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ABSTRACT
Locomotion mode recognition in humans is fundamental for flexible control in
wearable-powered exoskeleton robots. This article proposes a hybrid model that
combines a dense convolutional network (DenseNet) and long short-term memory
(LSTM) with a channel attention mechanism (SENet) for locomotion mode recogni-
tion. DenseNet can automatically extract deep-level features from data, while LSTM
effectively captures long-dependent information in time series. To evaluate the validity
of the hybrid model, inertial measurement units (IMUs) and pressure sensors were
used to obtain motion data from 15 subjects. Five locomotion modes were tested
for the hybrid model, such as level ground walking, stair ascending, stair descending,
ramp ascending, and ramp descending. Furthermore, the data features of the ramp
were inconspicuous, leading to large recognition errors. To address this challenge, the
SENet module was incorporated, which improved recognition rates to some extent.
The proposed model automatically extracted the features and achieved an average
recognition rate of 97.93%. Compared with known algorithms, the proposed model
has substantial recognition results and robustness. This work holds promising potential
for applications such as limb support and weight bearing.

Subjects Bioinformatics, Algorithms and Analysis of Algorithms, Robotics, Neural Networks
Keywords Locomotion mode recognition, Dense convolutional network, Long short-term
memory, Lower limb exoskeleton

INTRODUCTION
Exoskeleton robots have been widely and effectively utilized in diverse fields of medical
rehabilitation,military training, and civilian scenarios (Zhang et al., 2022). Currently, lower
limb exoskeletons serve as assistive devices for individuals with disabilities, functioning
similarly to medical robots. In addition, they also help able-bodied individuals enhance
physical strength as load-bearing or power-aiding exoskeletons (Shi et al., 2019). The
recognition of human motion intent is mainly divided into recognizing locomotion
modes and detecting gait phases (Zheng et al., 2022b). Locomotion mode recognition is
considered the central focus of research for motion intent recognition, which is in line
with this research. Accurately recognizing human locomotion modes is fundamental for
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exoskeleton robots to interact seamlessly with the human body. With this capability, the
exoskeleton can predict and respond to human motion, and better adapt to the motion
intent of individuals. Therefore, it is crucial to recognize human locomotion modes
accurately in exoskeleton robots.

So far, various methods have been utilized to capture humanmotion signals to recognize
human locomotion modes. For instance, bioelectric signals (Kumari, Mathew & Syal,
2017), visual-based (Liu et al., 2019; Beddiar et al., 2020), and mechanical sensors (Zheng
et al., 2022a; Xia, Huang & Wang, 2020) have been applied in this field.

The method based on bioelectric signals is mainly collected by surface electromyography
(EMG) (Wilcox et al., 2016; Meng et al., 2021; Vijayvargiya et al., 2022) and electroen-
cephalography (EEG) (Chaisaen et al., 2020; Zhou & Gao, 2021). This approach boasts
low latency and enables the direct acquisition of human motion intent. However, signals
collected in this way can be influenced by external factors, such as variations in the wearer’s
body size, changes in body temperature, or the presence of perspiration. Meanwhile,
bioelectric sensors can be complicated to wear, which has significant limits in practical
applications (Wang et al., 2022).

Vision-based methods generally capture images of individuals in motion through a
stationary camera, which are then analyzed to identify respective locomotion modes.
This approach can effectively enhance the accuracy of recognizing various locomotion
modes. Nevertheless, it could potentially violate personal privacy and become susceptible
to external factors, such as light intensity and background changes. Consequently, the
utilization of vision-based recognition methods is limited by these potential problems
(Zhang et al., 2017; Abu-Bakar, 2019; Singh & Vishwakarma, 2019).

The mechanical sensor-based approach (Han, Wong & Murray, 2019; Wu et al., 2019;
Semwal, Gupta & Lalwani, 2021) is another viable approach for recognizing locomotion
modes in lower limb exoskeleton robots. This method uses inertial measurement units
(IMUs), force sensors, and angle sensors for data gathering. The data acquisition device used
for mechanical sensors is convenient to wear and suitable for a wide range of environments.
Moreover, as a non-invasivemechanical sensor, IMU can capture smallmotion changes and
details, which is more widely used. Liu et al. (2017) devised a mechanical sensing system for
human locomotion modes. IMUs and plantar pressure sensors were incorporated into the
system to compensate for the absence of EMG signals, resulting in improved recognition
rates. Therefore, the mechanical sensor-based is an effective data acquisition system to
recognize locomotion modes in exoskeleton robots.

The methods of machine learning have been traditionally utilized for recognizing
locomotion modes in lower limb exoskeletons, for example, K-nearest neighbor (KNN)
(Cheng, Bolívar-Nieto & Gregg, 2021), and support vector machine (SVM) (Fei et al.,
2020). These methods can improve recognition rates by manually extracting features
when dealing with limited amounts of data. However, performing computations through
traditional methods machine of learning can be slow when handling datasets containing
large amounts of information (Iqbal et al., 2021). Especially in complex locomotion mode
recognition tasks,meeting the requirements of real-time processing andhigh computational
complexity can present a challenge.
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As artificial intelligence continues to advance, the utilization of deep learning is
becoming increasingly common in human locomotion mode recognition. To address
the time-consuming task of manual feature extraction by model-based methods, Zheng et
al. (2022b) combined convolutional neural network (CNN) and SVM with a finite state
machine (FSM) to extract automatically human information features collected with IMUs,
which recognize five single and eight mixed locomotion modes with recognition rates
of 97.91% and 98.93%. Similarly, Wang et al. (2022) presented a method that adaptively
combined a genetic algorithm (GA)withCNN. It recognized twelve locomotionmodeswith
high accuracy and low latency through multi-sensor information selection. Xia, Huang
& Wang (2020) introduced a deep neural network incorporating both convolutional
layers and long short-term memory (LSTM), which achieved high recognition rates of
95.78%, 95.85%, and 92.63% on three public datasets. Mohsen, Elkaseer & Scholz (2021)
used a hybrid model combining CNN with LSTM (CNN-LSTM) to analyze a dataset
collected from 36 individuals performing different locomotion modes. It trained using the
TensorFlow framework and tuning hyperparameter methods to achieve high accuracy.
Additionally, Xu et al. (2019) presented a deep learning model which integrates recurrent
neural networks and gated recurrent unit (GRU), effectively extracting time series features
from the data. Zhu et al. (2020) developed a model that combined Dense Convolutional
Network (DenseNet), LSTM, andmultilayer perceptron (MLP), resulting in lower switching
scene time delays and higher recognition rates.

A SE-DenseNet-LSTM hybrid model merging multi-dimensional data is proposed.
The features between the layers of the network are sufficiently explored by constructing
a DenseNet model. Furthermore, LSTM can selectively forget and update information
through the introduction of the gating mechanism and the dropout mechanism. Therefore,
the LSTM layer is adept at capturing long-term dependence within the time series, while
concurrently mitigating the problem of overfitting in the model. To tackle the challenge
of poorly characterized ramp data, the SENet module is introduced. The experimental
results indicated that the proposed hybrid model improved recognition rates for various
locomotion modes while exhibiting better generalization performance. The following are
the principal contributions of this work:

• Using IMUs to collect gait data in different terrains, which is used to recognize five
locomotion modes, such as level ground walking, stair ascending, stair descending, ramp
ascending, and ramp descending.
• Designing a hybrid DenseNet-LSTM model with an attention module, which possesses
higher recognition rates compared with SVM, CNN, LSTM, etc.
• Using the hybrid SE-DenseNet-LSTMmodel to effectively tackle the challenge presented
by inconspicuous features of ramp data.

The rest of this article is organized as follows. The ‘‘Materials & Methods’’ section
introduces a comprehensive account of the data acquisition system, the specific content
of DenseNet, LSTM, and the hybrid models. The ‘‘Experimental Results and Discussions’’
section presents the results and analysis of this research, and contrasts them with previous
algorithms while providing a discussion. ‘‘Conclusions’’ summarizes this research.
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Figure 1 Mounting locations of IMUs and pressure sensors in lower limb exoskeletons.
Full-size DOI: 10.7717/peerjcs.1881/fig-1

MATERIALS & METHODS
Data acquisition system
IMUs and pressure sensors are used to construct the data acquisition system in Fig. 1. IMU is
utilized formeasuring both the orientation and acceleration of the subject beingmonitored,
while the pressure sensor is used to measure the pressure changes in the surrounding
environment. Specifically, the wearable exoskeleton is mounted with individual IMUs
(MPU9250) on thighs (A), shanks (B), and feet (C) to accurately determine the angles of
the hip, knee, and ankle from the received data. In addition, pressure sensors (LOSON
LSH-10) are also mounted in the positions of the soles (D) and heels (E) to get gait
information. The sampling frequency is 100 Hz. To tackle the problem of data latency
resulting from the wireless transmission, the wired transmission method (RS485 bus)
is used. The main chip in the exoskeleton circuit is an octa-core processor (S5P6818)
equipped with Samsung Cortex-A53, using 2GB RAM and 8GB EMMC.

Motion data were collected from 15 subjects (height: 177± 8 cm, weight: 66± 6 kg, and
age: 33 ± 8 years) wearing an exoskeleton with no disease. The experiments were carried
out on three different terrains: flat, stairs, and a 10◦ ramp. Sensors on the exoskeleton
were carefully inspected and calibrated to ensure accurate data collection. This study was
approved by the Experimental Ethics Committee of Exercise Science of Beijing Sport
University (Ethical Application Ref: 2019007H). Written and verbal consent was obtained
from each study participant.

Furthermore, the joint portion of the exoskeleton was also customized to accommodate
the natural motions of individual subjects. All subjects wore the exoskeleton for pre-
adaptation, walking at normal speed over each of the three terrains for approximately one
minute. In addition, the exoskeleton was continuously fine-tuned to ensure maximum
comfort and dexterity for the subjects. Subjects performed experiments at a constant
walking speed (3 km/h), including five locomotion modes of level ground walking (FW),
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stair ascending (SA), stair descending (SD), ramp ascending (RA), and ramp descending
(RD) in three terrains.

Data pre-processing
During the data collection, the angle of the ankle joint was correlated with the walking
habits of different subjects, resulting in unstable fluctuations in the angle cycle of the ankle
joint. Therefore, the hip and knee angles, along with IMU signals from the shank, are
selected as input signals to the neural network and represented as

Input= [θLH ,θLK ,θLS,θRH ,θRK ,θRS] (1)

Where θ represents the angle and the subscripts LH and RH, LK and RK, and LS and RS
represent the right and left hip, knee, and shank. The given angles are defined in Fig. 2.
θHip, θKnee, and θAnkle represent the joint angle of the hip, knee, and ankle. In which, θHip

is the angle formed by the intersection of the vertical axis with the thigh. When the thigh
is bent forward, θHip >0; when it is bent backward, θHip<0. Similarly, θKnee is the angle
formed by the intersection of the shank direction with the thigh extension. θAnkle is the
angle formed by the intersection of the plumb line in the plane of the sole with the shank.
Specifically, the representation is as
θHip= θThigh

θKnee= θShank−θThigh

θAnkle= θFoot−θShank

. (2)

Curves of motion data were plotted based on motion information from subjects while
walking. All joint angles and plantar pressures were cyclically variable in the lower limbs.
The motion curve of each joint angle is shown in Fig. 3, which shows partial data from one
subject walking on a flat. The features and trends of changes and peaks in each curve were
evident. Consequently, the differences between these curves can be used to distinguish the
five locomotion modes.

Channel attention mechanism
The fundamental thought of the attention mechanism is to instruct the model to
autonomously learn the most critical channel information within a specific task.
Consequently, this approach significantly boosts the attention of the model on these
features, ultimately yieldingmore efficient and precise classification or predictive outcomes.
Notably, the channel attention mechanism (CAM) can further assist the model in
focusing more on salient channels during feature processing, thereby enhancing the
overall performance and generalization capability of the entire model. The distinctive
mechanism holds immense application potential and latent value across multiple related
fields, such as image processing, voice recognition, and natural language processing.

Generally, the archetypal example of CAM is squeeze-and-excitation networks (SENet).
Figure 4 illustrates the fundamental structure of SENet, a model that compartmentalizes
the CAM into squeeze and excitation stages. During this process, the primary function
of squeeze lies in reducing global spatial information. Subsequently, features are learned
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Figure 2 Definition of joints and corresponding angles. Take a single leg as an example.
Full-size DOI: 10.7717/peerjcs.1881/fig-2

across channels to ascertain the significance of individual channels. Eventually, through the
excitation stage, distinct weights are assigned to individual channels. Within the diagram,
h and w represent the dimensions of the feature matrix, while c denotes the channel count.

Specifically, the SENet employs global average pooling to squeeze the feature map of
each channel into a feature vector [1,1,c ]. Subsequently, through a fully connected layer
(FC1), the channel dimension of the featuremap vector is reduced to 1/r of the original size,
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Figure 3 Curves of walking on flat ground.
Full-size DOI: 10.7717/peerjcs.1881/fig-3
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Figure 4 Structure of SENet.
Full-size DOI: 10.7717/peerjcs.1881/fig-4
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Full-size DOI: 10.7717/peerjcs.1881/fig-5

which is [1,1,c/r ]; then, the feature undergoes a swish activation function; subsequently,
it passes through another fully connected layer (FC2) to restore the feature map to the
original [1,1,c ]; thereafter, the feature undergoes the transformation of a sigmoid function
into a normalized weight vector ranging from zero to one. Finally, the normalized weight is
multiplied by the original input feature map channel-by-channel to generate the weighted
feature map.

In essence, the SENet automatically learns feature weights in accordance with losses
through a fully connected network. Instead of classifying based solely on the numerical
value of each feature channel, the SENet enhances the weight of valuable channels. By
acquiring the degree of importance for each channel in the feature map, criticality is then
employed to assign weights to each feature. Subsequently, the neural network is focused on
specific feature channels through the SENet. The primary objective is to amplify channels
relevant to the current task while suppressing those feature channels that are irrelevant to
the current task.

Dense convolutional network
DenseNet (Huang et al., 2017) is a convolutional neural network architecture in which each
layer takes the output of all previous layers as input. It can help the backward propagation
of gradients during training and enables to train of deeper CNN. Feature multiplexing is
a characteristic of DenseNet, which is achieved through connecting features on channels.
For a neural network with i layers, DenseNet contains i (i +1)/2 connections. It uses less
calculation to achieve better performance. In DenseNet, all previous layers are connected
as shown in Fig. 5. Meanwhile, the output at layer i for the network is

Xi=Hi([X0,X1,...,Xi−1]) (3)

Where i indicates the amount of network layers. Xi indicates the output corresponding to
the ith layer. Hi is a series of combinations of non-linear transformations, including batch
normalization, activation, convolution, and pooling.

Meanwhile, Dense Block, Transition Layer, and small growth rate are used in DenseNet.
It makes the network narrower and reduces the calculation, effectively suppressing the
problem of network overfitting. Traditional CNN networks typically rely on convolution
and pooling to decrease the dimensionality of the feature map. In DenseNet, the layers are
densely connected, necessitating the retention of the feature maps of the same dimensions
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for successful forward propagation of the network. Thus, using the Dense Block and
Transition Layer is an effective solution to this problem in DenseNet.

Figure 6 displays the internal of the DenseNet. In the Dense Block, the feature vectors are
first zero-padded using the Zero-Padding layer to control the feature vector length and then
passed by a Convolution layer. The computational efficiency of the network is optimized
by reducing the dimensionality of feature maps in the Dense Block. Furthermore, the
Transition Layer reduces the dimensions of feature maps while also decreasing the number
of features.

Long short-term memory network
LSTM, serving as a variant of recurrent neural networks (RNNs), possesses the ability
to process input information through the analysis of time series. LSTM is used to tackle
the problem of long-term dependency in conventional RNNs. Moreover, the problem of
gradient loss or explosion can be tackled through the incorporation of LSTM within the
network. The architecture of the LSTM is shown in Fig. 7.

The rounded rectangular box is a Memory Block, which mainly consists of three gating
units and a memory unit. The three gating units comprise the forgetting, input, and output
gates. The gating units filter and screen the valid information before the sequence data
to the next Memory Block. The memory unit is primarily designed for information with
long-term dependencies. Specifically, the calculations for each step are as follows:

ft = σ (Wf · [ht−1,xt ]+bf ) (4)
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it = σ (Wi · [ht−1,xt ]+bi) (5)

c1t = tanh(Wc · [ht−1,xt ]+bc) (6)

ct = (ft × ct−1)+ (it × c1t ) (7)

Ot = σ (Wo · [ht−1,xt ]+bo) (8)

ht = ot × tanh(Ct ). (9)

Where x represents the feature vectors for the input; h represents the feature vectors for
the output; c represents the input vector for cell activation, which is the core of the LSTM;
f, i, c1 and o represent the output for each gating cell. Equation (4) is the first step of the
LSTM network, called the forget gate layer. σ is an activation function called sigmoid,
which returns an output value within the range of zero to one. Meanwhile, some of these
values are selectively ignored by the LSTM. The second step is Eqs. (5) and (6), called the
input layer and tanh activation layer. The results obtained from the two additional layers
are fed into the cell state. Eqs. (7) and (8) are the third and last steps, and the final output
is shown in Eq. (9).
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Hybrid SE-DenseNet-LSTM model
In this study, a hybrid DenseNet-LSTM model with an attention module is proposed.
The DenseNet network yields feature mappings into the LSTM to reflect the sequence
information of the features. Furthermore, the SENet module is introduced to enhance
adaptation to the complex associations between channels, thereby improving model
performance. Figure 8 illustrates the architecture of the DenseNet-LSTMwith the attention
module.

To avoid overfitting the model, sufficient data samples were generally expected when
using deep neural networks. Meanwhile, the count of the network layers is correspondingly
increased to enhance overall network performance. DenseNet is a model that effectively
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Table 1 Architecture of the proposed hybrid SE-DenseNet-LSTMmodel.

Layer Feature map size Configuration

Input 1×6×8 –
Attention 1×6×8 8
Convolution 1×10×2 filters 2, [3×3 conv ]
Dense Block 1 1×10×160 filters 64, [3×3 conv ]× 4

1×10×256 filters 256, [1×1 conv ]Transition
Block 1 1×5×256 2×2 average pooling, stride 2
Dense Block 2 1×5×224 filters 128, [3×3 conv ]× 4

1×5×512 filters 512, [1×1 conv ]Transition
Block 2 1×2×512 2×2 average pooling, stride 2
LSTM 1×64 –
Softmax 1×5 –

mitigates the problem of vanishing gradients during training, while simultaneously
minimizing the number of network parameters.

Table 1 shows the specifics of the network. The dataset comprises processed data derived
from the original IMU signals, including the angles of the hip and knee joints, and the IMU
signals obtained from the shank. The data is first passed through the SENet module and
zero-padding into the convolutional layer. Next, all dense blocks possess an equal number
of layers. Furthermore, a 3×3 convolutional layer is utilized to execute zero-padding,
ensuring the size of feature maps remains constant. Correspondingly, a transition layer
is employed after each dense block. Transition layers decrease the dimension of the
feature map by utilizing a convolutional layer with a 1×1 kernel followed by a layer of
average pooling. Lastly, the network output of DenseNet is transformed into a data format
compatible with LSTM and subsequently inputted into LSTM. The ultimate classification
result is garnered through the Softmax layer.

Performance of evaluation
To evaluate the performance of the proposed model, four metrics are used as recall (Rec),
precision (Pre), F1 score (F1), and accuracy (Acc) and represented as

Rec =
TP

TP+FN
(10)

Pre=
TP

TP+FP
(11)

F1= 2 ·
Pre ·Rec
Pre+Rec

(12)

Acc =
TP+TN

TP+FP+TN +FN
. (13)
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Where TP is the number of correct samples recognized as positive. FP is the number of
false samples recognized as negative. TN is the number of correct samples recognized as
negative. FN is the number of false samples recognized as wrong. Rec is the ratio of correctly
predicted positive observations to the total actual positive observations. Pre is the ratio of
correctly predicted positive observations to the total predicted positive observations. F1 is
the weighted average of Pre and Rec. Acc is the ratio of correctly predicted observations to
the total number of observations. Moreover, Eq. (14) is a confusion matrix to quantify and
analyze the error distributions in the proposed model for locomotion mode recognition.

C =

c11 ··· c1j
...

. . .
...

ci1 ··· cij

. (14)

Where cij represents the count of samples in which the j th locomotion mode is recognized
as the ith locomotionmode. The diagonal elements show the quantity of correctly identified
samples for the current locomotion mode. The remaining elements show the quantity of
falsely identified samples.

Furthermore, to evaluate the effectiveness of the proposedmodel, the dataset was divided
into two subsets with a ratio of 7:3, including training and testing. Based on the evaluation
results obtained from the testing subset, the parameters of the model in this article were
adjusted to enhance its overall ability of generalization.

EXPERIMENTAL RESULTS AND DISCUSSIONS
Preparations for the experiment
The experimental environment and the selection of hyperparameters for the SE-DenseNet-
LSTM network will first be described. Experiments were conducted with Python version
3.8, Keras version 2.9.0, and TensorFlow version 2.9.1. Figure 9 shows the sliding window
applied to the dataset in the experiment. An optimal sliding window can increase the
utilization of the dataset and concurrently enhance the overall performance of the neural
network. Therefore, the initial experiment was to determine the optimal sliding window
size, utilizing Acc and the recognition rate of each locomotion mode as evaluated metrics.
In which, the sliding window was set to stride by one sampling interval. In addition, the
motion data of 10 subjects was used as a dataset for parameter selection of the model.

The impact of the sliding window on model performance is shown in Fig. 10. The
proposed model was evaluated by various sizes of the sliding window, ranging from 2n

(where n = 0, 1, . . . , 4). The results showed that FW is perfectly recognized for almost all
sizes of the sliding window. However, once the sliding window size reachedmore than four,
the Acc of the model was more than 97%. Conversely, Acc fell less than 96% for smaller
window sizes. Based on the recognition rates of each locomotion mode, the optimal size
was determined to be eight. Although Acc was slightly higher for window sizes of four and
16, they contained more outliers. Especially when the size was four, it showed a greater
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Figure 10 Impact of the sliding window (SW) on network performance.
Full-size DOI: 10.7717/peerjcs.1881/fig-10

standard deviation in the recognition of each locomotion mode. As a result, the sliding
window size of eight was chosen for subsequent experiments.

Hyperparameters play a crucial role in deep learning networks, including the number of
neural units and layers. A suitable number can enhance the fitting ability of the network.
On the contrary, inappropriate ones can reveal potential drawbacks, such as greater
complexity, slower training times, and a higher probability of overfitting. Hyperparameters
must be manually selected while constructing a neural network. Through experience and
continuous experimentation, the best hyperparameters can be selected to optimize the
performance of the network. Thus, the three major hyperparameters were experimentally
selected and determined, including the learning rate, batch size, and size of hidden layers.
Moreover, the activation function (ReLU) and optimizer (Adam) were also selected.

The learning rate (LR) determines the stride for updating the weights of the network.
Reducing LR can lead to slower convergence of the model. In contrast, it may also lead
to unstable convergence, causing the model to oscillate around the optimal solution. LRs
were set at 1e-3, 1e-4, and 1e-5 for the experiments, and the impact of LR on network
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Figure 11 Impact of the learning rate (LR) on network performance.
Full-size DOI: 10.7717/peerjcs.1881/fig-11

Figure 12 Impact of the batch size (BS) on network performance.
Full-size DOI: 10.7717/peerjcs.1881/fig-12

performance is shown in Fig. 11A. The results indicated that the Acc of the proposed model
remained around 98% when selecting a varying batch size and LR of 1e-4.

Furthermore, several experiments were carried out with different random seeds for each
LR to verify that LR of 1e-4 was the best option. Figure 11B shows the mean accuracy
(0.9775) and standard deviation (0.00616) achieved when adjusting the LR to 1e-4, with
the best performance of all experiments. Therefore, LR was set at 1e-4 for all experiments.

Similarly, Fig. 12 depicts an experimental exploration of batch size selection at a LR of
1e-4. The performance of the model in this article was compared for different batch sizes
of 2n (where n = 3,4, . . . ,9) with Acc, Rec, F1, and Pre as evaluation metrics. The highest
performance was achieved with each evaluation metric of more than 0.977 at a batch size
of 32.

The final selection was made for the size of hidden layers (HL) in the LSTM. The
performance of the model can be also significantly influenced by the size of HL. To
tackle long-term dependence on time series, it is more effective to increase the size of HL
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Figure 13 Impact of the hidden layer (HL) size on network performance.
Full-size DOI: 10.7717/peerjcs.1881/fig-13

Table 2 Confusionmatrix of DenseNet-LSTM for one subject (%).

LocomotionMode Predicted Label

FW SA SD RA RD

FW 100.00 0.00 0.00 0.00 0.00
SA 0.00 100.00 0.00 0.00 0.00
SD 0.00 0.00 97.19 0.00 2.81
RA 1.12 0.70 1.09 97.09 0.00

True
Label

RD 0.97 0.24 0.46 0.00 98.33

appropriately, which can improve the recognition rate and generalizability of the network.
However, excessively large HL can elevate the complexity of the network, resulting in
extended computational periods. Experiments were conducted on the network by adjusting
the HL size to 2n (where n= 4, 5, . . . , 8), using Acc, Rec, F1, and Pre as evaluation metrics.
The model showed optimal performance when HL had a size of 64 in Fig. 13.

Experimental results of single locomotion mode recognition
Experimental results for one subject were analyzed after determining the model
hyperparameters. Table 2 shows recognition results for one subject in five distinct
locomotion modes using the proposed hybrid SE-DenseNet-LSTM model. The diagonal
line of the table showed the recognition rate of locomotion modes for the subject, with an
overall mean recognition rate of 98.53%.

Tang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1881 16/30

https://peerj.com
https://doi.org/10.7717/peerjcs.1881/fig-13
http://dx.doi.org/10.7717/peerj-cs.1881


Table 3 Results of ablation experiments.

Model DenseNet LSTM Attention Acc(%) Rec(%) F1 Pre(%)

A X – – 96.01 96.12 95.92 96.10
B – X X 97.03 97.04 96.96 97.09
C X X – 96.35 96.42 96.26 96.44
This article X X X 97.93 98.00 97.89 97.90

Table 4 Comparisons of the mean accuracy of the four models (%).

Model LocomotionMode

FW SA SD RA RD

A 100.00 100.00 97.00 93.87 89.62
B 99.93 99.97 98.30 92.78 94.48
C 100.00 100.00 97.47 93.96 90.77
This article 100.00 100.00 99.36 96.05 94.09

Four models (A, B, C, and this article) using the proposed model were individually
created to perform ablation experiments. In order to confirm the superiority of the model
in this article, the performance of eachmodel was systematically compared through various
evaluation metrics. For fairness, the hyperparameters identified in the previous section
were utilized across all models. Mean Acc, Rec, F1, and Pre for the four models are shown
in Table 3. The proposed model demonstrated a performance improvement of about 2%
in mean Acc compared to the traditional DenseNet network.

Table 4 shows the mean accuracy of various locomotion modes for these four models.
All models were almost recognized with perfect accuracy for FW and SA, and the
mean recognition rate for SD exceeded 97%. DenseNet has been shown to enhance the
transmission of features to some extent. The recognition rates of FW and SA of model B
were slightly reduced. However, recognition rates for both SD and RD improved to varying
degrees. The addition of the SENet module effectively addressed the effect of the small
ramp on locomotion mode recognition. The recognition rate of various locomotion modes
combined with the LSTM layer was substantially the same as model A. Nevertheless, model
C improved the recognition rate for RDby 1% and effectively dealt with long-term temporal
dependencies. Compared to models A, B, and C, the proposed model, DenseNet-LSTM
with attention module, combines the advantages of DenseNet and LSTM. It has an efficient
feature extractor and a good capacity to tackle long-term dependency problems. The SENet
module assists the proposed model in prioritizing the most relevant information at any
given time by adjusting weights. In the proposed model, the locomotion modes of FW, SA,
and SD were perfectly recognized. Specifically, the recognition rates for both RA and RD
had significantly improved. Therefore, the proposed model has a higher accuracy.

Online recognition
In order to investigate the practical usability and efficacy of the proposed SE-DenseNet-
LSTM model in dynamic environments, an experiment on online recognition was
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Figure 14 The procedure for the online testing with data from five untrained subjects.
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Table 5 Results of online recognition with data from five untrained subjects.

Subjects Acc(%) Rec(%) F1 Pre(%)

S1 95.27± 2.47 95.16± 2.52 95.25± 2.46 95.46± 2.31
S2 93.59± 3.98 93.47± 4.22 93.54± 4.10 93.94± 3.53
S3 94.00± 2.15 93.99± 2.15 94.20± 2.11 94.66± 2.04
S4 96.99± 1.63 97.11± 1.54 96.99± 1.59 97.14± 1.39
S5 92.35± 2.09 92.65± 1.98 92.25± 2.06 92.59± 1.80
Mean 94.44± 2.46 94.47± 2.48 94.44± 2.46 94.76± 2.21

conducted. Simultaneously, to extend the investigation to subjects with diverse physical
features, the already-trained model was utilized for the validation of data from five
additional untrained subjects. The procedure for the online testing with data from five
untrained subjects is illustrated in Fig. 14.

Specifically, out of 15 subjects, the training set encompassed the motion data of 10
subjects, while the testing set encompassed the motion data of the remaining five subjects.
In particular, in the process of offline training, the training set underwent processing
using a sliding window technique. An optimal SE-DenseNet-LSTM classifier was obtained
after selecting suitable hyperparameters. To uphold experimental consistency, the optimal
classifier from the offline training was employed to validate the testing set in online
recognition, thereby achieving recognition of five distinct locomotion modes. The overall
recognition results are illustrated in Table 5.

On the one hand, by observing the results of the different evaluation metrics, the mean
value among the five subjects in each metric reached 94.44%, while the average standard
deviation was maintained at about 2.46%. The results signified that the SE-DenseNet-
LSTM model demonstrated superior overall accuracy in recognizing the movement data
of different subjects, capable of effectively identifying distinctive movements. On the
other hand, particularly in relation to individual subjects, the recognition rate of S4

Tang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1881 18/30

https://peerj.com
https://doi.org/10.7717/peerjcs.1881/fig-14
http://dx.doi.org/10.7717/peerj-cs.1881


was the highest. Concretely, the average accuracy was as high as 97%, while the average
standard deviation was also hovered around only 1.5%. The results were comparable to
the recognition results of offline training. Regrettably, however, S5 performed somewhat
short, with all indicators reaching merely 92%.

Overall, certain differences were observed in Acc, Rec, F1, and Pre amongst the
different subjects. The differences may be a consequence of variations in the movement
characteristics, walking postures, and physical conditions of diverse subjects. In essence, due
to the untrainedmovement data of these five subjects, it is logical that the online recognition
rate is lower relative to offline training. Nonetheless, the proposed SE-DenseNet-LSTM
model still exhibited a high recognition level of locomotionmodewhen applied to untrained
subjects.

The impact of ramp data on recognition results
As previously mentioned, the proposed model has effectively enhanced the accuracy of
RA and RD. In the recent study (Cheng, Bolívar-Nieto & Gregg, 2021), the ramp data was
categorized as FW since the maximum angle of the ramp terrain used for the experiment
was only 10◦. This approach can improve the overall recognition rate for four locomotion
modes, including sitting, FW, SA, and SD. However, during the recognition process, due to
the FW being incorrectly classified as other locomotion modes from ramp data, it decreases
the recognition rate of the locomotion mode of FW. Therefore, in this section, RA and RD
are also categorized as FW to further validate the effect of ramp data on recognition results.

Figures 15, 16 and 17 depict the angle curves of all input data for one subject in
five terrains, and the included angles are shown in Eq. (1). In which, the x-axis and y-axis
represents the number of samples and the angle of joints, and the dashed pink line indicates
one sampling period of FW. For comparison, the motion angle curves of joints for one
gait cycle are shown in each subplot, with the motion data for the remaining four terrains
being compared with FW. As can be seen in Figs. 15A, 16A, and 17A, the trends of the
angular curves for RA and RD are essentially the same as those for FW, with only slight
differences. On the contrary, in Figs. 15B, 16B and 17B, the data for SA and SD differed
significantly from those for FW. In particular, changes in the angles of hip and knee joints
are much greater, which is consistent with the actual situation of walking. Additionally,
for the comparison of the gait cycle, walking on stairs is about 20 more sampling points
than walking on flat ground or ramps. Compared with SA and SD, the data characteristics
of RA and RD are highly similar to FW, which may increase the misclassification of these
three locomotion modes.

To evaluate the effect of ramp data on recognition results, RA and RD data were merged
into FW, and the proposed model was trained and tested in three locomotion modes,
repeating the process five times. The recognition results were compared with the original
five locomotion modes. Confusion matrixes in Tables 6 and 7 recorded the recognition
results of each locomotionmode, including themean recognition rate (mean) and standard
deviation (MSE). Table 6 shows the confusion matrix after mixing the flat and ramp data,
with recognition rates for both SA and SD reaching over 99%. However, the recognition
rate of FWwas only 95.775%± 2.595 withmoremisclassifications. In Table 7, by separating
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Figure 15 The angular curves of the hip for one subject in five terrains.
Full-size DOI: 10.7717/peerjcs.1881/fig-15

Figure 16 The angular curves of the knee for one subject in five terrains.
Full-size DOI: 10.7717/peerjcs.1881/fig-16

Figure 17 The angular curves of the shank for one subject in five terrains.
Full-size DOI: 10.7717/peerjcs.1881/fig-17

Tang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1881 20/30

https://peerj.com
https://doi.org/10.7717/peerjcs.1881/fig-15
https://doi.org/10.7717/peerjcs.1881/fig-16
https://doi.org/10.7717/peerjcs.1881/fig-17
http://dx.doi.org/10.7717/peerj-cs.1881


Table 6 Confusionmatrix (mean±MSE) after mixing flat and ramp (%).

LocomotionMode Predicted Label

FW(RA/RD) SA SD

FW(RA/RD) 95.76± 2.595 2.42± 2.498 1.83± 1.633
SA 0.03± 0.033 99.89± 0.116 0.08± 0.083

True
Label

SD 0.07± 0.101 0.68± 0.406 99.25± 0.472

Table 7 Confusionmatrix (mean±MSE) after separating flat ground and ramp (%).

LocomotionMode Predicted Label

FW SA SD RA RD

FW 100.00± 0.000 0.00± 0.000 0.00± 0.000 0.00± 0.000 0.00± 0.000
SA 0.00± 0.000 100.00± 0.000 0.00± 0.000 0.00± 0.000 0.00± 0.000
SD 0.00± 0.000 0.00± 0.000 99.36± 0.628 0.05± 0.087 0.58± 0.550
RA 1.63± 0.994 0.8± 0.562 1.42± 0.896 96.05± 2.441 0.07± 0.064

True Label

RD 2.76± 0.556 1.23± 0.473 1.25± 0.415 0.66± 0.555 94.09± 1.376

the flat and ramp data, FW was perfectly recognized with a significantly higher recognition
rate. Moreover, the recognition rates for SA and SD were comparable to those in Table 6.
RA and RD exhibited relatively lower recognition rates, yet still exceeding 92%.

Figure 18 shows the comparison of recognition results before (non-mixing data) and
after (mixing data) mixing RA and RD data into FW, using various evaluation metrics. In
the non-mixing data, Acc, Rec, and F1 were superior to the mixing data, whereas Pre was
the opposite. This was due to the uneven distribution of sample categories after mixing
ramp and flat data. Therefore, in the mixing data, the model focused more on accurately
predicting minority categories, thus obtaining a higher Pre. In the non-mixing data, the
model emphasized more overall accuracy, hence the other three metrics were higher. In
conclusion, the proposed model can still effectively recognize the three locomotion modes
FW, RA, and RD, even in situations where ramp data is not obvious. Although ramp data
has some influence on recognition results, the overall recognition rate can reach 98% for
the proposed model.

Compare with other methods
A hybrid DenseNet-LSTMmodel with an attention module is proposed. IMU sensors were
utilized to capture information on human posture, while pressure sensors were utilized for
the data collection on plantar pressure. Moreover, six original features were extracted into
the neural network, and recognition of five locomotionmodes was achieved. Consequently,
the proposed model combined the strengths of DenseNet and LSTM to facilitate robust
feature extraction from the data. The proposed model further enhanced the recognition
rate of the locomotion mode, even when faced with a relatively small degree of the ramp.

Furthermore, training time and testing time were defined, representing the duration
from start to end of each step in the training and testing of a neural network. Experimental
results showed the proposed hybrid model achieved a training time of 66 ms and a testing
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Figure 18 Comparisons of mixing and non-mixing ramp data on recognition rates.
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time of 9.4 ms, which satisfied the 10 ms sampling interval need. To analyze the early swing
of the lower limb in humans, Su et al. (2019) used the motion data from IMUs to serve as
input for the CNN. They obtained 94.15% in the recognition rate of locomotion modes.
Chung et al. (2019) developed an LSTM network to train multimodal physical sensor data
with a recognition rate of 92.18%. Naturally, many other methods have been employed
for locomotion mode recognition of exoskeleton robots, just as SVM (Zheng et al., 2022b),
hidden Markov model (HMM) (Liu et al., 2017), dynamic time warping (DTW) (Zheng
et al., 2022a), KNN (Zhang et al., 2023) and linear discriminant analysis (LDA) (Young
& Hargrove, 2015). Table 8 shows the results of the comparison with other methods. In
contrast, the proposed SE-DenseNet-LSTM had a higher recognition rate.

The impact of noise on model performance
The proposed model has an improvement in recognition rates compared to known
methods. Nevertheless, noise caused by various factors can affect recognition results in
practical applications. Therefore, it is essential to quantify the effect of noise on the overall
performance for the proposed model. Common Gaussian white noise was selected as
the noise disturbance for the experimental data. The noise disturbance in the practical
environment was simulated by Gaussian white noise with different signal-to-noise ratios.
Acc was used as the performance metric of the model against interference. Figure 19 shows
the trend of the hip angle on the right leg in FW for the mean µ= 0 and different standard
deviations (σ = 0,1,5,10,13,15).
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Table 8 Results of the comparison with other methods.

Source Sensors Feature
extraction

Classifier Position
of sensors

Time (ms) Acc (%)

Training/Testing

Zheng et al. (2022b) IMUs Manual SVM Healthy side – 89.61
Zheng et al. (2022a) IMUs Manual DTW Healthy side – 90
Young & Hargrove (2015) IMU, axial load

cell, motor cur-
rent

Manual LDA Prosthesis – 93.9

Liu et al. (2017) Accelerometer,
gyroscope, pres-
sure sensor

Manual HMM Prosthesis – 95.8

IMUs/ 92.18/
Chung et al. (2019) Magnetometer/ Automatic LSTM Healthy side – 85.22/

Gyroscope 78.33
Su et al. (2019) IMUs Automatic CNN Healthy side – 94.15
Zhang et al. (2023) IMU, Axial load

cell, Angle en-
coder

Automatic ImprovedKNN Prosthesis – 96.66

This article IMUs Automatic DenseNet-LSTM Healthy side 66/9.4 97.90

Figure 19 The impact of varying degrees of white Gaussian noise on the right hip joint.
Full-size DOI: 10.7717/peerjcs.1881/fig-19

The Acc trend curves of the model are shown for varying levels of σ in Fig. 20. Acc of the
model can still reach over 90% when σ<5, indicating a high resistance to noise. However,
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Figure 20 The impact of white Gaussian noise on the overall performance for the model.
Full-size DOI: 10.7717/peerjcs.1881/fig-20

as the intensity of the noise gradually increases, especially after σ ≥10, the Acc of the model
significantly decreases. Overall, the proposed model exhibits some noise immunity.

Lightweight model
DenseNet is fundamentally devised by establishing a network architecture via dense
connectivity, enabling each layer to be directly linked with all previous layers. The structure
accomplishes efficient transmission and recycling of features, thereby addressing the
challenges of vanishing gradients and feature propagation prevalent in traditional CNNs.
Nonetheless, various dense blocks and transition blocks are encompassed in the DenseNet.
Each dense block is composed ofmultiple convolutional layers. The transition blocks, which
control the dimensionality of feature maps, comprise pooling layers and convolutional
layers. Consequently, the proposed model suffers from high parameter complexity and
difficulty in training.

The computational load imposed by convolutional operations can be reduced by both
grouped convolution and depthwise separable convolution (DSConv). However, grouped
convolution merely replaces the convolutional operation into several groups, with no
information interaction between them. Therefore, ordinary convolution is substituted for
grouped convolution during the convolutional operation, the method may result in the
loss of feature information. In contrast, DSConv is a technique that separates the ordinary
convolutional process into two parts, depthwise convolution and pointwise convolution
using different convolutional filters. The separation decouples the channel and spatial
correlations of the convolution. Specifically, in the depthwise convolution, convolution
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A B

Figure 21 The processes of both conventional convolution and DSConv. (A) is conventional convolu-
tion. (B) is DSConv.

Full-size DOI: 10.7717/peerjcs.1881/fig-21

Table 9 Results of replacing conventional convolution with DSConv.

Groups Dense
Block

Transition
Block

Other
Conv

Acc (%) F1 (%) Quantity of
Parameters (M)

Size of
Model (MB)

GP1 X – – 96.02± 1.18 95.94± 1.21 4.59 14.09
GP2 – X – 96.83± 0.81 96.77± 0.83 7.91 24.01
GP3 – – X 96.81± 1.63 96.73± 1.66 7.90 23.99
GP4 X X – 96.93± 2.00 96.86± 2.05 4.60 14.11
GP5 X – X 96.20± 1.57 96.13± 1.60 4.59 14.09
GP6 – X X 96.90± 1.24 96.83± 1.28 7.91 24.01
GP7 X X X 96.27± 1.65 96.23± 1.63 4.60 14.11
This article – – – 97.93± 0.62 97.89± 0.63 7.90 23.99

computation independently is applied to each channel, thus dramatically reducing the
computational load on the network. Pointwise convolution is utilized to fuse the channels
to ensure the integrity of the feature information. Thus, without compromising the accuracy
of the network model, both the computational load and the number of parameters in the
convolutional operation can be effectively reduced in the DSConv. The processes of both
conventional convolution and DSConv are illustrated in Fig. 21.

In this section, to mitigate the substantial parameter count introduced by feature reuse
in the DenseNet, DSConvs are employed to replace the conventional convolutions in the
proposed SE-DenseNet-LSTM model. To evaluate the effect of replacement by different
DSConvs, the conventional convolutions are substituted in the dense block and transition
block of the DenseNet, as well as the other ordinary convolutions employed during training,
with DSConvs. The experimental results are depicted in Table 9.

Acc and F1 are selected as critical performance indicators, with both the number of
parameters and the size of the proposed model serving as key evaluation metrics. The ‘‘X’’
in the table signifies that common convolutions in the module have been replaced with
DSConvs, while ‘‘-’’ denotes the opposite. A scrutinizing observation reveals that the size of
the model and the number of parameters are substantially reduced by replacing ordinary
convolutions within a dense block with DSConvs. Nevertheless, the Acc and F1 of the
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model can still be maintained at 96% even as the number of parameters is decreased. In
comparison with the proposed SE-DenseNet-LSTM model, the number of parameters has
been virtually halved, but there is no discernible decline in the overall performance of the
model. Thus, the application of deep separable convolutions to achieve the lightweight of
the proposed model is successful.

CONCLUSIONS
A hybrid model based on SE-DenseNet-LSTM is proposed for human locomotion mode
recognition. Specifically, the DenseNet automatically extracts features from IMU data into
LSTM to classify five locomotionmodes of different terrains. To further enhance the model
performance, the SENet module is incorporated to extract shallow features of the IMU data
at a deeper level. Notably, the proposed model can maintain high recognition rates, even
when the features of the ramp data are not immediately apparent. Overall, the proposed
model has a high accuracy and robustness compared with other known algorithms.

In this article, only five locomotion modes have been recognized, yet the model has
enormous potential for scalability, such as real-time recognition of human locomotion
modes or more complex locomotion modes. In particular, the lower limb exoskeleton
is useful both as a weight-bearing aid for healthy individuals and as a device to assist
individuals with disabilities inwalking. Furthermore, it is worthwhile to explore recognizing
the transitions between different locomotion modes with greater precision. Therefore, the
proposed model has limitations, and there are considerable areas for improvement in
future work. The dataset can be expanded, for instance, to recognize locomotion modes for
subjects with varying body weights, walking speeds, or weight loads to enhance the ability
of generalization for the model.
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