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ABSTRACT
This article aims to address the challenge of predicting the salaries of college
graduates, a subject of significant practical value in the fields of human resources and
career planning. Traditional prediction models often overlook diverse influencing
factors and complex data distributions, limiting the accuracy and reliability of their
predictions. Against this backdrop, we propose a novel prediction model that
integrates maximum likelihood estimation (MLE), Jeffreys priors, Kullback-Leibler
risk function, and Gaussian mixture models to optimize LSTM models in deep
learning. Compared to existing research, our approach has multiple innovations:
First, we successfully improve the model’s predictive accuracy through the use of
MLE. Second, we reduce the model’s complexity and enhance its interpretability by
applying Jeffreys priors. Lastly, we employ the Kullback-Leibler risk function for
model selection and optimization, while the Gaussian mixture models further refine
the capture of complex characteristics of salary distribution. To validate the
effectiveness and robustness of our model, we conducted experiments on two
different datasets. The results show significant improvements in prediction accuracy,
model complexity, and risk performance. This study not only provides an efficient
and reliable tool for predicting the salaries of college graduates but also offers robust
theoretical and empirical foundations for future research in this field.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Data Science
Keywords Salary prediction, LSTM, Jeffreys prior, Maximum likelihood estimation, Kullback-
Leibler, Gaussian mixture models, College graduate

INTRODUCTION
Background
In today’s increasingly competitive global landscape, the importance of education and
career planning is becoming more evident. Particularly in higher education and career
development, the salary of college graduates serves not only as a direct measure of the
return on educational investment and personal skills development but also, to some extent,
reflects the health status of a country’s or region’s education system and economic vitality.

The International Labour Organization (ILO) in its latest report “COVID-19 and the
Global Workforce” highlighted unprecedented disruptions in the global labor market amid
the 2020 COVID-19 pandemic. Losses in work hours accounted for 8.8% of total time,
equivalent to the loss of 255 million full-time jobs. This is approximately four times the
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labor market loss during the 2009 global financial crisis (Hwang & Lee, 2021). Meanwhile,
the U.S. Bureau of Labor Statistics (BLS) reported that individuals with a bachelor’s degree
or higher earn nearly 60% more than those who have only completed high school
education (Wynter et al., 2021). Eurostat also shows that in EU member states, those with
higher education have unemployment rates generally 8% lower than those without (Kim,
Oh & Rajaguru, 2022). Even more striking is a report by LinkedIn, which found that
students who had internship experience or participated in research projects during college
had initial salaries 25% higher than other students after graduation (Autin et al., 2020). A
study from the Organisation for Economic Co-operation and Development (OECD) found
that students who performed excellently during college earn significantly more in their
subsequent careers. Specifically, each increase in academic scoring is associated with an
approximate 6% increase in expected lifetime earnings (Rith-Najarian, Boustani &
Chorpita, 2019). These data not only reveal a clear association between education and
career success but also highlight the increasingly urgent and important need for predicting
graduate salaries. An accurate and reliable prediction model can not only provide data
support for universities and government policies but also help individuals entering or
already in the workforce make more informed decisions.

However, the problem of predicting the salaries of college graduates is not only
extremely complex, but also technically daunting. Firstly, it involves multiple highly
nonlinear and variable factors, such as academic performance, specialized skills,
interpersonal relationships, and personality traits. These factors do not exist in isolation
but interact and constrain each other in a complex, dynamically changing ecosystem. This
not only demands innovation in mathematical modeling to accurately capture the subtle
relationships among these complex variables, but also requires the ability to handle various
types of data formats. Furthermore, the complexity of algorithms further increases the
technical challenges of the problem. Effectively integrating these multi-source,
heterogeneous pieces of information calls for advanced data fusion techniques, as well as
large-scale data processing capabilities and highly parallel computational resources.
Despite this, it remains challenging to obtain a globally optimal solution within an
acceptable timeframe, highlighting the urgent need and significant challenge of
constructing a high-accuracy, high-efficiency predictive model.

Solving this issue is not merely a data science challenge but a multidisciplinary problem
that combines computer science, optimization theory, social sciences, and more. With the
rapid development of big data and machine learning technologies, although we have more
tools and methods to address this issue, it also introduces new challenges, such as the
interpretability of models, computational complexity, and data privacy issues. Therefore,
building an accurate and reliable predictive model becomes an urgent need, which holds
significant implications not only for individual education and career planning but also for
social policy and talent development strategy.

Research objectives and methods
This study dives into the high-stakes, head-scratching enigma that keeps college students
up at night: how much salary can I get after graduation? To delve deeply into this issue, we

Li et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1875 2/28

http://dx.doi.org/10.7717/peerj-cs.1875
https://peerj.com/computer-science/


introduce two publicly available datasets that combine information from various aspects,
including academic background, technical skills, personality traits, and job-related factors,
to achieve a comprehensive prediction of post-graduate salaries.

In our research, we first employ maximum likelihood estimation (MLE) to optimize the
prediction accuracy of the model, followed by the introduction of Jeffreys prior to reduce
model complexity and prevent overfitting. Further, we use the Kullback-Leibler risk
function combined with Gaussian mixture models (GMM) to form a new risk function,
aiming to comprehensively improve the model’s performance. Through this integrated
design, we hope to build a model that can effectively capture the complexity of the
prediction problem. We expect that this integrated approach can have a positive impact on
multiple levels, including social policies, education systems, and individual career
planning.

LITERATURE REVIEW
Traditional methods for predicting salaries of college graduates
Predicting the salaries of college graduates has always been a research problem of great
interest and challenge. Traditional prediction methods mainly rely on statistics and
elementary machine learning algorithms.

Firstly, linear regression is one of the most basic and widely used prediction methods
(Matbouli & Alghamdi, 2022; Uras et al., 2020). This method attempts to establish a linear
model by minimizing prediction errors. However, it has strong assumptions about data
distribution and independence, which become impractical when dealing with noisy, non-
linear, or high-dimensional data. Support vector machines (SVM) are another widely used
prediction method (Casuat, Festijo & Alon, 2020). Compared to linear regression, SVM
can handle non-linear data through kernel tricks. However, SVM usually requires a large
amount of computational resources and still poses challenges for multi-dimensional and
complex data structures. Ensemble methods like decision trees and random forests are also
used for such prediction problems (Abdulhafedh, 2022). These methods improve
prediction accuracy by building multiple decision trees and combining their results.
However, such methods are prone to overfitting, especially when the dataset is small or the
feature dimensions are high.

Additionally, traditional methods often rely on manual feature engineering, meaning
that expert knowledge is needed to select or construct the model’s input features (Fan et al.,
2019). This not only adds complexity to model building but may also introduce bias or
limit the model’s generalizability. More importantly, most traditional methods are usually
based on some distribution assumptions like Gaussian or Poisson distributions (Baccarini,
Blanton & Zou, 2022). These assumptions are not always valid in practical applications,
especially when data have multimodal or long-tailed distributions.

In summary, although traditional methods perform well in some scenarios, they have a
range of limitations and assumptions that may not be applicable when dealing with
complex, high-dimensional, and non-linear data. Therefore, developing a more accurate
and robust prediction model is of great importance.
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Current applications of deep learning in salary prediction
In recent years, deep learning has made significant advancements, particularly in fields like
image recognition and natural language processing (Fujiyoshi, Hirakawa & Yamashita,
2019; Kamyab et al., 2022). For instance, convolutional neural networks (CNNs) have
made breakthroughs in the application of image recognition (Rawat & Wang, 2017).
Recurrent neural networks (RNNs) have also seen remarkable success in natural language
processing, especially in machine translation and sentiment analysis (Wang, Jiang & Luo,
2016).

However, in the specific problem of predicting salaries for college graduates, research in
deep learning remains relatively nascent. For example, Ranjeeth, Latchoumi & Paul (2021)
proposed a model based on multilayer perceptrons (MLP) that attempts to integrate
academic performance and skill sets for salary prediction. While their model has had some
success in certain aspects, it did not consider other non-quantifiable factors such as
personality traits and social networks, which may be significant in real-world employment
scenarios.

Similarly, Zhong et al. (2023) employed long short-term memory networks (LSTMs)
to deal with salary predictions that include time-series information, like annual grade
changes during college. While this method performs well in handling dynamic data, a
significant limitation is its need for large volumes of labeled data, which poses a barrier in
practical applications. Furthermore, Chen, Sun & Thakuriah (2020)’s research uses graph
neural networks (GNNs) to model the potential impact of students’ social networks on
their salaries. However, the assumptions about network structure in this method may be
overly simplistic, failing to capture complex interpersonal relationship patterns adequately.

Overall, although deep learning has the capability to handle multi-dimensional data,
open issues remain regarding how to integrate different types of field information (e.g.,
academic performance, skills, personality) and how to address challenges like insufficient
labeled data and overfitting.

Contributions and innovations of this study
In a departure from conventional methods, our model leverages a deep learning
framework that harmoniously integrates maximum likelihood estimation (MLE) with
Jeffreys prior. This enables us to proficiently tackle large-scale, high-dimensional data sets,
while sidestepping the constraints often associated with traditional approaches.
Furthermore, our model is enriched by the incorporation of advanced mathematical
theories and algorithms, including Kullback-Leibler risk functions and GMM. This
confluence of innovation and practicality results in a model that excels in both academic
rigor and empirical accuracy. If traditional methods are the calculators of the data world,
consider our model the quantum computer.

PROBLEM DESCRIPTION
Problem definition
Our objective is to create a model for predicting the salary of college graduates. Assume we
have a multi-dimensional feature vector X 2 Rn, where n is the number of features. These
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features are categorized into several classes: academic field A ¼ faig1i¼1, technical skills

T ¼ ftig1i¼1, personality traits P ¼ fpig1i¼1, and job-related characteristics J ¼ fjig1i¼1.

Mathematically, X can be expressed as:

X ¼ fA;T;P; Jg ¼ fa1; a2; . . . ; t1; t2; . . . ; p1; p2; . . . ; j1; j2; . . .g (1)

We wish to find a mapping function f : Rn ! R, where f could be linear, nonlinear, or
a more complex function form, given by:

f ðX; �Þ ¼ �TX (2)

where � represents the model parameters.
The relationship between the predicted salary Y and the actual salary can be described

as:

Y ¼ f ðX; �Þ þ e (3)

where e � Nð0;r2Þ is a noise term, following a normal distribution with mean 0 and
variance r2.

Given a loss function LðY ; ŶÞ, our optimization objective is:

�� ¼ argmin
�

XN
i¼1

LðYi; f ðXi; �ÞÞ þ kRð�Þ
" #

(4)

where N is the sample size, Rð�Þ is the regularization term, and k is the regularization
coefficient.

Assuming we have a dataset D ¼ fðX1;Y1Þ; . . . ; ðXN ;YNÞg, the prediction error of the
model can be quantified as:

Eð�Þ ¼ 1
N

XN
i¼1

jYi � f ðXi; �Þj2 (5)

Notation and terminology
Here, we introduce the notations and terminology used for subsequent analysis.

– Xi 2 Rn: Represents the n-dimensional feature vector of the i-th sample. Where
i 2 f1; . . . ;Ng, N represents the sample size.

– yi 2 R: Represents the actual salary of the i-th sample.

– f ð�; �Þ : Rn ! R: Is the model function used for salary prediction, dependent on the
model parameters �.

– LðY ; ŶÞ : R� R ! Rþ: Is the loss function, used for measuring the difference between
the actual salary Y and the predicted salary Ŷ .

– � 2 Rm: Is the set of model parameters, where m is the number of parameters.

– D ¼ fðX1; y1Þ; . . . ; ðXN ; yNÞg � Rn � R: Is the entire dataset.
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– k 2 R: Regularization parameter.

– a 2 ð0; 1�: Learning rate.

We define the following conditional mathematical expectation and variance:

E½Y jX ¼ x� ¼ lðx; �Þ; Var½Y jX ¼ x� ¼ r2ðx; �Þ (6)

For any sample ðXi; yiÞ in the dataset D, the residual ei can be expressed as:

ei ¼ yi � f ðXi; �Þ (7)

Further, the full-sample mathematical expectation and variance of the residual can be
represented as:

E½e� ¼ 1
N

XN
i¼1

ei; Var½e� ¼ 1
N

XN
i¼1

ðei � E½e�Þ2 (8)

Finally, our optimization problem can be represented by the following optimization
objective:

�� ¼ argmin
�

XN
i¼1

Lðyi; f ðXi; �ÞÞ þ kRð�Þ
" #

(9)

where Rð�Þ is a regularization term used for controlling the complexity of the model.

The mathematical symbols used subsequently are shown in the Table 1.

Table 1 Mathematical symbol index.

Symbol Description

� Model parameters

X Feature vector

Y Target variable (e.g., salary)

e Error term in regression

k Regularization coefficient

p Jeffreys prior or GMM component weight

l Mean parameter in Gaussian mixture models (GMM)

r Standard deviation or variance in GMM

b Coefficients in regression models

L Loss function

f Mapping function or model output function

D Dataset

L Likelihood function or loss in context

N Gaussian distribution notation

R2 Coefficient of determination

MAE Mean absolute error
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PARAMETER ESTIMATION FOR IMPROVING PREDICTION
ACCURACY AND SIMPLIFYING MODEL COMPLEXITY
Motivation for using maximum likelihood estimation to improve pre-
diction accuracy
In the process of estimating parameters and predicting the salaries of college graduates,
choosing the best estimation method is crucial. We opt for MLE as our primary method of
parameter estimation for several reasons:

	 Statistical properties and computational convenience:MLE estimators possess several
desirable statistical properties, including consistency, asymptotic normality, and
unbiasedness under certain conditions. These properties provide robust support for
subsequent statistical inference and confidence interval estimation (Wood, 2011).
Further, MLE can often be efficiently computed through optimization algorithms,
making it particularly useful for handling large datasets.

	 Model interpretability and scalability: MLE not only provides accurate parameter
estimates but also allows for clear interpretations of these parameters in real-world
applications. For example, we can explicitly interpret the contributions of various fields,
such as academics and technical skills, to the salary prediction. Additionally, the
flexibility of MLE is evident in its ease of extension to more complex models, like
nonlinear models and mixture models (Li & Liu, 2020).

	 No need for priors and widespread support: Compared to Bayesian methods, MLE
does not depend on prior distributions, which is a clear advantage when there is
insufficient background information to choose appropriate priors. Also, given the
widespread application and importance of MLE in statistics, many modern statistical
software and programming libraries offer efficient implementations and support for
MLE.

Maximum likelihood estimation solution
Definition 1. Consider a datasetD ¼ fðxi; yiÞgNi¼1, where xi 2 Rm is the feature vector and
yi 2 R is the target variable, representing post-graduation salary. Our goal is to estimate a
parameter vector h such that

Lðh;DÞ ¼
YN
i¼1

pðyijxi; hÞ (10)

is maximized, where Lðh;DÞ is the likelihood function.
To improve the accuracy of predicting post-graduation salaries of college students, we
employ the MLE method. First, we assume the data model as follows:

Yi ¼ b0 þ
Xn
j¼1

bðAÞj XðAÞ
i;j þ

Xn
k¼1

bðTÞk XðTÞ
i;k þ

Xn
l¼1

bðPÞl XðPÞ
i;l þ

Xn
m¼1

bðJÞm XðJÞ
i;m þ ei; (11)
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The maximum likelihood function is defined as:

Lðb0; bðAÞ;bðTÞ;bðPÞ; bðJÞ;DÞ ¼
YN
i¼1

f ðyijXi; �Þ; (12)

Our goal is to find an estimate of the parameter � that maximizes the maximum
likelihood function:

�̂ ¼ argmax
�

Lð�;DÞ ¼ argmax
�

XN
i¼1

logf ðyijXi; �Þ: (13)

Assuming that the likelihood function of the data model is defined as Lð�;DÞ, where�
includes all parameters of the LSTM model, our goal is:

�̂MLE ¼ argmax
�

Lð�;DÞ

¼ argmax
�

XN
i¼1

log pðyijxi; �Þ

¼ argmax
�

XN
i¼1

log
1ffiffiffiffiffi
2p

p
r
e�

ðyi�ŷiÞ2
2r2

� � (14)

By optimizing the above objective function, we can obtain the maximum likelihood
estimate of the parameter �, thereby improving the accuracy of the predictions.

Parameter estimation for simplifying model complexity: motivation for
using Jeffreys prior
In previous sections, we relied on MLE for parameter estimation of the model. Despite its
numerous advantages, such as consistency and unbiasedness, MLE also poses various
challenges and limitations.

	 Drawbacks and challenges: MLE faces a myriad of issues. First, highly-parameterized
models may lead to overfitting in situations with limited data or numerous features.
Secondly, the computational complexity of optimizing the objective function

�̂ ¼ argmax
�

XN

i¼1
log f ðyijxi; �Þ (15)

cannot be ignored, especially in big data scenarios. Additionally, MLE often requires
extra assumptions or constraints when the model complexity increases or data is
missing, reducing its flexibility and scalability. Lastly, MLE is highly sensitive to outliers
and noise (Thang, Chen & Chan, 2011), which may affect the model’s robustness.

	 General advantages of Jefferys prior: Jeffreys prior addresses these problems of MLE
through several key features. First, as a non-informative prior, Jeffreys prior does not
rely on subjective prior information, consistent with MLE’s “no need for priors”
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viewpoint. Secondly, it has good invariance properties, i.e., it maintains its form under
parameter transformations (Clarke & Barron, 1994; Huang, Huang & Zhan, 2023),
which is crucial for multi-parameter and complex models.

	 Feasibility and robustness: Bayesian methods using Jeffreys prior are computationally
feasible and can generally be efficiently computed using numerical methods like MCMC.
This makes it suitable for large-scale data analysis. Moreover, by integrating Jeffreys
prior, the model’s sensitivity to outliers and noise can be significantly reduced (Kosmidis
& Firth, 2021), further enhancing the model’s robustness.

Through these comprehensive improvements, Jeffreys prior provides us with a more
thorough and robust method for parameter estimation, effectively addressing most issues
faced by MLE.

Solution using Jeffreys prior
Definition 2. Jeffreys prior: The Fisher Information Matrix Ið�Þ is used to quantify the
amount of information about the parameter � in the observed data. In a multi-parameter
model, the elements Ijkð�Þ of Ið�Þ are calculated as follows:

Ijkð�Þ ¼ �E
@2 log f ðyjX; �Þ

@hj@hk

� �
(16)

Jeffreys prior is defined based on the square root of the determinant of the Fisher
Information Matrix, and is used as a non-informative prior in Bayesian inference.
Here, E½�� represents the expectation, and hj and hk are elements in the vector �.

Jeffreys prior is given by:

pð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Ið�Þ

p
(17)

Then, the posterior probability distribution can be written as:

Pð�jDÞ / Lð�;DÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Ið�Þ

p
(18)

For greater clarity, let’s assume that f ðyjX; �Þ follows a normal distribution. In this case,
log f ðyjX; �Þ is:

log f ðyjX; �Þ ¼ � 1
2r2

ðy � b0 � b1x1 � . . .� bmxmÞ2 � log
ffiffiffiffiffiffiffiffiffiffi
2pr2

p
(19)

From this, an element of the Fisher Information Matrix can be represented as:

Ijkð�Þ ¼ 1
r2
XN
i¼1

@hðyijxi; �Þ
@hj

@hðyijxi; �Þ
@hk

(20)

where hðyijxi; �Þ ¼ yi � ðb0 þ b1xi1 þ . . .þ bmximÞ.
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Our objective is to find the maximum of the posterior probability, which is:

�̂post ¼ argmax� logLð�;DÞ þ 1
2
log det Ið�Þ

� �
(21)

Finally, our optimization objective function is:

min
�

Eðx;yÞ�D½LKLðy; ŷÞ� � k1 logLð�;DÞ þ k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Ið�Þ

ph i
(22)

Here, k1 and k2 are regularization parameters.
Through the above derivations and equations, we have demonstrated how to introduce

Jeffreys prior into complex models for more robust and accurate parameter estimation.
This method not only alleviates the problems of overfitting and computational complexity
but also enhances the robustness and reliability of the model.

DEEP LEARNING ARCHITECTURE INCORPORATING
KULLBACK-LEIBLER RISK FUNCTION AND GAUSSIAN
MIXTURE MODEL
After completing the discussion on parameter estimation in the previous section,
particularly through the use of MLE and Jeffreys prior to improve prediction accuracy and
model robustness, we now turn to an advanced model. In this section, we introduce a deep
learning architecture that incorporates the Kullback-Leibler risk function (also known as
the KL risk function) and Gaussian mixture model for further optimizing the predictions
of post-graduate salaries for college students.

Motivations for choosing Kullback-Leibler risk function and Gaussian
mixture model

	 Sensitivity and information theoretic foundation: The KL divergence shows high
sensitivity to slight differences between the predicted and actual distributions (Burnham
& Anderson, 2001), and has a strong foundation in information theory (Hershey &
Olsen, 2007).

	 Differentiability and optimization: The KL divergence is differentiable with respect to
model parameters and is suitable for gradient-based optimization algorithms like SGD,
enhancing model optimizability.

	 Capturing complexity and multi-modality: The Gaussian mixture model can
effectively capture the multi-modal distribution of real-world data like the salaries of
recent graduates (Reynolds, Quatieri & Dunn, 2000).

	 Parameter interpretability and flexibility: Each Gaussian component in the model has
interpretable parameters (means, variances, etc.), and due to its flexible mathematical
form, can adapt to various types of data distributions.
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Extension of the Kullback-Leibler risk function
The Kullback-Leibler risk function, or KL divergence, serves as an indicator for evaluating
the similarity between the model predictions and the actual observations. The
mathematical form is:

LKLðy; ŷÞ ¼
XN
i¼1

yi log
yibyi � ð1� yiÞ log 1� yi

1� byi (23)

Among them, N is the number of samples, yi and byi represent the actual label and model
prediction respectively.

Considering that it is often necessary to calculate the derivative of this risk function
during the optimization process, we first expand the logarithmic term:

LKLðy; ŷÞ ¼
XN
i¼1

yi log yi � yi log byi � ð1� yiÞ logð1� yiÞ þ ð1� yiÞ logð1� byiÞð Þ

¼
XN
i¼1

yi log yi þ ð1� yiÞ logð1� yiÞð Þ � yi log byi þ ð1� yiÞ logð1� byiÞð Þ
(24)

Then, we solve for its derivative with respect to ŷ:

@LKL
@byi ¼� yibyi þ ð1� yiÞ

ð1� byiÞ
¼ � ð1� yiÞbyi � yið1� byiÞbyið1� byiÞ
¼ � byi � yibyið1� byiÞ

(25)

The above derivation not only reveals the intrinsic mathematical structure of the
Kullback-Leibler risk function, but also provides more intuitive understanding of its
application in model optimization.

Extension of Gaussian mixture model based on Kullback-Leibler risk
function
Mathematical form of Gaussian mixture model
The probability density function of the Gaussian mixture model can be expressed as:

pðxÞ ¼
XK
k¼1

pkNðxjlk;�kÞ (26)

Transition from Kullback-Leibler risk function to Gaussian mixture model
Let the original Kullback-Leibler risk function be LKLðy; ŷÞ, where ŷ ¼ f ðxÞ is the model’s
prediction for the input x. Under the Gaussian mixture model, f ðxÞ can be further
decomposed as:
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f ðxÞ ¼ EpðxÞ½gðxÞ� ¼
XK
k¼1

pkgkðxÞ (27)

where gkðxÞ represents the prediction of the kth Gaussian component.
We can then substitute this decomposition into LKLðy; ŷÞ to further derive the

expression of the risk function under the Gaussian mixture model. Specifically, we have:

LGMM
KL ðy; ŷÞ ¼

XN
i¼1

yi log
yibyi � ð1� yiÞ log 1� yi

1� byi
¼
XN
i¼1

yi log
yiPK

k¼1 pkgkðxiÞ
� ð1� yiÞ log 1� yi

1�PK
k¼1 pkgkðxiÞ

¼
XN
i¼1

yi log yi � yi log
XK
k¼1

pkgkðxiÞ
" #

þ ð1� yiÞ logð1� yiÞ � ð1� yiÞ log 1�
XK
k¼1

pkgkðxiÞ
 !

(28)

To sum up, by introducing the Gaussian mixture model into the Kullback-Leibler risk
function, we obtain a more complex but more expressive risk function form, denoted as

LGMM
KL ðy; ŷÞ. This provides more powerful tools for processing multi-modal data.

Fusion framework and optimization objective function
Continuing our discussion, assume we now have a deep neural network (DNN) that
includes layers of long short-term memory (LSTM). This network not only produces the
predictive output ŷ but also parameterizes a Gaussian mixture model by outputting
fpk;lk;�kg. For this setting, we define the following optimization objective function:

L ¼Eðx;yÞ�D LGMM
KL ðy; ŷÞ � k log pðxÞ� �

¼Eðx;yÞ�D

XN
i¼1

yi log
yibyi � ð1� yiÞ log 1� yi

1� byi
"

�k log
XK
k¼1

pkNðxjlk;�kÞ
 !#

¼Eðx;yÞ�D

XN
i¼1

yi log
yibyi � ð1� yiÞ log 1� yi

1� byi
"

�k
XK
k¼1

pk
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞdj�kj
q exp � 1

2
ðx � lkÞT��1

k ðx � lkÞ
� �0B@

1CA

(29)

Here, k is a tunable regularization factor used to balance the contribution between the
Kullback-Leibler risk and the Gaussian mixture model.D is the probability distribution of
the observed data. For this optimization objective function, we apply stochastic gradient
descent (SGD) or its related variants for solving. Meanwhile, the parameter k will be
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appropriately adjusted during the training process through cross-validation or other
means.

With this design, we have built an efficient predictive model that incorporates the
advantages of LSTM, the Kullback-Leibler risk function, and the Gaussian mixture model.
This model has high flexibility and accuracy and is particularly suitable for predicting
complex and multi-modal data, such as the salaries of college graduates.

ALGORITHM PSEUDOCODE AND COMPLEXITY ANALYSIS
Algorithm pseudocode: MLE and Jeffreys prior
Algorithm description. Line 1: Algorithm starts and sets some basic formatting
parameters. Lines 3–4: Defines the input dataset D and the output posterior model
parameters �̂post. Lines 5–6: Initializes the model parameters � and regularization
parameters k1; k2. Phase One: MLE Parameter Estimation. Lines 8–13: This part aims to
estimate model parameters using Maximum Likelihood Estimation (MLE). Line 9: Loop
until the MLE stopping criteria are met. Line 10: Compute the gradient of the objective
function. Line 11: Update � using LBFGS optimization algorithm. Line 12: Update
metrics for model complexity and adaptability. Line 13: Use the MLE estimates as initial
values for calculating Jeffreys prior. Phase Two: Bayesian Parameter Estimation Using
Jeffreys prior. Lines 15–21: This part aims to perform Bayesian parameter estimation
using Jeffreys prior. Line 16: Calculate the Fisher Information Matrix. Line 17: Calculate
Jeffreys prior. Lines 18-21: Update the posterior probability distribution. Line 19:
Compute the gradient of the posterior probability distribution. Line 20: Update using the
Metropolis-Hastings algorithm for MCMC. Line 21:Update the regularization parameters

k1; k2. Line 22: Calculate the optimal posterior parameters �̂post. Line 23: Return �̂post.

Algorithm complexity analysis: MLE Phase: If only LBFGS is used for maximum
likelihood estimation, the complexity could be very high, reaching Oðn2Þ or higher, where
n is the number of data points. In our integrated scheme, using the LBFGS optimization
algorithm, the complexity can be optimized to Oðn log nÞ, a significant improvement over
pure MLE. Jeffreys prior and Bayesian Update: The complexity of calculating the Fisher
Information Matrix is generally Oðp2nÞ, but since we already have the MLE initialization,
some calculations can be reused, thus potentially reducing the actual complexity. Because
the Metropolis-Hastings algorithm is usually only OðnÞ or Oðn log nÞ, and due to the
efficient MLE initialization and potential for parallel computing, the actual runtime may be
much lower than expected.

Considering both phases, due to efficient initialization and reuse of computations, the
overall time complexity can be optimized to approximately Oðn log nÞ, which is a
significant improvement over using any single method. This is especially important when
the data scale and model parameters are large.

Algorithm pseudocode: deep learning model based on Kullback-Lei-
bler risk function and Gaussian mixture model
In this section, we provide a detailed introduction on how to construct a deep learning
model that integrates LSTM networks, the Kullback-Leibler risk function (see Eq. (23)),
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and the Gaussian mixture model (see Eq. (26)). This model also incorporates the MLE and
Jeffreys prior methods mentioned in Algorithm 1, but places more emphasis on the
Kullback-Leibler risk function and Gaussian mixture model.

Regarding computational complexity, the algorithm mainly consists of three steps: The
first step is LSTM training with a time complexity of Oðn � hÞ, where n is the sequence
length and h is the dimension of the hidden layer. The second step involves Markov chain
Monte Carlo (MCMC) updates in the Gaussian mixture model (GMM) with a time
complexity of Oðk � dÞ, where k is the number of GMM components and d is the data
dimension. The third step is the computation of the Kullback-Leibler divergence gradient,
with a time complexity of OðnÞ. Therefore, the overall time complexity can be
approximated as OðT � ðn � hþ k � dÞÞ, where T is the total number of iterations. In terms
of space complexity, it mainly involves storing the model parameters and data, roughly
Oðhþ k � dÞ. It’s worth noting that the algorithm has high parallelism and is very well-
suited for large-scale and online learning scenarios, thus enhancing its efficiency and
flexibility.

Algorithm 1 Model parameter estimation using integrated MLE and Jeffreys prior.

1 1em

Data: Observed dataset D ¼ fðy1; x1Þ; . . . ; ðyN ; xNÞg
Result: Posterior model parameters �̂post

2 Initialize starting values for parameters �;

3 Initialize regularization parameters k1; k2;

4 Phase One: MLE Parameter Estimation;

5 while MLE stopping criteria not met do

6 Compute the gradient of the objective function (Eq.(15));

7 Update � using advanced optimization method LBFGS;

8 Update model complexity and adaptability metrics;

9 Use MLE results as initial values for Jeffreys Prior calculation: �init ¼ �̂;

10 Phase Two: Bayesian Parameter Estimation Using Jeffreys Prior;

11 Calculate Fisher Information Matrix Ið�initÞ, see Eq.(16);
12 Calculate Jeffreys Prior pð�Þ, see Eq. (17);
13 while Bayesian stopping criteria not met do

14 Compute the gradient of the posterior distribution using Eqs. (18) and (21);

15 Update using Metropolis-Hastings algorithm for MCMC;

16 Update k1; k2 to control model complexity;

17 Calculate optimal posterior parameters �̂post, see Eq. (22);

18 return �̂post
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THEOREMS AND PROOFS
Theorem and proof concerning the integration of maximum likelihood
estimation and Jeffreys prior
Theorem 1. Assume the observed dataset D ¼ fx1; x2; . . . ; xng is independently and
identically distributed. Then, after algorithm convergence, the parameter estimation �̂post

combining MLE and Jeffreys prior satisfies the following long formula:

lim
n!1P

1
n

Xn
i¼1

½log pðxij�̂MLEÞ � log pðxij�trueÞ�2
					

!
, e

 !

¼ lim
n!1P

1
n

Xn
i¼1

½log pðxij�̂postÞ � log pðxij�trueÞ�2
					

!
, e

 !
¼ 1

(30)

where e. 0 is any given positive number, pðxj�Þ is the data-generating model under the
given parameter �.
Proof. First, consider the consistency of MLE. Since the data is independently and
identically distributed, we have:

Algorithm 2 Deep learning model optimization based on Kullback-Leibler risk function and GMM.

1 1em

Data: Observation data set D ¼ fðy1; x1Þ; . . . ; ðyN ; xNÞg, posterior model parameters of Algorithm 1 �̂post

Result: Optimized model parameters ��

2 Initialize deep learning model parameters (including LSTM and GMM parameters);

3 Initialize regularization parameters k;

4 Phase 1: Pre-training deep learning model;

5 while Pre-training stopping criterion not reached do

6 Minimize the objective function L (Formula (29));

7 through stochastic gradient descent (SGD);

8 Phase 2: Model tuning and integration;

9 Set Kullback-Leibler risk function and Gaussian mixture model weights;

10 while Model tuning stopping criterion not reached do

11 Use the Formula (25) to calculate the Kullback-Leibler gradient;

12 MCMC update of GMM parameters using Metropolis-Hastings algorithm;

13 Integrate Algorithm 1 �̂post as prior information;

14 Update k to balance Kullback-Leibler risk and GMM (see Eqs. (28) and (29));

15 Calculate the optimal posterior parameters ��;

16 return ��
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lim
n!1 P

1
n

Xn
i¼1

½log pðxij�̂MLEÞ � log pðxij�trueÞ�2
					

!
, e

 !
¼ 1: (31)

Next, consider the Jeffreys prior. Since it is non-informative, it does not affect the
consistency of the parameters. Therefore, we also have:

lim
n!1 P

1
n

Xn
i¼1

½log pðxij�̂postÞ � log pðxij�trueÞ�2
					

!
, e

 !

¼
Z

1
n

Xn
i¼1

½log pðxij�Þ � log pðxij�trueÞ�2
					

					pð�jDÞd�

¼ 1:

(32)

From the above two points, it is clear that �̂post is a consistent estimator of �true.
Lemma 1. In the Jeffreys prior and Bayesian update phase, the sample sequence generated by
the Metropolis-Hastings algorithm follows a stationary distribution.

Proof. Let the Markov chain generated by the Metropolis-Hastings algorithm be
fX1;X2; . . . ;Xng, and its transition probability be PðXiþ1 ¼ x0jXi ¼ xÞ. Our goal is to
prove that this Markov chain will eventually converge to the posterior distribution.

First, according to the design of the Metropolis-Hastings algorithm, this Markov chain
is irreducible and aperiodic. This means that for any state x; x0, there exists a positive
integer N such that the N-step transition probability from x to x0 is positive. Second, the
Jeffreys prior is non-informative, and we combine it with the likelihood to form the
posterior distribution in Bayesian updates. Therefore, the stationary distribution of this
Markov chain is this posterior distribution.

Combining the above two points, according to the general theory of Markov chains, this
Markov chain will eventually converge to a unique stationary distribution. Mathematically,
this can be expressed as

lim
n!1 PðXn ¼ x0jX1 ¼ xÞ ¼ pðx0Þ; (33)

where pðx0Þ is the posterior distribution.
This shows that, after sufficient time, the sample sequence generated by the Metropolis-

Hastings algorithm will follow a stationary distribution, which is the posterior distribution
obtained from the Jeffreys prior and Bayesian updates.
Corollary 1. The model complexity of the method using integrated MLE and Jeffreys prior
for parameter estimation is computationally and statistically superior to methods using
either MLE or Jeffreys prior alone.

Proof. Consider that the algorithmic complexity of using MLE or Jeffreys prior alone is

Oðn2Þ. After integrating these two methods, through proper algorithm design and
optimization, the time complexity can be reduced to approximately Oðn log nÞ.

Specifically, let the algorithmic complexity of using MLE alone be Oðn2mÞ, using Jeffreys
prior alone be Oðn2j Þ, the complexity of the integrated method then becomes
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Oðn log nÞ ¼ minðOðn2mÞ;Oðn2j ÞÞ � D (34)

where D represents the reduced complexity from combining these two methods.
Additionally, we have already proved the consistency and optimality of the integrated

estimator �̂post in terms of statistical properties. This makes the integrated approach
superior to using either method individually.

Thus, the integrated approach is computationally and statistically superior to the
individual methods.

Theorems and proofs on deep learning models based on the Kullback-
Leibler risk function and GMM
Theorem 2. When the objective function L is convex, the optimization algorithm for deep
learning models based on the Kullback-Leibler risk function and GMM will converge to the
global optimum and satisfy

L�ðhÞ ¼ min
h2�

LðhÞ ¼ inf
h2�

LðhÞ þ
Z
X

DKL Ph�ðxÞjjPhðxÞð Þdx



þ
Z
X

Xk
i¼1

wiNðx;li;h;�i;hÞdx
)
;

(35)

where DKL is the Kullback-Leibler divergence, Nðx;l;�Þ is the Gaussian distribution,
and � is the parameter space.
Proof. Assume that the optimization algorithm for deep learning models based on the
Kullback-Leibler risk function and GMM does not converge to the global optimum.

Then, there exists a h0 2 � such that

Lðh0Þ,L�; (36)

and

L�ðh0Þ ¼L� � e

¼ inf
h2�

LðhÞ þ
Z
X

DKLðPh�ðxÞkPhðxÞÞdx

 �

� eþ
Z
X

Xk
i¼1

wiNðx;li;h0 ;
X

i;h0
Þdx;

(37)

where e. 0.
But this contradicts the fact thatL is a convex function, as in convex optimization, local

optima are global optima.
Therefore, our assumption is incorrect, proving that the optimization algorithm based

on the Kullback-Leibler risk function and GMM will converge to the global optimum.
Lemma 2. During the pre-training phase, the objective function LðhÞ monotonically
decreases with the number of iterations t, and satisfies
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DLðht; htþ1Þ ¼ Lðhtþ1Þ �LðhtÞ ¼ �gjjrLðhtÞjj2 þ Oðg2jjr2LðhtÞjj2Þ; (38)

where g is the learning rate, rL and r2L are the first and second derivatives of the
objective function, respectively.

Proof. To prove this lemma, we use mathematical induction.
First, the objective function at t ¼ 1 satisfies DLðh0; h1Þ, 0, as the SGD algorithm

updates the parameters in the negative direction of the gradient at the first step.
Assume that at the t-th step, DLðht�1; htÞ, 0.
Then, after the parameter update at the t þ 1-th step, the value of the objective function

Lðhtþ1Þ can be expressed as

Lðhtþ1Þ ¼ LðhtÞ � gjjrLðhtÞjj2 þ Oðg2jjr2LðhtÞjj2Þ
,LðhtÞ;

(39)

This implies that DLðht; htþ1Þ, 0, thus proving the lemma.

EXPERIMENTS
Dataset introduction
This article mainly uses two primary datasets, which are sourced from Baidu AI Studio and
Kaggle respectively. The core content of these datasets is to study how college students’
academic performance affects their salaries after graduation. Predicting post-graduation
salaries based on students’ academic performances has always been a topic of great interest.
To delve deeper into this area, we will explore the content, usage, and importance of these
datasets in predicting the salaries of college students.

Baidu AI Studio Dataset (Xufengnian, 2021): This dataset is provided by Baidu AI
Studio and includes information on students’ academic grades and their salaries after
graduation. The main fields include ID, salary, gender, educational background, etc., and it
is suitable for analyzing subject characteristics, the correlation between GPA and post-
graduation salaries, etc. Kaggle Dataset (CSAFRIT, 2021): This dataset is sourced from
Kaggle and is mainly used for evaluating the performance and post-graduation salaries of
higher education students. The data fields cover age, gender, types of scholarships, class
participation, etc., providing a comprehensive view of students’ academic performance.
Both datasets emphasize the potential relationship between students’ academic
performance and their salaries after graduation. These datasets offer valuable resources for
studying and understanding how college students’ academic performances affect their
post-graduation salaries. Through in-depth analysis of this data, various parties can better
predict and optimize the salary potential of college students, thus bringing long-term
benefits to students, educational institutions, and employers.

Experimental environment
Hardware configuration
High-performance computer configurations are required for deep learning for several
reasons: First, deep learning models usually contain a large number of parameters,
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involving dense matrix operations. Second, big data processing requires fast storage and
large RAM. Parallel computation is also a common requirement, and multi-core GPUs are
generally more efficient than CPUs. Moreover, complex models may need extended
periods for training, and high-performance hardware can shorten this cycle. Real-time
applications also require strong computational capabilities to ensure millisecond-level
response times. Special memory requirements in deep learning and dependencies on high-
speed data reading are also factors. Finally, high-performance hardware assists in model
debugging and multitasking parallel processing.

As shown in Table 2, this configuration provides a highly robust environment for
running deep learning code. In particular, the NVIDIA GeForce RXT 4090, with its
powerful CUDA cores and ample memory, offers significant performance advantages for
training large neural network models. The high-speed CPU ensures that data loading and
preprocessing will not become bottlenecks. The 64 GB of RAM allows for quick in-
memory processing of large datasets without having to frequently load data from the disk.

Software configuration
In this experiment, we use the Anaconda3 environment and various data science and
machine learning libraries (such as Torch, Numpy, etc.) to run a model based on LSTM.
The model predicts the academic performance and post-graduation salaries of college
students. Data preprocessing includes null value replacements, text-to-number
conversions, and normalization; the dataset is split into training and validation sets in a
70–30 ratio. We defined a custom data loader and LSTMmodel, used mean square error as
the loss function, and trained with the Adam optimizer.

Experimental analysis
In the employment salary prediction experiment, we employed an LSTM model built with
PyTorch and assessed our model through a variety of different evaluation metrics.

Table 2 Hardware configuration.

Hardware category Configuration Hardware category Configuration

CPU Series Intel core i9 13th Gen Cores/Threads 24 cores/32 threads

Memory type DDR5 5200 MHz Storage capacity 2 TB

GPU type Dedicated GPU GPU chip NVIDIA GeForce RTX 4090

VRAM capacity 24 GB Memory capacity 64 (32 GB � 2) GB

CPU series Intel core i9 13th Gen CPU model Intel core i9 13900 KF

CPU frequency 3 GHz Max turbo frequency 5.8 GHz

Cache L3 32 MB VRAM capacity 24 GB

Memory capacity 64 (32GB�2) GB Memory type DDR5 5200 MHz

Memory slots 4 DiMM slots Max memory capacity 128 GB

SSD description SSD solid state drive SSD capacity 2 TB

GPU chip NVIDIA GeForce RTX 4090 DirectX DirectX 12
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Basic metrics
First, we evaluated four different models using basic metrics, namely mean absolute error
(MAE) and the coefficient of determination (R2). MAE measures the average absolute
error between the model’s prediction and the actual value. R2 is a statistical metric that
describes the percentage of variance between the predicted and actual values and can also
adequately explain the variation in salary.

Among our four models, the MAE prediction results are shown in Fig. 1. Our method
has the lowest MAE value, which means that it is the most accurate in predicting salary. In
contrast, LSTM methods have the highest MAE value, indicating that their prediction
accuracy is low. In salary prediction, this means that a lower MAE value means that the
model’s prediction is closer to the actual salary, so Our method works better. From the
experimental results (R2) shown in Fig. 2, our method has the highest (R2) value, which
means that it can best explain the changes in salary, while LSTM methods. The (R2) value
is the lowest, indicating that it is not very effective in explaining salary. A (R2) value close
to 1 indicates that the model can explain the changes in salary well, while a value close to 0.
It means that the model has no explanatory power.

When we consider both MAE and R2, we can better assess the model’s performance. For
instance, although “Our method” performs best in terms of MAE, it also has the highest R2

value, suggesting that it can make accurate predictions and explain salary variations well.

Figure 1 The mean absolute error: our method exhibits the lowest mean absolute error (MAE) value, followed by Our method without
Kullback-Leibler-GMM, and then Our method without MLE-Jeffreys. In contrast, the LSTM method shows the highest MAE value, indicating
that our method is the most precise in predicting salaries. Full-size DOI: 10.7717/peerj-cs.1875/fig-1
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Quantile loss and evaluation
By comparing four LSTM models, we found that they perform differently in MAE and
(R2). To more fully assess the accuracy and risk of forecasting compensation, we introduce
two new metrics: Loss and Conditional Value-at-Risk (CVaR). Doing so can help
employers, job seekers and researchers more accurately understand salary changes.

Loss is a measure of how close a model’s predictions are to actual results, with lower loss
values representing more accurate predictions. CVaR is a risk assessment tool used to
quantify expected losses at a specific level of confidence. This is especially important for
companies to formulate compensation strategies: a high CVaR means a more conservative
strategy is needed, while a low CVaR may allow companies to formulate strategies with
more confidence.

In the salary prediction experiment, the experimental results are shown in Fig. 3.
Among them, our method has the lowest loss, indicating that it has the highest consistency
with real data when predicting employment salary. In contrast, LSTM methods have the
highest losses, indicating that their predictions are less consistent with the actual data. We
then used CVaR to measure the previous model, so we used CVaR to measure it. As shown
in Fig. 4, our method has the lowest CVaR value, which indicates that its prediction results
have the smallest risk or possibility of loss. On the other hand, LSTM methods have the
highest CVaR values, which means their predictions are riskier.

ll l

Figure 2 The coefficient of determination for this experiment: the (R2) value for LSTMmethods is the lowest, followed by our method without
MLE-Jeffreys, and then our method without Kullback-Leibler-GMM. In contrast, our method has the highest (R2) value, implying that it best
explains the variations in salaries. Full-size DOI: 10.7717/peerj-cs.1875/fig-2
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Figure 3 The loss for this experiment: our method has the lowest loss, followed by our method without Kullback-Leibler-GMM, and then our
method without MLE-Jeffreys. Conversely, the LSTMmethod exhibits the highest loss, suggesting that our method achieves the highest consistency
with the real data when predicting employment salaries. Full-size DOI: 10.7717/peerj-cs.1875/fig-3

Figure 4 The conditional value-at-risk for this experiment: our method demonstrates the lowest conditional value-at-risk (CVaR), followed by
our method without Kullback-Leibler-GMM, and then our method without MLE-Jeffreys. On the other hand, the LSTM method has the highest
CVaR, indicating that our method has the smallest risk or potential loss in its predictions. Full-size DOI: 10.7717/peerj-cs.1875/fig-4
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Stability and generalization metrics
Through in-depth analysis of indicators such as MAE, coefficient of determination, Loss,
and CVaR, we recognize that formulating a compensation strategy solely based on
prediction accuracy and risk is insufficient. Therefore, we introduce two novel metrics:
residual standard deviation and prediction stability. These metrics not only offer profound
insights into model errors but also aid in assessing the robustness of predictions. This
multi-dimensional evaluation approach enables companies to establish a more
comprehensive and flexible compensation strategy to effectively address various
challenges. The residual standard deviation serves as a standard measure for prediction
errors and accurately reflects the consistency of model predictions. Lower values imply
more precise and stable predictions. Prediction stability is used to assess whether the
model performs consistently across different scenarios—such as training, validation, and
test sets.

In our experimental residual standard deviation results as shown in Fig. 5, our method
has the lowest residual standard deviation, which means that it shows relatively consistent
and accurate performance in all predictions. On the contrary, LSTM methods have the
highest residual standard deviation, suggesting that their prediction results may be
scattered and less consistent with real data. The stability results of predicted values in our
experiments are shown in Fig. 6. Our method performs well in prediction stability. Its
predictions are maintained whether in different data sets or at different time points.

Figure 5 The residual standard deviation for this experiment: our method shows the lowest residual standard deviation, followed by our
method without Kullback-Leibler-GMM, and then our method without MLE-Jeffreys. Conversely, the LSTM method exhibits the highest
loss, indicating that our method maintains relatively consistent and accurate performance across all predictions.

Full-size DOI: 10.7717/peerj-cs.1875/fig-5
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Relatively stable performance. The prediction stability of LSTM methods is poor, which
may mean that the model is too complex or overfitted, resulting in inconsistent
performance on different data.

Execution time
In the employment compensation prediction experiment, we have already used multiple
evaluation metrics. As shown in Table 3, when using the same model but applying different

Figure 6 The stability predictions for this experiment: our method excels in prediction stability, followed by our method without Kullback-
Leibler-GMM, and then our method without MLE-Jeffreys. In contrast, the LSTM method demonstrates poorer prediction stability, whether
across different datasets or at different time points. Our method maintains relatively stable performance in its predictions.

Full-size DOI: 10.7717/peerj-cs.1875/fig-6

Table 3 Time overhead of different models on two datasets.

Time model Our
method

Our method
without KL

Our method
without MJ

LSTM method Our
method

Our method
without KL

Our method
without MJ

LSTM
method

-Dataset 1 -Dataset 1 -Dataset 1 -Dataset 1 -Dataset 2 -Dataset 2 -Dataset 2 -Dataset 2

Total run time (s) 182.2413 243.7124 307.2156 368.9417 204.1782 263.9125 324.8310 387.5102

Average time per round (s) 9.1121 12.1856 15.3608 18.4471 10.2089 13.1956 16.2416 19.3755
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algorithms, our method outperforms the other three models in both accuracy and
execution time. This phenomenon reveals a series of insights about algorithm selection,
performance, and efficiency, and the differences in accuracy and runtime become
particularly noteworthy.

Compared to our method, the run time of the other three algorithms is longer, possibly
because they are more complex in data processing, requiring more parameters and
computational steps. However, it should be noted that increased runtime does not
necessarily imply higher accuracy. Our method demonstrates significant advantages in
computational time, highlighting not only its algorithmic efficiency but also its ability to
converge in a shorter time frame.

Discussion
Starting salaries after graduation are often considered an important reflection of the quality
of university education and the individual efforts of students. Based on multiple studies
and data analyses, we have identified several key factors that influence the starting salaries
of graduates to varying degrees. First, the choice of major and industry clearly plays a
decisive role, especially in STEM (Science, Technology, Engineering, and Mathematics)
fields. Secondly, academic performance is another factor that cannot be ignored, as good
academic performance is often associated with higher salaries. Furthermore, internships
and practical work experience significantly enhance students’ competitiveness in the job
market.

Therefore, we arrive at the following discussion:

	 Our study is based solely on academic performance. We have found in our datasets that
in the first dataset, higher exam scores, a stronger pursuit of specialization, higher tier
cities of the college, and higher scores in AMCAT English, logical and quantitative
abilities are associated with higher salaries. In the second dataset, factors such as higher
scholarship types, more basic modes of transportation to university, simpler types of
university accommodation, longer weekly study hours, higher frequency of reading,
better exam preparation, and stronger classroom listening skills also lead to higher
salaries. This range of academic performance indicators demonstrates that our model
can use these factors to predict their future salaries and provide guidance and reminders
to students on what to do in school to achieve better salaries upon graduation. Our focus
extends beyond mere mathematical methods to solving real-world problems,
particularly how our mathematical approach can address the practical issue of
predicting graduate salaries.

	 Our datasets primarily focus on academic performance but do not fully cover aspects
like students’ economic status, job market trends, and psychological characteristics. The
first dataset only partially addresses the economic status and job market trends of some
students, such as the AMCAT personality test, conscientiousness, extraversion,
openness to experience, and test scores. The second dataset also only partially focuses on
aspects such as parental education level, number of siblings, family status, and parents’
occupations. Indeed, our datasets do not include students’ economic status, job market
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trends, and psychological characteristics, but our method still demonstrates
effectiveness in predicting salaries through academic performance. This limitation of
our study, not incorporating students’ economic status, job market trends, and
psychological traits, will be addressed in future work. We plan to conduct field research
combining students’ academic performance with their economic status, job market
trends, and psychological traits to comprehensively demonstrate the potential of our
method and provide more accurate predictions.

CONCLUSION
This study provides a comprehensive evaluation of the performance of multiple models in
employment salary prediction, including basic error metrics and more complex criteria for
risk and stability. Our method performs exceptionally well on all these evaluation
standards, demonstrating its outstanding performance not only in prediction accuracy but
also in terms of risk and stability. We hope that this study can provide direction and
broaden the horizons for future research in this field.
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