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ABSTRACT
To improve the processing effect of computer random signals, the manuscript employs
the intelligent signal recognition algorithm to design a combinatorial mathematical
model for computer random signals, and studies the parameter estimation of conven-
tional frequency hopping signal (FHS) based on optimizing kernel function (KF). First,
the mathematical form and graphical representation of the ambiguity function of the
conventional FHS are explored. Furthermore, a new KF is presented according to its
fuzzy function (FF) and the parameters of conventional FHSs are estimated according to
the time-frequency distribution corresponding to theKF. Then, simulation experiments
are carried out in different types of interference noise environments. The proposed
combinatorial mathematical model for computer random signals shows a practical
impact, and can effectively improve the effect of random signal combination.

Subjects Adaptive and Self-Organizing Systems, Algorithms and Analysis of Algorithms, Artificial
Intelligence, Computer Networks and Communications, Data Mining and Machine Learning
Keywords Computer random signals, Signal combination, Mathematical model, Data science,
Artificial intelligence

INTRODUCTION
When the passive intelligent surveillance radar system is under consideration, the main
purpose of the receiver is to analyze the modulation type of the radiated source signal, and
correctly distinguish the linear frequency of the modulation signal as much as possible
by employing other functional forms such as the cubic phase signal, or other high-order
pulse modulation signals (Edla et al., 2018). In the communication system, the delay of the
transmitted signal will change with the relative position of the transmitter and the receiver,
so that the instantaneous phase during the transmission and reception process changes with
the constant change of the distance (Олйник &Лукн, 2020). So, the received signal can be
constructed by the polynomial phase signal. In addition, in high dynamic communication
systems such as special communication and anti-jamming communication, secondary
frequency modulation, which is a pseudo code phase modulation, generates composite
signals whose information code is utilized to achieve low interception probability and
better anti-jamming performance (Mohdiwale et al., 2020). The estimation of time-varying
fading channels also employs chirps. In biomedical ultrasound systems, chirp signals and
their pulse compression techniques are employed to improve the signal-to-noise ratio to
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achieve the desired imaging depth whilemaintaining effective resolution (Savchenko, 2018).
At the same time, the FM signal is also selected for seismic survey and digital watermark
processing.

There are various methods for estimating the parameters of the third-order phase signal,
and the parameter estimation can also be realized by employing the difference operation.
The estimations of three parameters can be obtained after performing phase difference
operation on the third-order phase signal (Geng et al., 2022). This method is simple and
requires less computation. However, when the signal is disturbed by noise, the difference
operation will be very sensitive to the noise, so the sliding window method (Roy et al.,
2022) was employed to average the processing, thereby reducing the mean square error of
parameter estimation.

In Yuqing et al. (2019), the researchers first proposed the method of polynomial phase
transformation to realize the parameter estimation of the polynomial phase signal. When
the signal amplitude is not constant or the amplitude changes rapidly, the estimation
performance of the algorithm will be affected. The feature of the polynomial phase
transformation estimates the high-order phase signal parameters successively by utilizing
the low-order phase parameters (Geran Malek, Mansoori & Omranpour, 2021). Due to the
implementation of the reduced-order form, the errors of the high-order parameters will
be transferred to the low-order parameters in turn. At the same time, the range of the
parameter estimations is narrower when this method is implemented.

In Geran Malek, Mansoori & Omranpour (2021), two solution methods were proposed
to expand the range of the parameter estimations. The aliasing algorithm, non-uniform
sampling method, and guided selection algorithm can all realize parameter estimation of
the single-component signal. Signal parameter estimation can also be achieved by time-
frequency analysismethods. TheWigner distributionmethodproposed inWilliamson, Fazli
& Lee (2018) administers the time-frequency analysis method to track the time-frequency
curve of the single-component third-order phase signal to obtain frequency information.
InMarulanda AH & Vega (2020), a cubic phase function method was proposed to estimate
the third-order phase signal. The algorithm only needs to realize the extreme value search
when one-dimensional conditions are used, and the asymptotic statistical method is
employed to effectively improve the accuracy of parameter estimations. When compared
with the fourth-order nonlinear transformation in the polynomial phase signal parameter
estimation, the second-order nonlinear transformation implemented in the third-order
phase transformation improves the noise suppression performance of the algorithm. The
mean square error of the parameter estimations is approximated by the Cramer-Rao
bound line, which can effectively realize the parameter estimations. A random cubic phase
function transformation method based on the third-order phase signal was proposed
in Panchenko & Pechenyuk (2019).

The algorithm can achieve a lower threshold and themean square error of the parameters
can reach the Cramer-Rao bound line. The research regarding the parameter estimation
of single-component polynomial phase signals is mainly run to improve the estimation
performance when a low signal-to-noise ratio exists. The third-order phase function
has already demonstrated a good ability to resist noise interference, but to better obtain
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weak signals in practical engineering, Salih, Tawfeeq & Khaleel (2019) proposed a cubic
phase function extension method, which improved the estimation performance when
SNR was low by implementing the correlation integration in the two-dimensional CPF
transform space. Furthermore, data analysis showed that the computational complexity of
the algorithm is moderate, much less than the maximum likelihood estimation. To reduce
the mean square error of single-component phase modulation parameter estimation,
a fourth-order phase function expansion method based on the fourth-order nonlinear
transformation was proposed in Kumar & Chang (2020) with the advantage of infinite
approximation of lines. Gu et al. (2021) applied the algorithm to estimate the third-
order phase signal, but the estimation performance of this method is sensitive to noise
interference, and it is only suitable for single-component signals, so the algorithm needs to
be able to suppress noise and deal with multi-component signals. Some higher-order phase
function parameter estimation methods are also applicable to third-order phase signals.
The standard high-order phase function was proposed in Akgün (2022). Due to multiple
times of data introduction and searching for the minimummean square error, this method
has better performance advantages than high-order FFs and polynomial Gana distribution
methods. But it can be only applied to a single-component signal.

Parameter estimation of multi-component signals was developed after the research on
single-component signals was relatively mature. Khan et al. (2021) presented the Cramer
bound for the parameter estimations of multi-component signals, and the correctness of
the bound is confirmed by experiments. Early research on parameter estimation of multi-
component and multi-phase signals mainly focused on the field of time-frequency analysis.
Time-frequency analysis is mainly implemented to analyze the time-frequency variation
characteristics of the signal, and it is an important parameter estimationmethod. TheGener
distribution combined random transformation method. Gupta, Chopda & Pachori (2019)
transformed the time-frequency domain in the results of the Gener distribution by utilizing
a two-dimensional structural domain, thereby suppressing interference and obtaining
parameter values. However, this method needs to resolve the issue of computational
complexity due to the two-dimensional transformation. Balaji et al. (2020) proposed an
extended method of nonlinear instantaneous frequency least squares approximation based
on multi-component signals, but the disadvantage is that the algorithm is computationally
inefficient and the optimal parameter selection for parameter estimation is unknown.

Fira, Costin & Gora (2021) employed the cubic phase function to correct the high-order
ambiguity function, and the cubic phase function realized the cubic term function of
the final stage, thereby reducing the signal-to-noise ratio threshold and the mean square
error of parameter estimation. Due to its limitations, even if it is corrected by the cubic
phase function, the amount of calculation in the entire parameter estimation process
is still very large. The cubic phase function can realize the parameter estimation of the
single-component signal, but for the multi-component signal, the estimation process is
disturbed by interleaving terms, spurious peaks, etc. Therefore, if you want to use the
cubic phase function to estimate the parameters of the multi-component signal, its anti-
interference ability needs to be improved. Tanaka, Ortega & Cheung (2020) took advantage
of the parameter estimation performance of the cubic phase function method when a
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low signal-to-noise ratio exists and has helped make a detailed analysis of the interleaved
term interference and pseudo-peak interference under multi-component conditions. By
incorporating the idea of multiplication, the improved algorithm has various parameters
of the multi-component chirp signal that can be effectively estimated, thereby improving
the estimation performance of the chirp signal. More up-to-date research can be found
in Zhang (2020),Martinez-Herrera et al. (2023).

The manuscript implements the intelligent signal recognition algorithm to design a
combinatorial mathematical model for computer random signals to improve the stability
of the signal transmission system in complex environments (Edla et al., 2018).

The outline of the article is as follows: ‘The Algorithm of Random Signal Combination’
presents the algorithm of random signal combination and the proposed method. The
experiments and their results are given in ‘Experimental Research’. The research is
concluded in ‘Conclusion’.

THE ALGORITHM OF RANDOM SIGNAL COMBINATION
Definitions and properties of FFs
If an inverse Fourier transform (IFT) is performed on the instantaneous correlation
function concerning time t, another two-dimensional function, namely, an FF can be
obtained. The definition of the FF is given in Eq. (1).

A(τ ,v)=
∫
∞

−∞

x
(
t+

τ

2

)
x∗
(
t−

τ

2

)
e jvtdt (1)

Therefore, a non-stationary signal can have two bilinear representations, both of
which are the two-dimensional FT of the signal, and Eq. (2) presents two-dimensional
interchanges.

A(τ ,v)=
∫
∞

−∞

∫
∞

−∞

WVD(t ,f )e j2π(tv+τ f )dtdf (2)

For a two-component signal, denoted by x(t )= x1(t )+ x2(t ), the Wigner-Ville
distribution of this signal and the positional relationship between the cross term and
the self-term of the ambiguity function are shown in Fig. 1. Among them, the label of the
ellipse is the cross term (coherent term), and the label of the rectangle is the self-term.

Figure 1WVD of two-component signal and the positional relationship of self-term and
cross-term in FF

The FF of the signal has the following properties:
(1) The time-shift invariance is denoted by Eq. (3).

Ax(t−t0)(τ ,v)= e jvt0Ax(t )(τ ,v) (3)

(2) The frequency shift invariance is represented by Eq. (4).

Ax(t )e jω0t (τ ,v)= e jω0tAx(t )(τ ,v) (4)

(3) The maximum value of the FF is always at the origin of the (τ ,v) plane, and the
maximum value is the energy of the signal characterized by Eq. (5).

maxAx(τ ,v)=Ax(0,0)=
1
2π

Ex (5)
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Figure 1 WVD of two-component signal and the positional relationship of self-term and cross-term in
FF.

Full-size DOI: 10.7717/peerjcs.1873/fig-1

(4) The self-term of the FF is always distributed near the origin of the fuzzy domain
(FD), while the coherent term of the FF is always distributed far from the origin. The
greater the time or frequency difference between the two components, the further away
the coherent term they form is from the origin of the FD.

FD filtering and KF theory
The self-term of the FF of the signal is always concentrated in the center of the origin of
the FD, and the coherent term of the FF is always far away from the center of the FD, so it
can be filtered out by a two-dimensional low-pass filter.

Two-dimensional filtering is performed on the FF of the signal, and then a two-
dimensional FT is performed on the τ and v variables to obtain the bilinear time-frequency
distribution of the signal, also known as bilinear or Cohen-like time-frequency analysis.
The simulation results show that the better the suppression of the cross-term, the worse
the time-frequency resolution of the signal. The two-dimensional filter function in the FD
is called a KF, and different KFs determine different time-frequency distributions.

Therefore, a method to realize the bilinear time-frequency distribution is the FD filtering
method, which first calculates the instantaneous correlation function rz(t ,τ ) of the signal
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z(t) given in Eq. (6).

rz(t ,τ )= z
(
t+

τ

2

)
z∗
(
t−

τ

2

)
(6)

Then, the IFT of the instantaneous correlation function about the variable t is calculated,
and the FF is obtained and characterized by Eq. (7).

Az(τ ,v)=
∫
∞

−∞

rz(t ,τ )e jvtdt (7)

The characteristic functionM (τ ,v) isobtained by multiplying the FF and the KF defined
in Eq. (8).

Mz(τ ,v)=ϕ(τ ,v)Az(τ ,v) (8)

The bilinear time-frequency distribution can be obtained by performing the two-
dimensional FT of the product, that is, the characteristic function on the variable τ ,v
defined by Eq. (9).

Cz(t ,ω)=
∫∫
∞

−∞

Az(τ ,v)ϕ(τ ,v)e−j(vt+ωτ )dτdv (9)

The flow chart of the above FD filtering algorithm is shown in Fig. 2.
If the KF in Eq. (8) selects the exponential kernel denoted by Eq. (10).

ϕ(τ ,v)= e−[α(τv)
2
]. (10)

Using the MATLAB 2017 version with the simulation toolbox where α = 0.5, the
Choi-Williams distribution (CWD) of the signal will be obtained, as shown in Fig. 3.

In the simulation, the observation duration is assigned to 10 ms, the hopping period is
set to 2 ms, the number of hops is assigned to 5, and the hopping frequency is randomly
selected ranging between 5 kHz through 50 kHz.

The MATLAB 2017 implementation of the instantaneous correlation function, FF, and
Choi-Williams distribution after two-dimensional filtering are shown in Fig. 4.

Through the above calculations and simulations, the FD filtering method can more
intuitively reflect the relationship between the signal in the time-frequency domain and
the FD.

FF of the conventional FHS
Substituting Eq. (8) into Eq. (1), the FD representation of the conventional FHS is obtained.

Ax(τ ,v)=
∫
∞

−∞

x
(
t+

τ

2

)
x∗
(
t−

τ

2

)
e j2π tvdt

=

∫
∞

−∞

N−1∑
n=0

rect
(
t+

τ

2
−nTh−αTh

)
e2π fn(t+

τ
2−nTh−αTh)

N−1∑
m=0

rect
(
t+

τ

2
−nTh−αTh

)
e2π fn(t+

τ
2−nTh−αTh)

(11)
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Figure 2 Flowchart of the FD filtering algorithm.
Full-size DOI: 10.7717/peerjcs.1873/fig-2

t+ τ
2 −nTh−αTh= t ′ is set to obtain:

Ax(τ ,v)=
∫
∞

−∞

N−1∑
n=0

rect
(
t ′
)
e j2π fn(t )

N−1∑
m=0

rect
(
t ′−τ−mTh+nTh

)
e j2π fm(t

′
−τTh+nTh)e j2πv(t

′
−

v
2+nTh+αTh)dt

=

N−1∑
n=0

N−1∑
m=0

e j2π fm(τ−nTh+mTh)e j2πv(nTh+αTh−
τ
2 )·∫

∞

−∞

rect (t )rect (t−τ−mTh+nTh)e j2π t(v−fm+fn)dt

=

N−1∑
n=0

N−1∑
m=0

e j2π fm(τ−nTh+mTh)e j2πv(nTh+αTh−
τ
2 )∗Aect

(
τ−nTh+mTh,v− fm+ fn

)
(12)
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Figure 3 Contour map of exponential kernel FD.
Full-size DOI: 10.7717/peerjcs.1873/fig-3

Among them,Arect(.) denotes the FF of the squarewave pulse signal rect
(

t
Th

)
=

{
1,|t |<

Th

2
0,others

,

and the width is denoted by TH , namely,

Arect (τ ,v)=

e j2πvTh
sinπv (Th−|τ |)

πv
,|τ |<Th

0,|τ |>Th

. (13)

The self-term of the FF of each component has the same delay direction width. Figure 5
presents a contour plot of the magnitude of the ambiguity function for a conventional
FHS. Among them, the darker and thicker color in the center of the FD is the self-term of
the FF, which needs to be retained, while the others are coherent terms, corresponding to
the cross terms of the time-frequency distribution, which should be eliminated.

When located near the origin of the FD it is the self-term of the FF, and the length of
the self-term delay of the FF in the conventional FHS is proportional to the period of the
conventional FHS.

KF design criteria and methods
Through the previous analysis, the designed KF should preferably completely suppress the
coherent term in the FD, which needs to be appropriately truncated in the frequency-shift
direction.

According to the design criteria of the FD-KF, the designed KF is defined in Eq. (14).

ϕ(τ ,v)=
sin(απv(β−|τ |))

αβπv
,α 6= 0,β 6= 0 (14)
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Figure 4 FF, instantaneous correlation function and time-frequency diagram of two distributions af-
ter two-dimensional filtering (WVD in the lower right).

Full-size DOI: 10.7717/peerjcs.1873/fig-4

Figure 6 depicts that the larger the value of β is, the wider the central term of the KF is
in the delay direction, and the smaller the value of β is, the narrower the central term of
the KF is in the delay direction. Therefore, no matter how β changes, the coherent term
at the far end of the delay axis cannot be suppressed. The larger the value of parameter β
is, the lower the time resolution of the time-frequency distribution is, and the higher the
frequency resolution is, the better the effect of suppressing the cross term is.

The parameter α controls the extension of the signal self-term along the frequency shift
direction.

Since the parameter β cannot suppress the cross term at the far end of the delay axis,
it is necessary to add a low-pass filter function in the delay direction, so that the KF has
a better inhibitory effect on the far end of the delay axis. The improved KF is defined in
Eq. (15) by using the rectangular function as the low-pass filter function.

ϕ(τ ,v)=
sin[απv(β−|τ |)]

αβπv
× rect

(
τ

β

)
,α 6= 0,β 6= 0 (15)

Yao and Qiu (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1873 9/20

https://peerj.com
https://doi.org/10.7717/peerjcs.1873/fig-4
http://dx.doi.org/10.7717/peerj-cs.1873


 

Figure 5 FF of FHS.
Full-size DOI: 10.7717/peerjcs.1873/fig-5

The parameter β controls the width of the KF in the delay direction and the width of the
rectangular function filter. The width of the low-pass filter function varies with the value
of β.

Time-frequency distribution, FF of interference, and noise signals
Noise and interfering signals have a specific time-frequency domain representation. By
calculating the FFs of these signals and studying their positional relationship with the FF
of the FHS and when KF is given, we can know the degree of inhibition of these signals by
the KF itself.

For example, white Gaussian noise refers to noise whose probability distribution obeys
the Gaussian distribution and is one of themost commonly employedmathematicalmodels
of channel noise. Figure 7 is a blur function of additive white Gaussian noise (AWGN).

Fixed-frequency signal interference means that the frequency of the interference signal is
constant during the observation period, and a single fixed-frequency signal can be regarded
as a stationary signal. The mathematical forms of the time domain and frequency domain
are represented by Eq. (16).

Inter fixed−freq(t)= ejω0t

INTERfixed−freq(ω)= 2πδ(ω−ω0)
(16)
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Figure 6 Shows the effect of the parameter β on the form of the KF.
Full-size DOI: 10.7717/peerjcs.1873/fig-6

By calculating its FF, Eq. (17) is attained.

AI (τ ,v)= e jω0τ δ(v) (17)

Equations (16) and (17) depict the instantaneous frequency of the signal ω0.
The simulation uses a constant-amplitude fixed-frequency interference signal whose
observation duration is set to 10 ms, sampling rate is set to 200 kHz, and frequency
is a constant amplitude, fixed frequency interference signal 20 kHz. Figure 8 depicts a
time-frequency distribution diagram of a fixed-frequency interference signal.

Since the simulated signal is a finite-length signal, the FF of the fixed-frequency signal is
an isosceles triangle when viewed from the time-shift direction, and the impulse function
is viewed from the frequency-shift direction. The degree of coincidence with the KF is high
near the center of the FD. The smaller the KF parameter β, the smaller the overlapping
part, and the higher the suppression of fixed-frequency interference.

The frequency sweep signal interference refers to the linear change of the frequency of
the interference signal during the observation period, and the mathematical form of the
time domain is defined in Eq. (18).

Inter sweep−freq(t )= e j
1
2mt 2 (18)
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Figure 7 FF of additive white Gaussian noise (side view and contour map).
Full-size DOI: 10.7717/peerjcs.1873/fig-7

By calculating its FF, Eq. (19) is attained.

AI (τ ,v)= δ(v−mτ ) (19)

Equation (19) shows that the instantaneous frequency of the signal is mt. The FF is
in the form of a constant-amplitude impulse function that changes linearly through the
origin. The simulation uses a constant-amplitude swept-frequency interference signal
whose observation duration is 10 ms, sampling rate is 200 kHz, and frequency linearly
increases from initial 7 kHz to 22 kHz. Figure 9 depicts the time-frequency distribution
diagram of the sweep-frequency interference signal.

Since the simulated signal represents a finite-length signal, the FF of the swept-frequency
signal is an isosceles triangle when viewed from the time-shift direction, and is also an
isosceles triangle when viewed from the frequency-shift direction. The degree of coincidence
with the KF is low near the center of the FD, the smaller the KF parameter β, the larger
the α, the smaller the overlapping part, and the higher the suppression of frequency sweep
interference.
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Figure 8 Time-frequency diagram of fixed frequency signal.
Full-size DOI: 10.7717/peerjcs.1873/fig-8

Burst interference means that the frequency of the interference signal suddenly increases
in amplitude at a certain moment during the observation period. The mathematical
representations of the time domain and frequency domain are defined in Eqs. (20) and
(21).

Interburst (t )= δ(t− t0)
INTERburst (ω)= e−jωt0

(20)

By calculating its FF, Eq. (21) is attained.

AI (τ ,v)= e−jvt0δ(τ ). (21)

The simulation employs a signal whose observation duration is 10 ms, the sampling rate
is 200 kHz, and burst interference occurs randomly at a certain moment.

Since the simulated signal represents a finite-length signal, the FF of the burst signal is
an impulse function when viewed from the time-shift direction, and an isosceles triangle
when viewed from the frequency-shift direction. The degree of coincidence with the KF
near the center of the FD is low, the larger the KF parameter α, the smaller the overlapping
part, and the higher the suppression of burst interference.
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Figure 9 Time-frequency diagram of swept frequency signal.
Full-size DOI: 10.7717/peerjcs.1873/fig-9

The non-linear frequency sweep signal interference refers to the non-linear frequency
change of the interference signal during the observation period. The mathematical
representation of the time domain is defined in Eq. (22).

Intersweep−freq(t)= ej
1
3mt3 (22)

Equation (22) shows that the instantaneous frequency of the signal is mt2, and its FF
is in the form of a nonlinear change impulse function through the origin. The simulation
employs a constant-amplitude nonlinear swept-frequency interference signal with an
observation duration of 10 ms, a sampling rate of 200 kHz, and a non-linear increase in
frequency from an initial 1.5 kHz to 25 kHz. Figure 10 depicts a time-frequency diagram
of a nonlinear sweep-frequency signal.

Since the simulated signal represents a finite-length signal, the maximum value of the
FF of the nonlinear frequency swept signal is located at the origin of the FD, and the FF
is symmetrical about the origin. The degree of coincidence with the KF near the center of
the FD is low, the smaller the KF parameter β, the larger the α, the smaller the overlapping
part, and the higher the suppression of nonlinear frequency sweep interference.

Yao and Qiu (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1873 14/20

https://peerj.com
https://doi.org/10.7717/peerjcs.1873/fig-9
http://dx.doi.org/10.7717/peerj-cs.1873


 

Figure 10 Time-frequency diagram of nonlinear frequency sweep signal.
Full-size DOI: 10.7717/peerjcs.1873/fig-10

EXPERIMENTAL RESEARCH
According to the research configuration, it is necessary to analyze and verify the
spectral distribution and pulse compression characteristics, Doppler tolerance, and
cross-correlation characteristics of random sequence chirp signals. Based on the above
requirements, the following simulation platform is built. In the system, an arbitrary
waveform generator is implemented to generate the intermediate frequency waveform.
After up-conversion, the signal is connected to the down-conversion module by employing
antenna radiation or direct injection, and then the oscilloscope is employed for sampling,
finally, the sampling data is analyzed by the computer. If the signals interfere with each
other seriously, the research purpose will be lost. We employ the two channels of the
arbitrary waveform generator to transmit two signals with different random sequences, but
the pulse envelopes are superimposed on each other, and the cross-correlation performance
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Figure 11 The envelopes of the two pulse signals do not overlap.
Full-size DOI: 10.7717/peerjcs.1873/fig-11

is verified by frequency conversion sampling processing. Figures 11 and 12 show the test
results of the system scheme.

It is verified that the combinatorial mathematical model for computer random signals
shows a good effect and can effectively improve the effect of random signal combinations
(Roy, Kumar & Chang, 2020).

CONCLUSION
From the perspective of digital signal processing, the manuscript proposes a modeling
tool called a combinatorial mathematical algorithm for computer random signals. The
conventional combinatorial mathematical model can run the basic analysis, but the error is
relatively large and the precision is not high, so it is necessary to examine the combinatorial
mathematical model to control computer random signals. By proposing the mathematical
combination algorithm the time characteristic function of the computer random signal can
be transformed into a novel form of linear expression. The article shows the computational
validity of the control-based combinatorial mathematical model for random computer
signals by running experiments and verifying the convergence speed and control efficiency.
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Figure 12 95% overlap of two pulse signal envelopes.
Full-size DOI: 10.7717/peerjcs.1873/fig-12

Furthermore, through experimental research, the combinatorial mathematical model for
computer random signals can effectively combine random signals.
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