferred to the next layer, respectively. Importantly, it should be noted that the depth of
the input matrix remains unchanged after pooling operations. An image before and after
the max pooling operation is illustrated in Fig. 4.

Fully connected layer
The subsequent layer following multiple convolution and pooling layers in a CNN
architecture is the fully connected layer. Essentially, it constitutes a multi-layer neural
network (Rumelhart, Hinton & Williams, 1985) that receives input from the last pooling
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Figure 4 Input and output of a max-pooling operation.
Full-size DOI: 10.7717/peerjcs.1885/fig-4

layer. However, the output of the pooling layer is not a vector and must be flattened
(vectorized) before reaching this layer. While the flattening operation is sometimes
considered an additional layer, it essentially involves rearranging the matrix into a vector.
The number of hidden layers can vary in a fully connected layer. The transformation
of information from the flattened input to the output follows the same principles as a
multi-layer network. The output of each layer is computed using the equations below:

hinl =Wlhoutl−1+Bl (9)

yl = σ (hinl ) (10)

where houtl−1 is the output vector of the previous hidden layer or the flattened vector, Wl is
the weight matrix between the current and previous layer, Bl is the bias vector related with
each neuron on the current layer, hinl is the activation potential and yl is the output vector
of the current layer. If the next layer is not the output layer, ylwill serve as the houtl for the
next layer. σ represents the activation function for each neuron, introducing nonlinearity
to the network.

Output layer
This layer is responsible for classification or decision-making and positioned at the end of
the structure. In the case of amulti-class ormulti-label classification problem, the number of
neurons in the output layer corresponds to the number of classes/labels involved. Typically,
for mutually exclusive classes, a softmax transfer function serves as the activation. However,
in scenarios involving only two classes, such as in this study, a sigmoid transfer function is
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preferred. This function produces output values between 0 and 1 for each output, allowing
for the selection of a threshold value to convert the outputs into either 0 (negative) or 1
(positive).

RESULTS AND DISCUSSIONS
The experimental procedure to validate the proposed method involves the following steps:

1. Generation of artificial images
2. Construction of a CNN structure
3. Training the CNN with artificial images
4. Fine-tuning the CNN with real images
5. Testing the CNN with unseen (untrained) real images
6. Comparing the obtained results with those classified by a conventional CNN using

only real images
As outlined in ‘Materials & Methods’, artificial images are created employing Fresnel

equations. These images primarily encompass two classes, representing normal and defected
MoS2 flakes on the SiO2/Si substrate. A normal flake denotes a uniformly grown single-
layer, resulting in a triangular 2D MoS2 flake, where mostly CVD grown structures are in
triangular shape (Wang et al., 2014). On the other hand, defected MoS2 flakes encompass
structures with overlapping layers, single layers of non-triangular shapes (including grain
boundaries) or irregular shapes, and multi-layer formations on the substrate.

It is important to note that the contrast values are calculated using the intensity values
computed for two separate regions, as shown in Fig. 1. In region B, where no 2D material
is present, only the refractive indices of SiO2 and Si are used in the intensity calculation.
However, when calculating intensity in region A for both normal and defective flakes, the
layer containing MoS2 is considered. Normal images are generated using the refractive
indices of a single-layer MoS2 with a thickness of d1= 0.63 nm (Zhang et al., 2021), along
with the underlying SiO2 and Si. The preferred thickness value for SiO2 (d2) is 300 nm
because high contrast is achieved at this thickness (Zhang et al., 2021). The first subclass of
defective images corresponds to overlapping flakes, where the reflection intensity value is
calculated with the thickness value 2xd1. In the second defective case, reflection intensity
values in different regions match those in the normal class, but the shapes are irregular. The
last subclass of defective flakes consists of two or more layers where the growing material
thickens in the middle of the flakes. In this case, the thickness of MoS2 is represented by
nlxd1 where nl is the number of layers. Refractive indices of MoS2 vary depending on
its thickness and are listed in Table 1 for three colors (Hsu et al., 2019; Song et al., 2019).
Appropriate values are substituted into the intensity equations during artificial image
generation.

MoS2 flake shapes are randomly generated for various classes and positioned on an
artificial image. The intensity value at each point on the image is computed using the
previously described equations by substituting related refractive indices and thicknesses.
It is important to emphasize that the intensity values are determined for three primary
colors: red, green, and blue. These three RGB channels are then extracted and employed
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Table 1 Refractive indices.

n Red Green Blue

n1layer (MoS2) 4.3–1i 4.0–0.6i 4.3–1.3i
n2layer (MoS2) 4.7–1.3i 5.1–1i 5.1–2.2i
n10layer (MoS2) 4.3–0.7i 4.2–0.8i 4.5–2.5i
n2 (SiO2) 1.472 1.474 1.48
n3 (Si) 3.8–0.002i 4.04–0.06i 4.69–0.09i

Figure 5 Artificially generated 2DMoS2 structures. (A) Only normal flakes, (B) normal and overlapped
flakes, (C) one-layer of non-triangular shape flake, and (D) overlapped, non-triangular shape and multi-
layer formations on the substrate.

Full-size DOI: 10.7717/peerjcs.1885/fig-5

to generate a single artificial sample. Subsequently, the color images are transformed into
grayscale images. Examples of artificially generated images are shown in Fig. 5.
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Figure 6 Experimentally obtained 2DMoS2 structures. (A) Only normal flakes, (B) normal and over-
lapped flakes, (C) one-layer of non-triangular shape flake, and (D) overlapped, non-triangular shape and
multi-layer formations on the substrate.

Full-size DOI: 10.7717/peerjcs.1885/fig-6

On the other hand, real images of MoS2 samples experimentally grown on the SiO2/Si
substrate using the CVD technique are illustrated in Fig. 6. These images were obtained
from a brightfield microscope remain unprocessed and maintained in a neutral state.
In supervised learning methods, labeled data is essential. While artificial data can be
automatically labeled during generation, real images conventionally need to be manually
labeled by an expert. Artificial images are used in the initial training phase, while real
images are used during the fine-tuning process. Both real and artificial images are sized as
matrices of 100 × 100.

The CNN model for pre-training phase is structured with five sets of convolution and
pooling layers, followed by fully connected (dense) layers and a dropout layer before the
output layer, as outlined in Table 2.
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Table 2 The CNN structure and number of parameters.

Layer Output shape Number of parameters

Convolution1 100× 100× 8 80
Max Pooling1 50× 50× 8 –
Convolution2 50× 50× 16 1,168
Max Pooling2 25× 25× 16 –
Convolution3 25× 25× 32 4,640
Max Pooling3 12× 12× 32 –
Convolution4 12× 12× 64 18,496
Max Pooling4 6× 6× 64 –
Convolution5 6× 6× 128 73,856
Max Pooling5 3× 3× 128 –
Flatten 1,152 –
Dense 128 147,584
Dense 64 8,256
Dropout 64 –
Dense 1 9

Table 3 Hyperparameters of the CNN algorithm.

Hyperparameter Value

Learning rate 0.0001
Batch size 32
Number of epochs 50

In the development of the CNN algorithm, a variety of hyperparameters were
systematically tuned to enhance the model’s performance. This tuning process involved a
combination of empirical experiments and grid search, with the optimal results outlined
in Table 3. It is crucial to acknowledge that the selection of hyperparameters may be
contingent upon the specific characteristics of the dataset and the goals of the study.

Considering the general increase in validation accuracy after approximately 10 epochs
during experiments, the maximum number of epochs was set to 50 to sufficiently capture
evolving model dynamics. Following the completion of these epochs, the best-performing
network was identified and isolated for subsequent use in the fine-tuning phase. It is
noteworthy that the network’s weights were initialized randomly, introducing variability
at the commencement of the learning process. The Adam optimizer, acknowledged for
its adeptness in managing adaptive learning rates, was employed as the optimization
algorithm. Additionally, the binary cross-entropy loss function was adopted to quantify
dissimilarity between predicted and actual class labels during the training process.

The number of filters in the convolutional layers is 8, 16, 32, 64, and 128, respectively.
The size of each filter is 3× 3 in the successive layers, where the first and second dimensions
represent the height and width of the filters. The transfer (activation) functions in
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convolutional layers are ReLU transfer functions given in Eq. (11).

y(x)=max(0,x) (11)

The first three pooling operations in the model are performed by dividing the matrices
into 2 × 2 submatrices and selecting the maximum value of these.

After the extraction of meaningful and useful features from images through these layers,
fully connected layers follow, taking flattened input from the last pooling layer. In this stage,
every neuron in each hidden layer establishes full connections with both the preceding
and succeeding layer neurons through their weight matrices. The output of each neuron
is determined using the ReLU activation function, except for the output layer, where
image classification as normal or defected using a sigmoid transfer function defined by the
equation below.

y(x)=
1

1+e−x
(12)

The fine-tuning phase follows the pre-training stage, typically utilizing the same layers
and frozen weight parameters present in the network structure during the pre-training
phase up to the flattening step. New layers replace the fully connected layers, and only
their weights undergo training using real images. In this study, the structure identical to
that employed in the pre-training phase outlined in Table 2 is adopted to fine-tuning
CNN, with the exception of introducing an 8-output dense layer instead of the dropout
layer. Furthermore, the weights associated with the last convolutional layer are not frozen
but are subject to training during the fine-tuning process. The underlying concept is to
enable subsequent convolutional layers in the CNN to capture more high-level features.
Simultaneously, parameters recognizing such complex features in artificially generated
images are removed from the CNN’s memory, enhancing its ability to discern new images.

Finally, it is worth noting that the image classification task exploits twomain strategies to
counter the risk of overfitting. Initially, during the pre-training phase, a dropout layer was
incorporated into the neural network architecture as a preventive measure against model
overgeneralization, achieving this by stochastically deactivating neurons. Additionally, an
early stoppingmechanismwas introduced, activelymonitoring themodel’s performance on
a separate validation set. When signs of overfitting emerge, as indicated by a degradation in
performance on the validation set, the network parameters are kept as the optimal solution.
These measures collectively contribute to the development of a robust and resilient model,
proficient in addressing overfitting challenges throughout both the pre-training and
subsequent fine-tuning phases. The optimal solution obtained from the pre-training phase
is used for fine-tuning, and the optimal solution from the fine-tuning phase is employed
to assess performance on test data.

To summarize, a CNN algorithm, enhanced with transfer learning and data
augmentation, was developed for the classification of MoS2 samples grown with the
CVD technique as normal or defective, in this study. A normal sample should only contain
normal flakes, while a defective sample must have at least one defective flake. For the
sake of comparison, a classification was also performed with the same CNN structure and
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hyperparameters that does not utilize transfer learning. For this purpose, the following two
tasks were defined.

Task0: Classification of real images without utilizing transfer learning and artificially
generated images. The dataset is divided into two classes, where class 0 encompasses
defective flakes, and class 1 includes at least one normal flake.

Task1: Classification of real images utilizing transfer learning and artificial images. The
dataset is divided into two classes, where class 0 encompasses defective flakes, and class 1
includes at least one normal flake.

Task 0 was conducted on laboratory-produced samples using the CNN structure
employed in the fine-tuning phase. It is important to note that all parameters are unfrozen
and initialized at the beginning. As mentioned before, the number of these samples is
limited, and it may not yield satisfactory results for the training of a CNN. The total
number of real data available is 290, with 145 normal and 145 defective samples. 60%
of the real data was used for training, and the rest was used for validation and testing.
For the second and main objective (Task1), the CNN was initially trained with artificially
generated data using Fresnel equations (pre-training). A total of 5,000 artificial images were
created, divided into training, validation, and test data sets at proportions of 80%, 10%,
and 10%, respectively. Pre-training with artificial data was completed, and subsequently
fine-tuning was performed using real data. It is important to bear in mind that, within the
framework of the transfer learning method, during the fine-tuning process, certain layers
at the beginning of the network structure have their parameters fixed (frozen), except for
the fully connected layers, or occasionally some last convolution layers. In fine-tuning step,
the same training, validation, and test sets used in the initial classification process (Task0)
were employed to ensure a correct comparison.

The operational environment for the algorithm relies on a desktop computer running
Windows 10 Enterprise as its operating system and implemented in Python 3.9. The
computational power is provided by an Intel(R) Core(TM) i9-10920X CPU @ 3.50 GHz,
with 12 cores and a clock speed of 3,504 MHz. The algorithm goes through a two-phase
process; 1 epoch takes 1.871 s in the pre-training phase and 0.178 s in the fine-tuning phase.
The total simulation time of both phases is 138 s on average. Analyzing the algorithm’s fine-
tuning and pre-training durations alongside the respective datasets reveals a high degree of
computational efficiency and scalability. This is attributable to the nearly identical model
architecture employed in both phases. Notably, with a 25-fold increase in the volume of
data, the simulation time experiences only a 5-fold increment. This observation underscores
the algorithm’s efficiency and scalability, signifying that the computational demands grow
at a rate significantly lower than the corresponding increase in dataset size. Such efficiency
and scalability metrics affirm the model’s robustness and resource-effective behavior,
showcasing its adeptness in handling larger datasets without substantial computational
burdens.

Various performancemetrics, such as accuracy, precision, recall, and F1 score (Eqs. (13)–
(16)), are accessible for classification problems. Relying solely on one of them to assess the
algorithm’s performance may not be a prudent decision.
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Table 4 Performance measures of classification problems w.r.t the best accuracy measurement.

Problem Accuracy Precision Recall F1 score

Task0 78% 81% 72% 76%
Task1 90% 96% 83% 89%

Accuracy =
TP+TN

TP+TN +FP+FN
×100 (13)

Precision=
TP

TP+FP
×100 (14)

Recall =
TP

TP+FN
×100 (15)

F1Score = 2×
Precision×Recall
Precision+Recall

(16)

where TP is the number of true positives (correctly classified positives), TN is the number
of true negatives (correctly classified negatives), FP is the misclassified positives and FN is
the misclassified negatives. As mentioned before, positive and negative indicate existence
and nonexistence of a normal flake, respectively.

Accuracy represents the percentage of correctly classified positive and negative samples
among the total number of samples. However, accuracy alone may not provide sufficient
insight, especially in the case of imbalanced data. Precision, the percentage of correct
predictions within positive samples, and recall, the percentage of correctly classified
positives within all positive predictions, offer a more nuanced evaluation. Precision and
recall are trade-offs, and they are often considered together in the F1 score, which represents
the harmonic mean of these metrics.

The specified classification problems (with (Task1) andwithout (Task0) utilizing transfer
learning) were addressed using the proposed CNNmodel. The training of the model begins
with a randomly generated initial set of values. While it has the potential to reach the global
minimum point, it often converges to local minimum points. Therefore, instead of a single
simulation, the CNN algorithm was run 10 times for each of the two tasks, and the average
of the results was recorded. The average accuracy metrics for Task0 and Task1 across
10 simulations are 68% and 85%, respectively. Therefore, a 17% improvement has been
achieved with the proposed method. The best and worst results among 10 simulations
for both tasks are presented in Tables 4 and 5, showing performance metrics: accuracy,
precision, recall, and F1 score.

The confusion matrix, which includes the classification results for a single experiment,
is also provided in Fig. 7 to facilitate an assessment of the model’s performance.

The results obtained for the classification of CVD-grown 2DMoS2 images indicate lower
performance when employing a standard CNN compared to the transfer learning-enhanced
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Table 5 Performance measures of classification problems w.r.t the worst accuracy measurement.

Problem Accuracy Precision Recall F1 score

Task0 50% 50% 100% 67%
Task1 81% 78% 86% 82%

Figure 7 Confusionmatrix for a single experiment.
Full-size DOI: 10.7717/peerjcs.1885/fig-7

CNN. This outcome aligns with expectations, as machine learning methods typically
exhibit suboptimal performance with limited data. However, a notable increase in accuracy
is evident when utilizing the transfer learning method, with artificial images generated
using Fresnel Equations. The tabulated results further demonstrate improvements in
performance measures, ranging from a minimum of 11% to a maximum of 13% according
to the best results of Task0 and Task1.
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The proposed method effectively mitigates the challenge of limited data for CNN by
employing a strategic combination of pre-training with Fresnel equations and fine-tuning
with real images. The automated nature of the process enhances operational efficiency and
minimizes manual intervention, underscoring its significant advantage for scalability. It is
essential to acknowledge, however, that the model’s performance can be further enhanced
with an increased volume of real images. Additionally, the requirement for hyperparameter
tuning necessitates careful attention to optimize the model’s configuration. While our
method provides an innovative solution to data scarcity and streamlines the process, the
potential for performance improvement with additional real images warrants a thorough
understanding of its applicability and considerations for refinement in future applications.

CONCLUSIONS
The fabrication and analysis of 2D materials, such as CVD-grownMoS2 structures, present
significant challenges due to the intricate growth process, the necessity for specialized
expertise, and the considerable time investment required. Deep learning methods,
particularly convolutional neural networks (CNNs), provide a solution for analyzing
and characterizing microscopic images of these 2D materials.

The efficient operation of CNN algorithms, similar to other machine learning problems,
requires a substantial amount of data. The quantity and diversity of data play a crucial
role in accurately completing the learning phase and preventing overfitting by avoiding
neural network memorization. However, the production of these 2D materials involves
extensive experiments, and labeling the images is a time-consuming process. Consequently,
obtaining a sufficient amount of real data (labeled microscope images) to train a CNN
is challenging. To address this challenge, a CNN with improved performance through
the transfer learning method, is proposed, utilizing similar data. However, acquiring the
mentioned similar data still poses a challenge for the problem presented in this article.
This issue was overcome by generating images that resemble real data. A unique strategy
utilizing artificial images generated through Fresnel equations was adopted. Virtual
microscope images, containing 2D MoS2 flakes, were created by considering intensity
values based on the material properties in each region on a virtual sample. This approach
not only mitigates data scarcity but also significantly enhances analysis accuracy. Further
optimization of the CNN algorithm was achieved through meticulous fine-tuning with real
images, contributing to the refinement of overall classification system. As a result of this
innovative approach, significant improvements were observed in all measurement metrics.
For the CNN trained with the existing limited data, the average accuracy value for binary
classification was 68%. In contrast, when employing the transfer learning method and
artificially created images using Fresnel equations, the same CNN demonstrated an average
accuracy of 85%. This represents an average increase of approximately 17%. These findings
underscore the potential of CNN algorithms in accelerating nanofabrication research
processes, particularly in the development of devices with superior properties. While this
study focuses on MoS2, it is crucial to recognize the versatility of the methodology. The
transfer learning-based CNN approach can seamlessly extend its applicability to other 2D
materials by considering their specific parameters, such as refractive index and thickness.
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This adaptability not only broadens the scope of the proposed method but also enhances
its generalizability, facilitating advancements in the fabrication and analysis of diverse 2D
materials.

However, it is important to recognize the potential for enhancing the model’s
performance with an increased number of real images. Besides, achieving optimal model
configuration requires careful attention to hyperparameter tuning. In future research,
exploring the generation of artificial images using alternative AI deep learning techniques
alongside the utilization of Fresnel equations for pre-training holds potential for further
enriching the diversity of the training dataset. Investigating methods such as generative
adversarial networks (GANs) or variational autoencoders (VAEs) could contribute to
a more comprehensive understanding of the model’s robustness and adaptability in
image classification tasks. This approach may open new possibilities for improving the
performance and generalization of the CNN in diverse real-world scenarios.

Ethically, this study not only avoids negatively impacting human life, societal and social
relationships but also has the potential to make a positive contribution to technological
advancement.
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