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ABSTRACT
Epilepsy is a chronic, non-communicable disease caused by paroxysmal abnormal
synchronized electrical activity of brain neurons, and is one of the most common
neurological diseases worldwide. Electroencephalography (EEG) is currently a
crucial tool for epilepsy diagnosis. With the development of artificial intelligence,
multi-view learning-based EEG analysis has become an important method for
automatic epilepsy recognition because EEG contains difficult types of features such
as time-frequency features, frequency-domain features and time-domain features.
However, current multi-view learning still faces some challenges, such as the
difference between samples of the same class from different views is greater than the
difference between samples of different classes from the same view. In view of this, in
this study, we propose a shared hidden space-driven multi-view learning algorithm.
The algorithm uses kernel density estimation to construct a shared hidden space and
combines the shared hidden space with the original space to obtain an expanded
space for multi-view learning. By constructing the expanded space and utilizing the
information of both the shared hidden space and the original space for learning, the
relevant information of samples within and across views can thereby be fully utilized.
Experimental results on a dataset of epilepsy provided by the University of Bonn
show that the proposed algorithm has promising performance, with an average
classification accuracy value of 0.9787, which achieves at least 4% improvement
compared to single-view methods.

Subjects Bioinformatics, Artificial Intelligence, Data Mining and Machine Learning, Data Science,
Databases
Keywords Multi-view learning, EEG, Epilepsy, Shared hidden space

INTRODUCTION
Epilepsy is a chronic, non-infectious but genetic disease that affects all ages and is caused
by paroxysmal abnormal hypersynchrony of brain neurons. It is one of the most common
neurological diseases globally. Due to the diversity and complexity of the clinical
manifestation of epilepsy, it is often misdiagnosed or missed. Repetitive seizures can have a
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persistent negative impact on the patient’s mental and cognitive functions, even
threatening their life. Therefore, the study of epilepsy diagnosis and treatment has
important clinical significance. The brain electroencephalogram (EEG) is a microvolt-level
electrical signal generated by synchronized neurons in the brain when electrodes are placed
on the scalp at specific locations. As the most commonly used and cheapest non-invasive
brain wave detection method, EEG has a history of over 70 years of research and is the
most effective method for diagnosing epilepsy-related diseases, such as identifying
seizures, predicting their occurrence, and localizing the affected areas. With the
development of artificial intelligence, machine learning models are extensively used in
automatic epilepsy recognition. Feature representation is a crucial step in machine
learning. Research has indicated that EEG signals can be represented by both linear and
non-linear features. Time-domain features are the fundamental features in EEG signal
processing, primarily extracted by directly observing and calculating relevant
characteristics from the raw signal. Their advantages lie in their simplicity of computation
and ease of interpretation. However, the non-stationarity of EEG signals, individual
differences, and external interferences can easily affect time-domain features. Frequency-
domain features are based on the significant changes in energy in EEG during epileptic
seizures, assuming that the background EEG is approximately stationary. Most frequency-
domain features are derived from the study of signal power spectra, and various parameter
estimation methods can be used for extracting spectral features. The accuracy of these
parameters also affects the quality of frequency-domain features. If we consider the
amount of information contained in the features, neither pure time-domain features nor
frequency-domain features can comprehensively characterize an EEG signal. Additionally,
EEG analysis based on the assumption of stationarity is not rigorous. Therefore,
researchers have turned their attention to time-frequency analysis methods, such as time-
frequency transformations, to re-represent non-stationary EEG signals and extract
corresponding features. In addition to the aforementioned linear features, many studies
also consider the brain as a nonlinear system and extract corresponding nonlinear features
from descriptions of complexity, persistence, synchrony, and other changes in the system.
These features are not affected by the non-stationarity of EEG signals and offer more
flexibility in dealing with issues such as multi-channel correlation and channel loss. Based
on the aforementioned linear or nonlinear feature representations, numerous scholars
have constructed machine learning models for the automatic diagnosis of epilepsy. For
example, the study conducted by Li, Chen & Zhang (2016) employed a dual-tree complex
discrete wavelet transform to extract nonlinear features from individual components. The
researchers utilized an ANOVA analysis to select relevant classification features, including
the Hurst parameter and fuzzy entropy. For the classification task, a support vector
machine (SVM) was employed. Reddy & Rao (2017) computed the central correlated
entropy of wavelet components obtained from tunable Q-factor wavelet transform, and
utilized models such as RF, LR, and multi-layer perceptron for epileptic signal recognition.
Jaiswal & Banka (2017) proposed a feature extraction method called local gradient pattern
transformation and applied classification methods such as k-nearest neighbors, SVM, and
decision trees for epilepsy detection.
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The aforementioned machine learning-based epilepsy diagnostic models utilize single
EEG feature representation for epilepsy diagnosis, which have low model complexity and
high interpretability. However, these models rely on expert knowledge, and deep features
are not easily observed and extracted. As a result, the accuracy is limited. Multi-view
learning (Zhao et al., 2017; Jiang et al., 2020; Zhang, Chung &Wang, 2018; Yan et al., 2021)
improves the classification accuracy of models by utilizing the differences and similarities
between multiple different views based on the principles of view consistency and
complementarity. For example, Tian et al. (2019) utilized a convolutional neural network
(CNN) model to extract deep features from EEG signals in the time domain, frequency
domain, and time-frequency domain. These features were constructed as three views, and
multi-view learning was conducted using a multi-view Takagi-Sugeno-Kang (TSK) fuzzy
system, which improved the classification and detection performance compared to a single
view. Yuan et al. (2018) implemented a multi-view epilepsy automatic diagnosis by
utilizing channel characteristics and intra-channel time-frequency features of multi-
channel EEG signals extracted using autoencoder (AE) through channel perception
technology. Liu & Li (2019) utilized a user-sensitive model for channel selection and
extracted time-frequency features from each sub-band of the selected channels, forming
multi-view features. They extracted numerical and morphological features using a
common spatial projection matrix and utilized a maximum average difference
autoencoder to extract inter-channel time-frequency domain features, enabling automatic
diagnosis of epilepsy with multiple views. These effective models based on collaborative
regularization can construct a common feature space for multi-view learning. However,
these models also have certain limitations. While these methods construct the density
distributions of each view solely based on the corresponding observed data, they overlook
the correlated information among all views. Additionally, they separate the original sample
space from the common space obtained through mapping. This approach solely utilizes
the common space for learning, neglecting the discriminative information present in the
original space.

To overcome such shortcomings, in this study, a shared hidden feature space method is
constructed by using kernel density estimation, and it is extended to an expanded space by
combining it with the original space. Then, SVM is introduced and a multi-view SVM
based on the shared hidden space is proposed to take a careful consideration of the
differences and relationships between samples from different views. Through experimental
verification on different multi-view data sets, the effectiveness of this method in addressing
the challenges mentioned above has also been confirmed. The contributions of this study
are mainly reflected in the following aspects:

(1) The kernel density estimation (KDE) technique is used to construct a new shared
hidden space, and it is combined with the original space to construct an expanded space for
multi-view learning, thus being able to effectively address the special issue mentioned
above on multi-view learning.

(2) By constructing the expanded space and utilizing the information of both the shared
hidden space and the original space for learning, thereby fully utilizing the relevant
information of samples within and across views, we can effectively solve the problem that
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the difference between samples of the same class from different views is greater than the
difference between samples of different classes from the same view.

(3) During the optimization phase, the proposed model is transformed into a classical
Quadratic Programming (QP) problem, allowing for the utilization of pre-existing
optimization methods that offer both high effectiveness and theoretical guarantees. This
transformation enables the application of readily available optimization techniques, which
have proven to be highly efficient in solving QP problems.

The following sections are organized as follows. In ‘Data’, we introduce the EEG data
used in this study and the corresponding multiple feature space representation. In
‘Methodology’, we present the proposed model. In ‘Experimental studies’, experimental
results are reported and in the last section, the whole study is summarized.

DATA
The EEG data of epileptic patients used in this study was authorized and provided by the
University of Bonn in Germany (Andrzejak et al., 2001), as shown in Table 1. The dataset
included volunteers who could be divided into five groups, namely A, B, C, D, and E. Each
group contained 100 single-channel EEG segments lasting 23.6 s, with a sampling rate of
173.6 Hz. The EEG signals of groups A and B were collected from healthy volunteers in a
relaxed and conscious state, while the eyes of the volunteers were open during the data
collection of group A and closed during the data collection of group B. The remaining
three groups’ signals were collected from epileptic volunteers, with group C’s signals
collected from the hippocampi of the two brain hemispheres, and group D’s signals
collected from the epileptic foci. The signals of groups C and D were measured during
periods without epileptic seizures, while group E collected signals during epileptic seizures.
Figure 1 provides an example of EEG signals from five groups.

Frequency-domain representation extraction
Frequency-domain feature representation originates from the significant changes in
energy in EEG during epileptic seizures. To extract frequency-domain representation from
EEG signals, the Daubechies4 wavelet coefficients are utilized to decompose the original
signals into a series of binary wavelets. The frequency band of each Daubechies4 wavelet
coefficient is provided in Table 2. By applying these settings, the EEG signals are divided
into six distinct frequency bands. An illustrative example of the decomposed signals from
group E is depicted in Fig. 2.

Time-domain feature extraction
Time-domain features are the fundamental features in EEG signal processing, primarily
extracted by directly observing and calculating relevant characteristics from the raw signal.
Their advantages lie in their simplicity of computation and ease of interpretation for
researchers. In this study, we employ kernel principal component analysis (KPCA)
(Li et al., 2022b) on the raw EEG signals to enable complex nonlinear mapping. Previous
research has shown that KPCA features offer discriminative patterns suitable for pattern

Hu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1874 4/18

http://dx.doi.org/10.7717/peerj-cs.1874
https://peerj.com/computer-science/


Table 1 Basic collection information of epilepsy EEG signals.

Group #Volunteers Collection information

A 100 This group was collected from a group of healthy volunteers who were instructed to keep their eyes open during the recording
process. These volunteers did not have any known neurological or psychiatric disorders and were not experiencing any
abnormal symptoms at the time of data collection.

B 100 This group was collected from a group of healthy volunteers under conditions where they kept their eyes closed.

C 100 This group was collected from the hippocampal formation of the contralateral hemisphere of the brain during seizure-free
intervals. These samples were obtained when the patient was not experiencing any epileptic seizures.

D 100 This group was collected from the epileptogenic zone during periods of seizure freedom. This implies that the recordings were
obtained when the patient was not experiencing seizures.

E 100 The group was collected during seizure activity phase offering a unique opportunity to study the dynamics and temporal
dynamics of epileptic seizures, paving the way for the development of more accurate and reliable seizure detection and
prediction algorithms.

Figure 1 EEG signals from five groups. Full-size DOI: 10.7717/peerj-cs.1874/fig-1

Table 2 Frequency band of each Daubechies4 wavelet coefficient.

Coefficient Frequency band

Daubechies4 (4, 0) 0–2 Hz

Daubechies4 (4, 5) 2–4 Hz

Daubechies4 (4, 4) 4–8 Hz

Daubechies4 (4, 3) 8–15 Hz

Daubechies4 (4, 2) 16–30 Hz

Daubechies4 (4, 1) 31–60 Hz
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recognition. An illustration depicting an example of KPCA features from group E can be
observed in Fig. 3.

Time-frequency representation extraction
Pure time-domain or frequency-domain feature representations alone cannot
comprehensively characterize an EEG signal, and EEG analysis based on the assumption of
stationarity is not rigorous. Therefore, researchers have turned their attention to time-
frequency analysis methods, such as time-frequency transformations, to re-represent non-
stationary EEG signals and extract corresponding features. To capture time-frequency
representation, researchers often employ the short-time Fourier transform (STFT)
(Li et al., 2022a). STFT allows for the analysis of how the frequency content of a signal
changes over time. It can be formulated as follows:

Ftime�fre time; freð Þ ¼ ∫þinf�inf x timeð Þg time� uð Þe�j2p�fre�timed timeð Þ: (1)

In the context of EEG signal analysis, Eq. (1) represents the transformation of
continuous EEG signals, denoted as x timeð Þ, into the time-frequency plane using the

Figure 2 Example of frequency-domain representation. Full-size DOI: 10.7717/peerj-cs.1874/fig-2

Figure 3 Example of time-domain representation. Full-size DOI: 10.7717/peerj-cs.1874/fig-3
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function g time� uð Þ and a limited width window centered around u. This transformation,
referred to as Ftime�fre time; freð Þ, provides a means to examine the time-varying nature of
the EEG signals, revealing local spectrum discrepancies at different time points. To achieve
this, the EEG signals undergo partitioning into several segments of local stationary signals
using STFT. Through this process, the time-varying characteristics of the EEG signals are
captured, highlighting variations in the spectrum. The extraction of six energy bands as
features is accomplished using Eq. (1), which takes into account the observed
discrepancies. A visualization of these six energy bands, exemplified by group E, is
illustrated in Fig. 4.

METHODOLOGY
In this section, we will design a shared hidden space-driven multi-view learning method to
fuse time-frequency representation, frequency-domain representation and time-domain
representation.

Construction of shared hidden feature space
Suppose that � 2 Rr�d is an orthogonal matrix subject to ��T ¼ I 2 Rr�r ,
f A ¼ fxAi ; yijxAi 2 Rd; i ¼ 1; 2; . . . ;Ng represents one kind of feature space, e.g., time-

domain feature space, and f B ¼ fxBi ; yijxBi 2 Rd; i ¼ 1; 2; . . . ;Ng represents another kind
of feature space, then the hidden feature space of f A and f B can be generated by �xAi 2 Rr

and �xBi 2 Rr , respectively, where r represents the number of hidden features. To obtain a
consistent hidden feature space between �xAi and �xBi , it is expected that the difference
between them should be minimized as much as possible. Kernel density estimation (KDE),
which is one of the non-parametric estimation methods in probability theory, is usually
used to estimate the unknown probability density function (Wang, Wang & Chung, 2013).
For a training set X ¼ fxi; yijxi 2 Rd; i ¼ 1; 2; . . . ;Ng, its corresponding kernel density
estimation function can be expressed as

P xð Þ ¼ 1
N

XN
i¼1

d2K
x � xi
d

� �
; (2)

Figure 4 Example of time-frequency representation. Full-size DOI: 10.7717/peerj-cs.1874/fig-4
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where d is the kernel width, K �ð Þ is the kernel function. If the Gaussian kernel function is

adopted, then Eq. (2) can be updated as P xð Þ ¼ 1
N

XN
i¼1

1

d
ffiffiffiffiffi
2p
p exp � 1

2
x � xi
d

� �2
� �

:

Therefore, the kernel density estimation of �xAi and �xBi can be expressed as follows when
using the Gaussian kernel function, respectively,

�k�x � �xAi k2
2d2

PAð~xÞ ¼ PAð�xÞ ¼ 1

N � d ffiffiffiffiffi
2p
p

XN
i¼1

e; (3)

�k�x � �xBi k2
2d2

PBð~xÞ ¼ PBð�xÞ ¼ 1

N � d ffiffiffiffiffi
2p
p

XN
i¼1

e: (4)

In this study, the difference between PA ~xð Þ and PB ~xð Þ is measured by the mean square
error, that is

J ¼ ∫ PA ~xð Þ � PB ~xð Þð Þ2dx: (5)

By minimizing J , the two-view data xAi and xBi can be made to have the maximum
commonality in the shared hidden space, and thus the challenge of excessive variability
between samples from different views can be addressed. In order to solve Eq. (6), we

suppose that G �x;�xi; d
2� � ¼ 1

d
ffiffiffiffiffi
2p
p e�

�x��xi2
2d2 , then PA ~xð Þ and PB ~xð Þ can be updated as

PAð~xÞ ¼ 1
N

PN
i¼1 G �x�xAi ; d

2� �
and PBð~xÞ ¼ 1

N

PN
i¼1 G �x�xBi ; d

2� �
. Therefore, Eq. (5)

can be computed by J ¼ ∫PA ~xð Þdx � 2∫PA ~xð ÞPB ~xð Þdx þ ∫PB ~xð Þdx. According to Wang,
Wang & Chung (2013), Hansen, Jaumard & Xiong (1994), we have

∫G x; xi; d
2
1

� �
G x; xj; d

2
2

� �
dx ¼ G xi; xj; d

2
1 þ d22

� �
, Therefore, we have the following

equations,

∫P2
Að~xÞdx ¼

1

N2

XN
i¼1

XN
j¼1

Gð~xAi ; ~xAj ; 2d2Þ ¼
1
N

XN
i¼1

1
N

XN
j¼1

Gð~xAi ; ~xAj ; 2d2Þ
" #

(6)

∫P2
Bð~xÞdx ¼

1

N2

XN
i¼1

XN
j¼1

Gð~xBi ; ~xBj ; 2d2Þ ¼
1
N

XN
i¼1

1
N

XN
j¼1

Gð~xBi ; ~xBj ; 2d2Þ
" #

(7)

∫PAð~xÞPBð~xÞdx ¼ 1

N2

XN
i¼1

XN
j¼1

Gð~xAi ; ~xBj ; 2d2Þ (8)

where 1
N

PN
j¼1 G ~xAi ; ~x

A
j ; 2r

2
� �

can be taken as another estimation of PA ~xAi
� �

. Therefore,

∫P2
A ~xð Þdx can be estimated by 1

N

PN
j¼1 PA ~xAi

� �
, and further

1
N
. Similarly, ∫P2

B ~xð Þdx can be

estimated by
1
N
. Thus, we finally have J � 1

N
þ 1
N
� 2
N2

G ~xAi ; ~x
B
j ; 2d

2
� �

. Therefore, we

have the following objective,

argmin
�

J � argmin
�

XN
i¼1

XN
j¼1

G ~xAi ; ~x
B
j ; 2d

2
� �

s:t:��T ¼ Ir�r

(9)

Hu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1874 8/18

http://dx.doi.org/10.7717/peerj-cs.1874
https://peerj.com/computer-science/


However, it is difficult to solve Eq. (9) directly. Thus, Taylor expansion can be used for
getting an approximate solution. Hence, we have

G ~xAi ; ~x
B
j ; 2d

2
� �

¼ 1ffiffiffiffiffi
2p
p

d
e
�
�xAi � �xBj

2

4r2 � 1ffiffiffiffiffi
2p
p

d
1� �xAi � �xBj

� �2
� �

(10)

Therefore, Eq. (9) can be further updated as

argmin
�

XN
i¼1

XN
j¼1

�xAi � �xBj

� �2
; s:t:��T ¼ Ir�r (11)

in Eq. (11), implicit feature transformation matrix � still cannot be solved directly, but can
be solved by gradient descent method. Thus, Eq. (11) can be updated as

J ¼ argmin
�

XN
i¼1

XN
j¼1

xAi
� �T

�T�xAi þ xBj

� �T
�T�xBj � 2 xAi

� �T
�T�xBj

��

s:t: ��T ¼ Ir�r

(12)

The partial derivative of J w.r.t. � is

@J
@�
¼

XN
i¼1

XN
j¼1

2�xAi xAi
� �T þ 2�xBj xBj

� �T
�

�
2� xAi xAi

� �T þ xBj xBj

� �T
� ��

(13)

Then the transformation matrix � can be solved by gradient descent method, that is,

� �� h
@J
@�

Ir�r � ��T� � ¼ �� hr� (14)

where h is the step size that can be solved by

g ¼
XN
i¼1

XN
j¼1

xAi
� �T

�Tr�þr�T�
� �

xAi þ
�

xBj

� �T
�Tr�þr�T�
� �

xBj

�
2 xAi
� �T

�Tr�þr�T�
� �

xBj

�
PN
i¼1

PN
j¼1

2ð xAið ÞTr�Tr�xAi
þ xBj

� �T
r�Tr�xBj � 4 xAi

� �Tr�Tr�xBj
� (15)

According to the above analysis and derivation, the algorithm for solving implicit
feature transformation matrix � is described as follows.

Multi-view learning based on shared hidden feature space
After determining the shared hidden space between two views, the extended space can be
generated by combining the original space and the shared hidden space. Then, a multi-
view classifier based on SVM is designed for multi-view data classification in the extended
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space. In existing multi-view learning mechanisms, it is generally assumed that each view
can provide a classifier containing specific information, and classifiers constructed from
different view tend to be consistent. Additionally, since views can provide specific
information to each other, the proposed model establishes the objective function by
considering the mutual information between two views. In summary, the proposed model,
based on SVM, restructures the slack variables on each view, and then narrows the gap
between the two views by using the corresponding regularization term. The objective
function of multi-view learning based on shared hidden feature space can be formulated as

arg min
wA;wB;vA;vB;bA;bB

1
2
k wAk2 þ 1

2
k wBk2 þ 1

2
k vAk2 þ 1

2
k vBk2 þ CA

XN
i¼1

nAi

þ CB
XN
i¼1

nBi þ k k vA � vBk2

s:t:yiðwT
AfðxAi Þ þ vTAfð�xAi Þ þ bAÞ � 1� nAi

yiðwT
BfðxBi Þ þ vTBfð�xBi Þ þ bBÞ � 1� nBi

nAi ; n
B
i � 0; i ¼ 1; 2; . . . ;N

(16)

where k, CA and CB are the regularization parameters. Observe that Eq. (16) consists of
three parts: the first four terms reflect the outcome risk in the original feature space and the
shared hidden space respectively; the second two terms represent the empirical risk; and
the third term reflects the difference between the two views in the shared hidden space. The
objective function in Eq. (16) strengthens the constraints based on the traditional SVM
through the implicit mapping, so that the probability distributions of data from different
views in the shared hidden space are as consistent as possible, which can well solve the
problem described at the beginning of this study. In order to solve Eq. (16) efficiently, the
relevant Lagrangian multipliers are introduced according to the Lagrangian optimization
theory, hence Eq. (16) can be converted into the corresponding dual form as follows. The
Lagrangian function corresponding to Eq. (16) is

L ¼ 1
2
k wAk2 þ 1

2
k wBk2 þ 1

2
k vAk2 þ 1

2
k vBk2 þ CA

XN
i¼1

nAi

þ CB
XN
i¼1

nBi þ k k vA � vBk2

þ
XN
i¼1

aAi ð1� nAi � yiðwT
AfðxAi Þ þ vTAfð�xAi Þ þ bAÞÞ

þ
XN
i¼1

aBi ð1� nBi � yiðwT
BfðxBi Þ þ vTBfð�xBi Þ

þ bBÞÞ �
XN
i¼1

lAi n
A
i �

XN
i¼1

lBi n
B
i

(17)
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where aAi � 0, aBi � 0, lAi � 0, and lBi � 0 are Lagrangian multipliers. By setting the
partial derivatives of Lagrangian function L with respect to wA, wB, vA, vB, bA, bB, n

A
i , and

nBi to 0, we have

wA ¼
XN
i¼1

aAi yif xAi
� �

; wB ¼
XN
i¼1

aBi yif xBi
� �

; (18)

vA ¼ 1þ 2k
1þ 4k

XN
i¼1

aAi yif xAi
� �þ 2k

1þ 4k

XN
i¼1

aBi yif xBi
� �

; (19)

vB ¼ 1þ 2k
1þ 4k

XN
i¼1

aBi yif xBi
� �þ 2k

1þ 4k

XN
i¼1

aAi yif xAi
� �

; (20)

XN
i¼1

aAi yi ¼ 0;
XN
i¼1

aBi yi ¼ 0; (21)

CA ¼ aAi þ uAi ; CB ¼ aBi þ uBi (22)

By submitting Eqs. (18–22) to Eq. (16), we have the dual problem of Eq. (24), which can
be defined as

argmax
~a
� 1
2
~aT~aþ ~aT1:s:t:~aTf ¼ 0; f ¼ yT; yT

	 
T
~ai0;8i (23)

where

~a ¼ aA1 ; a
A
2 ; . . . ; a

A
N ; a

B
1 ; a

B
2 ; . . . ; a

B
N

	 
T
; (24)

KA ¼ K xA; xA
� �

yyT þ 1þ 2k
1þ 4k

K �xA;�xA
� �

yyT (25)

KB ¼ K xB; xB
� �

yyT þ 1þ 2k
1þ 4k

K �xB;�xB
� �

yyT (26)

KAB ¼ 2k
1þ 4k

K �xA;�xB
� �

yyT (27)

Algorithm 1 Shared hidden feature space generation.

Input: xAi , xiB, and y ¼ yi½ �i¼1;2;...;N
Output: �

Procedures:

1. Initialize �0 2 Rr�d , t ¼ 0, itermax , d ¼ 1e� 6.

2. Repeat:

3. t ¼ t þ 1.

4. Compute
@J
@�

and h by Eqs. (13) and (15).

5. Update � tð Þ by Eq. (14).

6. Until � tð Þ � � t � 1ð Þ 	 d or t > itermax
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K ¼ KA KAB

KAB KB

� �
(28)

y ¼ y1; y2; . . . ; yN½ �T (29)

and K is the kernel function. It is obvious that the optimization of Eq. (23) can be
considered as a QP problem, which can be solved according to Deng et al. (2013). The
decision function of the proposed model in this study is defined as

f xð Þ ¼ 1
2

wT
Af xA

� �þ vTAf �xA
� �þ bA þ wT

Bf xB
� �þ vTBf �xB

� �þ bB
��

(30)

The algorithm of multi-view learning based on shared hidden feature space can be
obtained, as shown in Algorithm 2. From Algorithm 2, we can find that the time
complexity is mainly contributed by steps 1, 3 and 4. The time complexity of Algorithm 1
is O Nrd þ r2ð Þ: The time complexity of step 3 is O r þ dð Þ2� �

. The time complexity of step
4 is O N2ð Þ. Therefore, the time complexity of Algorithm 2 is

O Nrd þ r2 þ r þ dð Þ2 þ N2
� �

:

EXPERIMENTAL STUDIES
Settings
To observe the merits of the proposed model, k-nearest neighbor (KNN) (Liu & Liu, 2016),
support vector machine (SVM) (Liu & Liu, 2016), SVM2K (Farquhar et al., 2005), multi-
view L2-SVM (MV-L2-SVM) (Huang, Chung & Wang, 2016), and alternative multi-view
MED (AMVMED) (Chao & Sun, 2015) are introduced for comparison studies. Accuracy is
used as the evaluation indicator in this study. SVM, SVM2K, MV-L2-SVM, and 2V-SVM-
SH are all trained using a Gaussian kernel for experimentation. For all methods, ten-fold
cross-validation (CV) is used to determine the optimal parameters. Table 3 provides the
specific parameters and ranges used for each method. All experiments are conducted on a
PC with a 16-core CPU with a clock speed of 3.40 GHz and 32 GB of memory. The
programming environment was Matlab R2016a.

Algorithm 2 Multi-view learning based on shared hidden feature space.

Input: training samples of view-1: fxAi ; yig, training samples of view-2: fxBi ; yig, regularized parameters CA; CB and k

Output: wT
A, w

T
B , bA, bB, vA and vB

Procedures:

1. Use Algorithm 1 to obtain �

2. Use � to obtain the shared hidden space

3. Solve the ~ai according to Eq. (23)

4. Solve the wT
A, w

T
B , bA, bB, vA and vB by Eqs. (18)–(22)

5. Construct the decision function based on wT
A, w

T
B , bA, bB, vA and vB
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Table 3 Parameter settings.

Method Parameter settings

KNN k ∈{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
SVM C ∈{2e−8, 2e−7, …, 2e0, 2e1, …, 2e7, 2e8}, σ ∈{2e−8, 2e−7, …, 2e0, 2e1, …, 2e7, 2e8}

SVM-2K CA ∈{2e−8, 2e−7,…, 2e0, 2e1,…, 2e7, 2e8}, CB ∈{2e−8, 2e−7,…, 2e0, 2e1,…, 2e7, 2e8}, D ∈{2e−5, 2e−4,…, 2e0, 2e1,…, 2e4, 2e5},σ
∈{2e−8, 2e−7, …, 2e0, 2e1, …, 2e7, 2e8}

MV-L2-SVM CA ∈{2e−8, 2e−7, …, 2e0, 2e1, …, 2e7, 2e8}, CB ∈{2e−8, 2e−7, …, 2e0, 2e1, …, 2e7, 2e8}, σ ∈{2e−8, 2e−7, …, 2e0, 2e1, …, 2e7, 2e8}

AMVMED CA ∈{2e−8, 2e−7, …, 2e0, 2e1, …, 2e7, 2e8}, CB∈{2e−8, 2e−7, …, 2e0, 2e1, …, 2e7, 2e8}, γ ∈{0.1, 0.2, …, 0.9}

Proposed
model

CA ∈{2e−8, 2e−7,…, 2e0, 2e1,…, 2e7, 2e8}, CB ∈ {2e−8, 2e−7,…, 2e0, 2e1,…, 2e7, 2e8}, σ ∈{2e−8, 2e−7,…, 2e0, 2e1,…, 2e7, 2e8}, λ
∈{0.1, 0.2, …, 0.9, 1};

Table 4 Two-view learning scenarios.

Datasets Classification tasks Views (view-A, view-B) #Sample size

DS1 AB vs CDE WPD, STFT 500

DS2 AB vs CDE WPD, KPCA 500

DS3 AB vs CDE STFT, KPCA 500

DS4 AB vs CD WPD, STFT 400

DS5 AB vs CD WPD, KPCA 400

DS6 AB vs CD STFT, KPCA 400

DS7 AB vs DE WPD, STFT 400

DS8 AB vs DE WPD, KPCA 400

DS9 AB vs DE STFT, KPCA 400

DS10 AB vs CE WPD, STFT 400

DS11 AB vs DE WPD, KPCA 400

DS12 AB vs CE STFT, KPCA 400

Table 5 Classification performance in terms of accuracy on all multi-view learning scenarios.

Datasets KNN_A
(KNN on view-A)

KNN_B
(KNN on view-B)

SVM_A
(SVM on view-A)

SVM_B
(SVM on view-B)

SVM-2K MV-L2-SVM AMVMED Proposed
model

DS1 0.9098 (0.0019) 0.9176 (0.0045) 0.9432 (0.0076) 0.9521 (0.0087) 0.9754 (0.0063) 0.9543 (0.0065) 0.9643 (0.0043) 0.9876 (0.0023)

DS2 0.9213 (0.0032) 0.9098 (0.0021) 0.9583 (0.0065) 0.9321 (0.0087) 0.9654 (0.0063) 0.9431 (0.0065) 0.9546 (0.0043) 0.9768 (0.0023)

DS3 0.9223 (0.0034) 0.9098 (0.0021) 0.9345 (0.0022) 0.9321 (0.0087) 0.9654 (0.0023) 0.9437 (0.0013) 0.9554 (0.0063) 0.9764 (0.0034)

DS4 0.9214 (0.0034) 0.9097 (0.0011) 0.9067 (0.0073) 0.9164 (0.0027) 0.9567 (0.0032) 0.9511 (0.0023) 0.9598 (0.0044) 0.9690 (0.0036)

DS5 0.9214 (0.0034) 0.9481 (0.0023) 0.9875 (0.0046) 0.9467 (0.0056) 0.9892 (0.0017) 0.9564 (0.0054) 0.9578 (0.0023) 0.9743 (0.0045)

DS6 0.9324 (0.0052) 0.9481 (0.0023) 0.9875 (0.0046) 0.9467 (0.0056) 0.9653 (0.0018) 0.9511 (0.0034) 0.9587 (0.0033) 0.9811 (0.0056)

DS7 0.9331 (0.0026) 0.9325 (0.0026) 0.9481 (0.0017) 0.9435 (0.0037) 0.9563 (0.0032) 0.9673 (0.0026) 0.9543 (0.0046) 0.9781 (0.0015)

DS8 0.9331 (0.0026) 0.9221 (0.0025) 0.9481 (0.0017) 0.9387 (0.0026) 0.9612 (0.0018) 0.9671 (0.0056) 0.9409 (0.0055) 0.9812 (0.0035)

DS9 0.9631 (0.0015) 0.9221 (0.0025) 0.9511 (0.0090) 0.9387 (0.0026) 0.9654 (0.0143) 0.9786 (0.0087) 0.9765 (0.0049) 0.9760 (0.0054)

DS10 0.9318 (0.0079) 0.9543 (0.0056) 0.9345 (0.0054) 0.9245 (0.0064) 0.9534 (0.0048) 0.9501 (0.0047) 0.9534 (0.0019) 0.9756 (0.0087)

DS11 0.9134 (0.0078) 0.9215 (0.0056) 0.9381 (0.0054) 0.9275 (0.0034) 0.9452 (0.0036) 0.9517 (0.0045) 0.9732 (0.0017) 0.9789 (0.0087)

DS12 0.9532 (0.0035) 0.9378 (0.0043) 0.9785 (0.0038) 0.9634 (0.0014) 0.9763 (0.0013) 0.9587 (0.0054) 0.9661 (0.0064) 0.9898 (0.0034)

Average 0.9311 0.9333 0.9472 0.9434 0.9646 0.9561 0.9596 0.9787

Note:
Bold entries indicate the best performance achieved by the corresponding method.
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To construct a two-view learning scenario, based on “Data”, three feature extraction
methods, namely wavelet packet decomposition (WPD), short-time Fourier transform
(STFT) and kernel principal component analysis (KPCA) are adopted, to extract time-
frequency features, frequency-domain features and time-domain features from the original
EEG signals, as shown in Fig. 2. Finally, 12 datasets are constructed, as shown in Table 4.

Experimental results and analysis
The experimental results are reported in Table 5. We can see from Table 5 that the
proposed model wins the best performance on most datasets. Only on DS5, DS9, the
proposed model performs worse than SVM-2K and MV-L2-SVM. The advantages of
the proposed model indicate the promising ability of the shared hidden space. From the
promising results, it can be found that by constructing the expanded space and utilizing the
information of both the shared hidden space and the original space for learning, thereby
fully utilizing the relevant information of samples within and across views, the proposed
model effectively solves the problem that the difference between samples of the same class
from different views is greater than the difference between samples of different classes
from the same view. The experimental results also indicate the power of KDE which is used
to construct the shared hidden space.

Statistical analysis
We use the Friedman test (Zimmerman & Zumbo, 1993; Sakamoto et al., 2015) to conduct
a statistical analysis of the experimental results on all methods across all datasets. The
Friedman test is a non-parametric testing method that can be used to analyze whether
there are significant differences in performance among multiple methods on multiple
datasets. The principle is to first obtain the average ranking of each method’s performance
on all datasets, and then compare whether these rankings are the same. If they are the
same, it indicates that all methods have the same performance, otherwise it suggests that
there are significant differences in performance among all methods. If there are significant
differences among all methods, we further use a Holm post-hoc hypothesis test to
specifically analyze which methods and our proposed algorithm have significant
differences. From Fig. 5, we see that 2V-SVM-SH wins the best ranking result. The p-

Figure 5 Friedman rankings of all models. Full-size DOI: 10.7717/peerj-cs.1874/fig-5
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values embedded in Fig. 5 computed by Friedman test hint that there are significant
differences among different models. From Table 6, it can be seen that all hypothesis is
rejected except the proposed model vs AMVMED and the proposed model vs SVM-2K.
These results indicate that the proposed model performs significantly better than KNN-A,
KNN-B, SVM-B, SVM-A and MV-L2-SVM. Although the hypothesis of the proposed
model vs AMVMED and the proposed model vs SVM-2K is not reject, the low p-value of
the proposed model vs AMVMED and the proposed model vs SVM-2K also indicates the
reveal the competition of the proposed model.

CONCLUSIONS
In this study, a multi-view support vector machine based on a shared hidden space is
constructed using kernel density estimation. The method is designed to address the
problem of decreased recognition performance due to the difference in sample
characteristics between different view models in multi-view learning. The method involves
incorporating SVM into the shared hidden space, resulting in an effective solution to the
problem of solving the classic QP problem. Experimental results on EEG-based epilepsy
diagnosis demonstrate that our proposed method is better able to extract complementary
information between different view models than other methods.

In practical applications, annotating training samples is often a time-consuming task.
Therefore, in subsequent research, we intend to extend the multi-view algorithm proposed
in this article to transfer learning scenarios, aiming to reduce the reliance on labeled
samples.
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