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It is critical to accurately predict the future popularity of information cascades for many
related applications, such as online opinion warning or academic influence evaluation.
Despite many efforts devoted to developing effective prediction approaches, especially the
recent presence of deep learning-based model, the structural information of the cascade
network is ignored. Thus, to make use of the structural information in cascade prediction
task, we propose a structural-topic aware deep neural networks (STDNN), which firstly
learns the structure topic distribution of each node in the cascade, feeds it to a sequential
neural network, and finally predicts the future popularity of the cascades. It can inherit the
high interpretability of Hawkes process and possesses the high predictive power of deep
learning methods, bridging the gap between prediction and understanding of information
cascades by capturing indicative graph structures. We evaluate our model through
quantitative experiments, where our model exhibits promising performance, efficiency
higher than the baselines.
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ABSTRACT11

It is critical to accurately predict the future popularity of information cascades for many related applications,

such as online opinion warning or academic influence evaluation. Despite many efforts devoted to

developing effective prediction approaches, especially the recent presence of deep learning-based

model, the structural information of the cascade network is ignored. Thus, to make use of the structural

information in cascade prediction task, we propose a structural-topic aware deep neural networks

(STDNN), which firstly learns the structure topic distribution of each node in the cascade, feeds it to a

sequential neural network, and finally predicts the future popularity of the cascades. It can inherit the high

interpretability of Hawkes process and possesses the high predictive power of deep learning methods,

bridging the gap between prediction and understanding of information cascades by capturing indicative

graph structures. We evaluate our model through quantitative experiments, where our model exhibits

promising performance, efficiency higher than the baselines.
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INTRODUCTION23

As of now, an escalating number of social media platforms, including platforms such as Facebook, Youtube,24

Sina Weibo, and others, have emerged, collectively placing the attention economy at the forefront of this25

era. The advent of these online social platforms has significantly reshaped the dynamics of information26

transmission among users, resulting in a substantial enhancement in the creation and dissemination27

of information. The process of information transmission between users can be conceptualized as an28

information cascade. Indeed, information cascades extend beyond social networks; the citation process of29

academic papers can similarly be construed as the formation of information cascades. Precisely forecasting30

the future extent of information cascades, indicating the anticipated popularity of specific online content,31

carries considerable significance. On the one hand, it proves advantageous in viral marketing, online32

advertising, and information recommendation; on the other hand, it may also give rise to adverse effects,33

such as the rapid dissemination of rumors.34

The prediction of information cascades relies on early dissemination characteristics to forecast their35

future reach. Nevertheless, due to the extensive and open nature of social platforms, coupled with36

external factors (Cao et al., 2017) such as network topology, follower relationships, user interests, posting37

times, and privacy considerations, the prediction task becomes inherently challenging. The vast scale38

of network users, dynamic information diffusion, rapid propagation speed, and the inherent stochastic39

nature of the pathways and processes involved contribute to the complexity. The uneven distribution40

of ”popularity” among different pieces of information further intensifies the challenge. Consequently,41

accurately forecasting information cascades presents significant challenges within the context of these42

dynamic and intricate social systems.43

In the prediction of information cascade, traditional methods for extracting features for popularity44

prediction can be broadly categorized into two groups: feature-based methods (Szabo and Huberman,45
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2010) and generative methods (Li et al., 2017). The feature-based approach involves extracting diverse46

features from information based on human prior domain knowledge, encompassing temporal features,47

structural features, content features, and others. Subsequently, regression/classification models are trained48

to predict the future popularity of the information. The challenge in this method lies in the selection of49

relevant features, with the quality of feature selection significantly impacting predictive performance.50

In contrast, generative methods aim to represent and model the process by which information attracts51

attention, facilitating a clearer understanding of the fundamental mechanisms governing information52

propagation dynamics. However, generative methods exhibit suboptimal predictive capabilities as they53

are not explicitly optimized for popularity forecasting.54

In order to address the shortcomings of feature-based and generative methods in popularity prediction,55

scholars have begun to shift their focus towards deep learning methods. A model closely aligned with56

our research is the DeepHawkes model which introduced by Cao et al. (2017). This model integrates the57

highly interpretable Hawkes model with the superior predictive accuracy of deep learning. DeepHawkes58

not only inherits the high interpretability of the Hawkes process but also possesses the strong predictive59

capabilities of deep learning methods, thus bridging the gap between predicting and understanding60

information cascades. However, it is crucial to note that the DeepHawkes model is tailored to model the61

information propagation process, neglecting the impact of network topology on propagation. In reality,62

network topology significantly influences information propagation, as different topological structures63

involve distinct users and propagation mechanisms. Different users engage with various topics, and these64

topics often exhibit varying degrees of popularity. Therefore, when predicting information propagation,65

the network topology emerges as an indispensable factor that should not be overlooked.66

Fortunately, contemporary research in network science(Bartlett and Cussens, 2017; Dai et al., 2020) has67

recently shifted its focus towards modeling the inherent topological structures within network architectures.68

A recent study(Long et al., 2020) has introduced an innovative approach to extract structural topics69

associated with each node in a graph. Drawing inspiration from Latent Dirichlet Allocation (LDA) and70

drawing an analogy between document and graph data, this methodology integrates the acquired structural71

topics into a graph neural network framework for subsequent tasks, including node classification and link72

prediction. However, the effectiveness of automatically obtaining structural node representations for the73

cascade prediction task remains uncertain.74

Hence, this study broadens its focus to encompass the structural aspects of cascade prediction tasks. It75

incorporates the structural topic representation assigned to each node into the deep neural network model,76

introducing a novel framework termed the Structural Topic-aware Deep Neural Network (STDNN) model.77

The STDNN model examines diverse network topologies, considers the self-excitation mechanism among78

these topologies, and integrates the influences of both cascading dynamics and network topology. In79

summary, the primary contributions of this article include:80

• We propose an enhanced DeepHawkes model that incorporates structural themes. The Graph Anchor81

LDA (Latent Dirichlet Allocation) topic classification model is employed to extract structural topics82

from the network topology, and the deep model is utilized to learn the representation vectors of83

these structural topics, effectively simulating the self-excitation mechanism between them.84

• The Structural Topic-aware Deep Neural Network (STDNN) model is introduced, which combines85

DeepHawkes, a deep neural network model that specifically solves the information cascade problem86

with the Graph structural-topic model. The integration ensures that the prediction model not only87

maintains the high interpretability of DeepHawkes but also thoroughly takes into account the88

characteristics of the network topology. It significantly enhances the model’s ability to represent89

the information diffusion process, thereby improving the accuracy of popularity prediction.90

• We conduct comprehensive experiments using real datasets to systematically compare the prediction91

results of multiple algorithms under different conditions to verify the effectiveness of the proposed92

method.93

In the subsequent sections of this paper, Section 2 provides a comprehensive review of related94

literature, followed by Section 3 which elaborates on the proposed methodology. Section 4 delineates95

the specific experimental configurations, with corresponding results presented in Section 5. Finally, the96

conclusions of this research are presented in Section 6.97
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RELATED WORKS98

In this section, we will mainly discuss the research most closely related to our work, including information99

popularity prediction and topic models.100

The methods for predicting information cascades can be categorized into three distinct groups: feature-101

based methods, generative process methods, and deep learning-based methods. The feature-based methods102

usually regard the popularity prediction task as a regression problem(Tsur and Rappoport, 2012; Cheng103

et al., 2014) or a classification problem(Szabo and Huberman, 2010; Romero et al., 2013; Shulman104

et al., 2016). The user features(Cui et al., 2013), content features(Tsur and Rappoport, 2012), structural105

features(Zhang et al., 2021), and temporal features(Pinto et al., 2013) for the cascades are meticulously106

crafted through manual design, drawing insights directly from the original data. These methods heavily107

rely on domain knowledge, making generalization challenging, and the manual feature extraction process108

is time-consuming and labor-intensive. Consequently, some scholars have turned their attention to109

generative processes for predicting information cascades.110

Generative process methods aim to model the cascade propagation process, primarily relying on111

Poisson processes or Hawkes processes. For instance, concerning the future impact of academic papers,112

the Reinforced Poisson Process (RPP)(Wang et al., 2013) applied reinforcement mechanisms to model it.113

PETM(Gao et al., 2015) expanded upon the foundation of the RPP model through a temporal mapping114

process. Feng et al. (2020) proposed a feature-regularized Reinforced Poisson Process (FRRPP), which115

leveraged feature regression terms to capture the correlations between different posts. The second116

important method in generative approaches is the Hawkes process. SpikeM(Matsubara et al., 2012)117

integrated the merits of an epidemic model and the Hawkes model to simulate the actual transmission118

process of the cascade. The Dual Sentimental Hawkes Process(Ding et al., 2015) considered combining119

self-excitation and cross-excitation mechanisms to model the impact of information. SEISMIC (self-120

exciting model of information cascades)(Zhao et al., 2015) utilized Hawkes processes to model temporal121

delay processes for predicting future retweet counts. A hybrid model composed of a Hawkes process has122

been proposed by Mishra et al. (2016), which integrated the predictions of random forest with generative123

processes. However, these generative models primarily focus on the propagation process of information124

cascades and do not provide predictions for the future popularity of information.125

In light of advancements in deep learning technology, numerous scholars have directed their research126

efforts towards establishing effective prediction models within the realm of deep learning. For example,127

Li et al. (2017) proposed the DeepCas model, which transformed the cascade graph as node sequences128

through random walk and learns the representation of each cascade under a deep learning framework.129

Cao et al. (2017) introduced DeepHawkes, an extension of DeepCas designed to address the limitations130

associated with neglecting the time decay effect. It utilized an end-to-end deep learning framework,131

drawing an analogy to the interpretable factors of the Hawkes process. DeepDiffuse(Islam et al., 2018)132

effectively captured the network among observed nodes, enabling accurate predictions of when the next133

node will participate in the cascade. The CasCN model(Chen et al., 2019), based on propagation paths,134

partitioned the cascade graph into multiple cascade subgraphs. It utilized an enhanced graph convolution135

approach to learn representations of cascade subgraphs, capturing the dynamic evolution of cascade136

networks. Zhao et al. (2022) presented CasTCN, which utilized the temporal and structural information of137

cascade networks as input to predict the future growth of information cascades. However, these methods138

either neglect the impact of cascade structure on information popularity prediction or excessively focus139

on subgraphs, resulting in poor model interpretability.140

Another research area related to this study is topic models. Topic modeling is a widely used technique141

designed for text clustering, frequently employed to identify latent topic information within extensive142

document sets or corpora. Latent Dirichlet Allocation (LDA) (Blei et al., 2003) was the most typical topic143

models, which consisted of three layers of generative models. Kou et al. (2018) proposed the STTM144

model, which leveraged the spatial and temporal features of short texts in social networks to obtain more145

accurate semantics, thereby generating higher-quality topics. Shi et al. (2019) designed dynamic topic146

modeling via a self-aggregation method (SADTM). This method can capture aspects of the time-varying147

topic distribution and address issues related to sparsity. Shi et al. (2020) used information from users148

and followers, combining it with user topic models to uncover the search intentions and preferences of149

users in social networks. This effectively addressed issues related to semantic sparsity and historical data.150

However, these topic models primarily focus on the text features of social networks, often overlooking151

the topological structure patterns of the network. Consequently, Long et al. (2020) have introduced a152
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Figure 1. An overview of structural-topic aware deep neural networks(STDNN). The model consists of

two major components: (a) Extracting structural topic of graph, (b) Deep neural networks

Graph Structural-Topic Neural Network, who employed anonymous random walk to automatically learn153

structure characteristics of nodes in graph. Nevertheless, this methodology has yet to be employed in154

predicting issues related to information cascades.155

Based on the aforementioned, this paper introduces a novel information cascade prediction method156

named STDNN. It comprehensively integrates the high interpretability and predictive performance of157

DeepHawkes with the capability of the Graph Structural-Topic Neural Network to capture the topological158

structure of cascade networks.159

STRUCTURAL-TOPIC AWARE DEEP NEURAL NETWORK160

In this section, we introduce our model STDNN. Fig. 1 gives an overview of our model STDNN and161

Fig. 2 depicts the structure topic learning process. The backbone of our STDNN model primarily consists162

of Graph Anchor LDA and RNN (Recurrent Neural Network), divided into three main components, as163

shown in Fig. 1. The first phase is the user embedding process, where we utilize topic learning based164

on the Graph Anchor LDA model to comprehensively consider the influence of network topology on165

user embedding. The second section focuses on subsequent path encoding and pooling. Specifically, it166

entails feeding the forwarding paths, which contain network structures, into recurrent neural network167

(RNN). Subsequently, the values of the last hidden layer are summed and pooled, facilitating the modeling168

of the self-excitation mechanism within the forwarding paths. The final component involves the non-169

parametric time decay effect, which models the temporal decay process of information propagation using170

non-parametric methods. Notably, we have considered the influence of network topology on information171

cascade popularity. We commence by providing foundational definitions and introducing the methodology172

for extracting structural topics.173

Preliminaries174

Definition 1 Information Cascades. Suppose we have M messages, denoted by M = {mi}(1 ⩽ i ⩽ M).175

For each message mi, it is denoted by a cascade Ci =
��

ui
j,v

i
j, t

i
j

��

to record the diffusion process of it,176

where the tuple (ui
j,v

i
j, t

i
j) corresponds to the jth retweet, meaning that user vi

j retweets message mi from177

user ui
j ,and the time elapsed between the original post and the jth retweet is t i

j . The popularity Ri
t of178

message mi up to time t is defined as the number of its retweets, i.e., |{.(ui
j,v

i
j, t

i
j)|t

i
j ⩽ t}|.179

The representation of the topological structure of a cascade within a diffusion network is referred to as180

a cascade graph. This cascade graph can correspond to one or more pieces of information, necessitating181

manual extraction. For instance, an information cascade sample may correspond to a topological graph182

representation. Additionally, datasets may directly provide the topological structure of the cascade graph.183

This type of topological graph is typically considered a global network, encompassing the topological184

structural relationships of all information cascade sequences in the entire dataset.185

Definition 2 Incremental Popularity Prediction. Given the forwarding path186

{(u j,v j, t j)|t j ⩽ T} of cascade C within the period [0,T ) (commonly referred to as the observation187

window), the corresponding cascade graph is denoted as GT = (V T ,ET ). The task of predicting cascade188

increment popularity involves a regression problem, aiming to predict the increment in the number of189

engaged nodes in cascade C after a time interval ∆t, denoted as ∆sC = |V T+∆t
C |− |V T

C |. A specific instance190
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Figure 2. Framework of Extracting Structural Topic of Graph Anchor LDA model

of this prediction task is the final popularity prediction, which anticipates the increment ∆s∞
C = |V ∞

C |−|V T
C |191

between the number of observed nodes and the number of final nodes in the cascade.192

Extracting Structural Topic of Nodes193

In the realm of natural language processing, topic models play a crucial role in elucidating the distri-194

butional distinctions embedded in higher-order structural patterns. This study undertakes a theoretical195

analysis to scrutinize the underlying principles of acquiring substructure topic distributions within graph196

networks. Subsequently, an adaptive graph neural network is introduced to adeptly leverage such structural197

information. Please refer to Fig. 2 for an intuitive illustration. In particular, we extract structural patterns198

through anonymous walks(Micali and Zhu, 2016). Anonymous random walks are sampled for each199

node to characterize the local structures of a node. Anonymous walks involve obscuring the true identity200

of nodes during a random walk, retaining only the serial number ID as an identifier to document the201

transitional rules within the walk. For each node, a set of random walk sequences with a predefined length202

is sampled. Subsequently, their potential distributions of anonymous walk experiences, along with the203

overall average experience distribution across the entire graph, are calculated to construct the authentic204

distribution.205

We argue that anonymous walk does not share the identity space of nodes, that is, the id of nodes in206

each walk will be counted from scratch, so that the id of nodes in multiple walks will be repeated. The207

sequence generated by a random walk, as depicted in the figure, is transformed into the sequence generated208

by an anonymous walk. For instance, (0,15,11,15,1,15) becomes (0,1,2,1,3,1) in Fig. 2. Long et al.209

(2020) introduced an algorithm for selecting an anchor structure (’Anchor’), aiming to filter representative210

structural features of the network, thereby reducing representation complexity and mitigating noise211

interference. We refer to their practice in the follow-up processing.212

Given a graph G = (V,E), by anonymous walk, two matrices can be learned to depict the structural213

information of the nodes in graph. One is node-topic matrix N ∈ R|V |×Q, where each row Ni corresponds214

to a distribution and N
q
i denotes the probability of node vi belonging to the q-th structural topic. The215

second is walk-topic matrix M ∈ RQ×|Al |, where each row Mq represents the topic distribution over walks216

in Al and Ma
q denotes the probability of walk a ∈ Al belonging to the q-th structural topic. Here, Al217

signifies a set of possible anonymous walks with a length of l, and Q represents the number of desired218

structural topics.represents the desired number of structural topics. Additionally, we define the set of219

anonymous walks starting from vi as Bi. According to the definition of Graph Anchor LDA (Long220

et al., 2020), we need to get the node-topic matrix N, meaning of getting the distribution matrix of each221

node topic. We first identify the ’anchor’ and then proceed with topic modeling. Specifically, we set222

the walk-walk co-occurrence matrix W ∈ R|Al |×|Al |, with Wi, j = ∑vq∈V I(wi ∈ Bq,w j ∈ Bq), and utilize223

non-negative matrix factorization (NMF) to extract anchors224

H,Z = argmin∥W −HZ∥2
F

s.t. H,ZT ∈ R|Al |×α
,H,Z g 0.

(1)

We iteratively update H, Z until convergence, and then identify the anchors using Aq = argmax(Zq) ,q=225
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Table 1. Key symbols of STDNN

Symbol Description

mi Label for text content of the message

Ci Label for diffusion process of a message cascade

ui
j

The u represents the user who was forwarded, i represents that the i-th message

was forwarded, and j represents that the current forwarding is the j-th forwarding

vi
j

The v represents represents the forwarding user, i represents that the i-th message

was forwarded, and j represents that the current forwarding is the j-th forwarding

t i
j

The t represents the time interval between the moment when user v retweets a message

and the moment when user u retweets the same message.

Ri
t Label for the actual number of messages forwarded

∆sC Label for forwarding increment within ∆t time

∆s∞
C Label for total forwarding increment

N, S, M Labels for node-topic matrix, node-walk matrix and walk-topic matrix

Q, l Labels for the number of topics and the length of walks

Al Label for a set of possible anonymous walks with a length of l

Bi Label for the set of anonymous walks starting from node vi

W Label for the walk-walk co-occurrence matrix

1, . . .α , where A is the set of indices for anchors, and Zq is the q-th row of Z. Based on the selected anchors,226

we can learn the walk-topic distribution M. In addition, we define node-walk matrix as S ∈ R|V |×|Al | with227

Sa
i denoting the occurrences of a in Bi. We finally get the node-topic distribution N through N = SM†,228

where M† denotes pseudo-inverse. Table 1 summarizes the symbols and their corresponding meanings of229

our model.230

User Embedding231

Each user in the generated retweet path is denoted as a one-hot vector, h ∈ R|V |, where |V | is the total232

number of users. All users share an embedding matrix N ∈ R|V |×Q, where Q is an adjustable dimension233

of embedding, N is equal the node-topic matric. This user embedding matrix converts each user into its234

representation vector:235

x = NT h, (2)

where x ∈QK and NT is the transpose of N. It is worth noting that the user embedding matrix N is learned236

from the overall structure of the graph, which can represent the whole information of the graph to some237

extent. Therefore, the learned user embeddings are optimized for the initial supervised framework.238

Topic path coding239

The influence among topics (influence transfer) and the significance of topics in topic path structure can240

be modeled through the GRU in recurrent neural networks (Mikolov et al., 2010). The influence transfer241

from one prominent subject to another influences the prominence of the latter. The importance of topics242

in the topic path structure is determined by their frequent occurrence across multiple topic paths. Each243

theme path has the most GRU output pooled layer, which achieves Hawkes’ self-exciting mechanism by244

accumulating various effects.245
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When GRU is used to encode each topic ei
j (1 ⩽ j ⩽ Q) of message mi, where ei

j is the element of246

matrix x, the d-th hidden state hd = GRU
�

ei
j,hd−1

�
in GRU, where hd ∈ RH ′

is the output, and the topic247

represents the vector when ei
j ∈ RQ is input. hd−1 ∈ RH ′

is the previous hidden state, Q is the dimension248

of topic embedding, and H ′ is the dimension of hidden state.The GRU model is shown below in figure 3.249

Firstly, the reset gate rd ∈ RH ′
is computed by250

rd = σ
�
W rei

j +Y rhd−1 +br
�
, (3)

where σ is the sigmoid activation function, W r ∈ RH ′×Q, Y r ∈ RH ′×H ′
and br ∈ RH ′

are GRU parameters251

learned during training.252

Secondly, the update gate zd ∈ RH ′
is computed by253

zd = σ
�
W zei

j +Y zhd−1 +bz
�
, (4)

where W z ∈ RH ′×Q,Y z ∈ RH ′×H ′
and bz ∈ RH ′

.254

Then, the actual activation of hidden state hd is computed by255

hd = zd »hd−1 +(1− zd)»�hd , (5)

where256

�hd = tanh
�

W hei
j + rd »

�
Y dhd−1

�
+bd

�
. (6)

» represents element-wise product, W d ∈ RH ′×Q,Y d ∈ RH ′×H ′
and bd ∈ RH ′

.257

Modeling the Time Decay Effect258

Given the temporal decay of retweet effects, we incorporate the time decay effect through a non-parametric259

approach. Let’s consider the propagation of all messages within a time interval T , and assume the260

unknown practical delay effect is a continuously changing function within the range [0,T ). We partition261

the time length T into P intersecting intervals {[t0 = 0, t1), [t1, t2), ..., [tP−1, tP = T )} to estimate this time262

delay function and derive the corresponding discrete time delay variable λp. Assuming t i
j represents263

the time elapsed from the original post to the jth retweet of message mi, and g(T − t i
j) denotes the264

corresponding time interval for the time decay effect of jth retweet, then the mapping function g from265

continuous time to discontinuous time is defined as:266

g
�
T − t i

j

�
= p, i f tp−1 ⩽ T − t i

j < tp. (7)

Based on the time decay effect, the cascade topic ci
e of mi message can be denoted as:267
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ci =
Gi

T

∑
j=1

λ
g
�

T−t i
j

�hi
j (8)

where ci ∈ RH ′
represents the final representation of cascade C, which is assembled by the sum pooling268

mechanism, and for each retweet path ei
j, we use the last hidden states as the representation of the entire269

diffusion path, denoted as hi
j.270

Popularity Prediction271

Finally, the output from the sum pooling layer (ci) is conveyed as input to the fully connected layer, known272

as the Multi-Layer Perceptron (MLP). The MLP constitutes a feedforward artificial neural network model.273

We employ the representation vector from the sum pooling layer, as introduced in our model, directly274

as the input for the MLP, with the resulting output serving as the predicted cascade growth scale. This275

can validate the effectiveness of our sum pooling layer representation vector after topic learning, path276

encoding and time delay effect processing through the implementation of a straightforward model. The277

cascade representation vector derived from the pooling layer (ci) can be directly fed into the MLP model,278

culminating in the retrieval of information cascade popularity prediction outcomes:279

ŷi
t = MLP

�
ci
�
. (9)

The optimization objective function is defined as:280

Ob jmin =
1

m

m

∑
i=1

(log ŷi
t − logyi

t)
2
, (10)

where ŷi
t is the predicted incremental popularity of cascade C, yi

t is the real incremental popularity and m281

is the total number of messages.282

EXPERIMENT SETUP283

In this section, we put forward a comprehensive empirical experiment to evaluate the effectiveness of our284

model(STDNN) and compare the prediction performance of our model with state-of-the-art approaches.285

Data Sets286

We evaluate the performance of proposed model on two scenarios of information diffusion popularity287

prediction and compare with state-of-the-art methods to verify the effectiveness and generality of our288

model. The first scenario is to predict the future size of re-tweet cascades on Sina Weibo, and the second289

one is to forecast the citation count of papers from American Physical Society(APS). The weibo data is290

available at Github1 (Cao et al., 2017). The APS data comes from public datasets2. All requests will be291

sent to APS staff for review, and then researchers will receive a copy of this request via email. The dataset292

we used is available at Zenodo3.293

In the first scenario, the dataset is sourced from Sina Weibo, a social media platform based on user294

relationships and one of the most popular microblogging platforms in China. To ensure data fitting, we295

reorganize the Weibo dataset provided in Cao et al. (2017), which captures all original tweets generated296

on June 1st, 2016, and tracks all retweets of each message within the subsequent 24 hours. In Fig. 4a,297

the distribution of cascade popularity, representing the number of retweets for each message, follows a298

power-law distribution. Notably, in contrast to the experimental setup in DeepHawkes(Cao et al., 2017),299

the observation time window in this study is limited to only 1 hour. After data arrangement and selection,300

we obtain 42,183 cascade graphs, comprising 1,390,020 nodes, each corresponding to a unique Weibo301

user. Subsequently, a social network graph with information on all node connections is constructed based302

1https://github.com/CaoQi92/DeepHawkes
2https://journals.aps.org/datasets/inquiry
3https://zenodo.org/badge/latestdoi/670429356
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Figure 4. Distribution of popularity

on the selected graphs. Next, the dataset’s 29,529 cascade graphs are allocated to the training set, 6,328 to303

the validation set, and 6,327 to the test set.304

The second dataset is derived from the American Physical Society (APS), one of the most prestigious305

professional physics societies globally, with a history spanning 122 years since its establishment. This306

dataset encompasses all papers published by the 11 APS journals from 1893 to 2009, along with the307

citations among these papers. In this context, the number of days elapsed since the publication of the cited308

paper is recorded. The dataset comprises 24,338 cascade graphs, containing 122,975 nodes. A cascade309

consists of all the citations to a paper, and the number of citations reflects the cascade’s popularity. Fig. 4b310

illustrates the distribution of cascade popularity. Subsequently, we partition the dataset into training,311

validation, and test sets, comprising 17,037, 3,651, and 3,650 cascades, respectively.312

In summary, the Weibo dataset comprises 42,183 information cascades, while the APS dataset contains313

24,338 information cascades. In both scenarios, nodes represent users or papers, and each sample in the314

dataset constitutes an information cascade graph documenting the diffusion of a target message or paper.315

Additionally, we allocate 70% of the cascades to the training set, the middle 15% to the validation set, and316

the remaining 15% to the test set.317

Evaluation Metric318

In order to evaluate the accuracy of predictions, following the practice of related models, we use the the319

Mean Square Log-transformed Error(MSLE) and median Square log-transformed Error(mSLE). Denote320

M the total number of messages, and SLEi the square log-transformed error for a given message mi, The321

Mean Square Log-transformed Error (MSLE) is employed to measure the error between predicted values322

and actual values, and it is defined as:323

MSLE =
1

M

M

∑
i=1

SLEi (11)

The mSLE is capable of effectively mitigating the impact of outliers, which is defined as:324

mSLE = median(MSLEi) (12)

where SLEi = (log ŷi − logyi)
2
, ŷi is the predicted increment of the popularity for message mi and yi is325

the actual increment of the popularity.326

Baseline methods327

In this section, we have chosen six state-of-the-art methods for comparative analysis with our proposed328

approach, namely Feature-linear/deep, DeepCas, DeepHawkes, CasCN, and CasTCN, respectively. It is329

worth noting that the models under consideration employ comparable or identical datasets as inputs for a330

fair comparison. Subsequently, we provide a detailed description of these baseline models.331
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Feature-based approaches Feature-linear&Feature-deep(Cheng et al., 2014) are feature-based meth-332

ods to implement information cascade prediction. For Feature-linear, temporal features and structural333

features of the cascade graph are input into L2 regularized regression for prediction. To establish a more334

robust baseline, the hand-crafted features are also fed into a Multi-layer Perceptron (MLP) for forecasting335

the future size of the cascade, referred to as Feature-deep.336

A diffusion model-based approach LIS(Wang et al., 2015) is a method that simulates cascade dynamics337

by learning two low-dimensional potential vectors from observed cascade information. These vectors are338

designed to capture the influence and sensitivity of the cascades, respectively.339

Deep learning-based approaches340

• DeeCas(Li et al., 2017) is an end-to-end neural graph network framework based on GRU, attention341

mechanics and MLP to predict the size of the cascade prediction.342

• DeepHawkes(Cao et al., 2017) is a model that depicts the factors of key mechanisms in the343

generative process and has a good understanding of the propagation process of messages.344

• CasCN(Chen et al., 2019) is a framework based on Graph Convolutional Networks (GCN) designed345

to capture both temporal and structural information for cascade prediction. The approach involves346

sampling a sequence of sub-cascade networks from a larger cascade network and subsequently347

employs graph convolutions to learn the representations of each sub-cascade.348

• CasTCN(Zhao et al., 2022) proposes a network-level rather than node-level deep neural network-349

based information cascade predictor, which extracts sub-cascade networks at distinct time intervals.350

This model employs a dynamic mapping mechanism on these sub-cascade networks to derive corre-351

sponding degree distribution sequences, and subsequently inputs them into a temporal convolutional352

network to effectively model time-dependent information.353

Parameter setting354

For the baselines above and our proposed structural-topic aware deep neural networks model (STDNN), in355

order to obtain the best results for each data validation set, we adjust the hyper-parameters. For instance,356

the L2-coefficient is chosen from
�

10−8,10−7, ...,0.01,0.1
�

in feature-linear. For LIS, the parameter 231357

setting consist with Wang et al. (2015).For LIS, the parameter setting consist with (Wang et al., 2015).358

For the MLP, the dimensions of each layer are {512,256,128,64,32}. Sigmoid functions are employed359

as activation functions in the hidden layers, while the output layer utilizes [mention the specific activation360

function]. The learning rate is set at 0.01. For all the deep learning-based approaches, we follow the361

setting of DeepCas, where the embedding size of users is set to 50, and for DeepCas, DeepHawkes, and362

CasCN, the GRU in the hidden layer is configured with 32 units. The hidden dimensions of the two-layer363

fully connected layers in all MLP-based predictors are set to 32 and 16, respectively. The CasTCN, all364

parameters involved are consistent with those in the original paper. In deep neural networks, we set the365

time interval of non-parametric time decay effect to 10 minutes for Sina Weibo and 3 months for APS.366

EXPERIMENTAL RESULTS367

Overall performance368

The prediction performance of our proposed STDNN and the state-of-the-art baselines on both Weibo369

Dataset and APS Dataset is demonstrated in Table 2. Intuitively, our proposed model demonstrates370

superior performance compared to all baselines in predicting information cascades for the two scenarios,371

as assessed by the MSLE and mSLE evaluation metrics. Furthermore, our model significantly outperforms372

feature-based and diffusion model-based approaches, e.g. Features-deep, LIS. It also outstrips the state-373

of-the-art deep learning approaches, e.g. DeepCas, CasCN and CasTCN. Now, in the following, we374

compare the differences and effectiveness of the MSLE-based metric among our proposed model and375

these baselines and analyze the reasons in detail.376

It is observed that features-deep does not outperform features-linear on both the Weibo and APS377

datasets. This indicates that, when a set of appropriate features is provided, the linear method is not378

necessarily inferior to the deep learning approach. However, the error of features-linear results is379

significantly higher than the error of our proposed model predictions. This emphasizes our previous claim380
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Table 2. Overall prediction performance

Datasets Weibo Dataset APS Dataset

Metric MSLE mSLE MSLE mSLE

Features-deep 3.450 1.084 2.195 0.845

Features-linear 3.282 0.971 1.752 0.796

LIS 3.497 1.476 2.486 0.938

DeepCas 2.773 0.868 1.804 0.732

DeepHawkes 2.604 0.816 1.363 0.688

CasCN 2.593 0.798 1.348 0.652

CasTCN 2.581 0.746 1.319 0.633

STDNN 2.530 0.679 1.250 0.607

that feature-based approaches heavily rely on manually crafted features, rendering them challenging to381

generalize across diverse scenarios.382

For the diffusion model-based methods, LIS did not achieve satisfactory results in predicting in-383

formation cascades; it performed the poorest among all methods. The main reason is that diffusion384

model-based methods like LIS typically model the propagation process of information cascades but do385

not effectively predict the future popularity of information cascades. Therefore, LIS performed the worst386

on both datasets.387

For the deep-learning approaches, the STDNN has also beated state-of-the-art baseline methods. For388

the DeepCas, it relies solely on random walk strategies, failing to capture crucial information about389

the network structure, leading to subpar performance in cascade prediction tasks. On the other hand,390

DeepHawkes, encoding the dynamics of cascades using Hawkes processes, combines the advantages of391

generative processes and deep learning, resulting in better performance compared to DeepCas. How-392

ever, DeepHawkes does not extract structural information from cascade networks, leading to inferior393

performance compared to the latest models like CasCN and CasTCN.394

Our proposed STDNN outperforms all peers on all datasets and surpasses the state-of-the-art methods395

in information cascade prediction. Regarding the reasons, firstly, our model rigorously incorporates the396

topological structure of individual nodes within the network, facilitating a more precise and comprehensive397

modeling of the entire cascade network when contrasted with approaches reliant on subgraph modeling.398

Secondly, the utilization of Hawkes processes to encode the propagation of the entire cascade enhances399

the interpretability of the model. Our approach that not only combines the advantages of deep learning400

and generative methods but also takes into account the network topology of each cascade, results in highly401

satisfactory performance.402

Ablation Experiments403

To better analyze the impact of different factors on cascade prediction in the STDNN model, we design404

several variants of the STDNN:405

• STDNN-linear: In STDNN-Linear, we refrain from optimizing the user embedding process. In406

this configuration, our model effectively degenerates to be consistent with the DeepHawkes model.407

We directly utilize the representation vectors learned from the data as user embeddings.408

• STDNN-Node: In STDNN-Node, we do not take the original node’s thematic features as user409

embeddings. Instead, we employ the subgraph of node distributions as input, specifically using the410

node-walk matrix as user embeddings.411

• STDNN-Path: In STDNN-Path, we focus solely on the influence of each forwarding event in the412

Hawkes process, rather than encoding the impact of the entire structural topic path through the413

GRU structure.414

The specific performance of these variant models on the two datasets is summarized in Table 3 and415

illustrated in Fig. 5. Firstly, STDNN-Linear demonstrates a significant advantage over traditional feature-416

based methods and diffusion-based methods, as our model aligns with DeepHawkes in this configuration.417

Secondly, for STDNN-Node, using the walk-topic matrix as user embeddings yields better performance418

than STDNN-Linear, indicating the crucial role of network topology in the prediction process. However,419

its performance is inferior to our overall STDNN model, implying that considering the network topology420
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Table 3. Prediction performance of variants of the STDNN

Datasets Weibo Dataset APS Dataset

Metric MSLE mSLE MSLE mSLE

STDNN-linear 2.604 0.816 1.363 0.688

STDNN-Node 2.593 0.763 1.325 0.673

STDNN-Path 2.977 0.874 1.974 0.752

STDNN 2.530 0.679 1.250 0.607
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Figure 5. Ablation study of STDNN on two data sets

of individual nodes yields better predictive performance than focusing solely on subgraph structures.421

Finally, in STDNN-Path, considering only the influence of single forwarding events significantly reduces422

the prediction accuracy, which indicates that future popularity is not only influenced by the current423

forwarding user but also by the entire forwarding path. This further emphasizes the necessity of the424

proposed approach.425

Parameter Sensitivity426

We primarily conduct sensitivity analyses on two parameters in our model, specifically, the length of427

walks l and the number of topics Q. Following related work, we employ the MSLE as a metric to assess428

sensitivity to parameters on two datasets. For the length of walks l, as depicted in the Fig. 6, there is429

a noticeable ”V”-shaped variation pattern in MSLE with the increase of l on both datasets. It’s crucial430

to avoid setting values that are excessively large or too small, as they can adversely impact the model’s431

performance. However, the fluctuation range is minimal, with a slight difference between the maximum432

and minimum values of MSLE, namely 2.557 vs 2.530 and 1.263 vs 1.250, respectively. Concerning the433

number of topics Q, as shown in Fig. 7, with the number of topics Q increases, the performance on the434

two datasets exhibits a slight fluctuation in MSLE, specifically ranging from 2.53 to 2.55 and from 1.25 to435

1.27, respectively. These experimental results indicate that our model is not sensitive to the parameters of436
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Figure 6. Impact of the length of walks (l) on STDNN
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Figure 7. Impact of the number of topics (Q) on STDNN

the length of walks l and the number of topics Q, making it relatively easy to implement in practice.437

CONCLUSIONS438

In this paper, we extend the DeepHawkes model by considering the impact of cascade topology on439

diffusion dynamics, and propose the STDNN model, which integrates the Graph Anchor LDA topic440

model into the DeepHawkes framework. This model not only combines the benefits of deep learning and441

generative methods but also integrates the Graph Anchor LDA model to extract structural information442

from nodes, which leads to a more comprehensive representation of the information diffusion process.443

The STDNN model initiates by extracting structural topic information from nodes, optimizing the user444

embedding process to encapsulate the network topology of nodes. Following this, it employs the Hawkes445

process to encode cascade propagation paths, encompassing both the self-excitation mechanism during446

forwarding and the temporal delay effects during propagation. This holistic approach contributes to the447

ultimate enhancement of predictive performance. The STNDD consistently exhibits superior performance448

over other baseline methods when evaluated on two publicly available datasets, Sina Weibo and APS.449

In our future work, we will try to conduct a more in-depth exploration of information pertaining450

to cascading nodes, including temporal attributes associated with nodes. Furthermore, we intend to451

investigate the amalgamation of STDNN with other deep neural network architectures, seeking to identify452

more effective predictive methodologies.453
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