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ABSTRACT
It is critical to accurately predict the future popularity of information cascades formany
related applications, such as online opinion warning or academic influence evaluation.
Despite many efforts devoted to developing effective prediction approaches, especially
the recent presence of deep learning-based model, the structural information of the
cascade network is ignored. Thus, to make use of the structural information in cascade
prediction task, we propose a structural-topic aware deep neural networks (STDNN),
which firstly learns the structure topic distribution of each node in the cascade, feeds
it to a sequential neural network, and finally predicts the future popularity of the
cascades. It can inherit the high interpretability of Hawkes process and possesses the
high predictive power of deep learning methods, bridging the gap between prediction
and understanding of information cascades by capturing indicative graph structures.
We evaluate our model through quantitative experiments, where our model exhibits
promising performance, efficiency higher than the baselines.

Subjects Data Mining and Machine Learning, Data Science, Network Science and Online Social
Networks, Neural Networks
Keywords Popularity prediction, Information cascades, Deep neural networks, Structural
patterns

INTRODUCTION
As of now, an escalating number of social media platforms, including platforms such
as Facebook, Youtube, Sina Weibo, and others, have emerged, collectively placing the
attention economy at the forefront of this era. The advent of these online social platforms
has significantly reshaped the dynamics of information transmission among users, resulting
in a substantial enhancement in the creation and dissemination of information. The process
of information transmission between users can be conceptualized as an information
cascade. Indeed, information cascades extend beyond social networks; the citation process
of academic papers can similarly be construed as the formation of information cascades.
Precisely forecasting the future extent of information cascades, indicating the anticipated
popularity of specific online content, carries considerable significance. On the one
hand, it proves advantageous in viral marketing, online advertising, and information
recommendation; on the other hand, it may also give rise to adverse effects, such as the
rapid dissemination of rumors.
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The prediction of information cascades relies on early dissemination characteristics to
forecast their future reach. Nevertheless, due to the extensive and open nature of social
platforms, coupled with external factors (Cao et al., 2017) such as network topology,
follower relationships, user interests, posting times, and privacy considerations, the
prediction task becomes inherently challenging. The vast scale of network users, dynamic
information diffusion, rapid propagation speed, and the inherent stochastic nature of the
pathways and processes involved contribute to the complexity. The uneven distribution
of ‘‘popularity’’ among different pieces of information further intensifies the challenge.
Consequently, accurately forecasting information cascades presents significant challenges
within the context of these dynamic and intricate social systems.

In the prediction of information cascade, traditional methods for extracting features
for popularity prediction can be broadly categorized into two groups: feature-based
methods (Szabo & Huberman, 2010) and generative methods (Li et al., 2017). The feature-
based approach involves extracting diverse features from information based on human
prior domain knowledge, encompassing temporal features, structural features, content
features, and others. Subsequently, regression/classification models are trained to predict
the future popularity of the information. The challenge in this method lies in the selection
of relevant features, with the quality of feature selection significantly impacting predictive
performance. In contrast, generative methods aim to represent and model the process by
which information attracts attention, facilitating a clearer understanding of the fundamental
mechanisms governing information propagation dynamics. However, generative methods
exhibit suboptimal predictive capabilities as they are not explicitly optimized for popularity
forecasting.

In order to address the shortcomings of feature-based and generative methods in
popularity prediction, scholars have begun to shift their focus towards deep learning
methods. A model closely aligned with our research is the DeepHawkes model which
introduced by Cao et al. (2017). This model integrates the highly interpretable Hawkes
model with the superior predictive accuracy of deep learning. DeepHawkes not only inherits
the high interpretability of the Hawkes process but also possesses the strong predictive
capabilities of deep learning methods, thus bridging the gap between predicting and
understanding information cascades. However, it is crucial to note that the DeepHawkes
model is tailored to model the information propagation process, neglecting the impact
of network topology on propagation. In reality, network topology significantly influences
information propagation, as different topological structures involve distinct users and
propagation mechanisms. Different users engage with various topics, and these topics
often exhibit varying degrees of popularity. Therefore, when predicting information
propagation, the network topology emerges as an indispensable factor that should not be
overlooked.

Fortunately, contemporary research in network science (Bartlett & Cussens, 2017; Dai,
Ren & Du, 2020) has recently shifted its focus towards modeling the inherent topological
structures within network architectures. A recent study (Long et al., 2020) has introduced
an innovative approach to extract structural topics associated with each node in a graph.
Drawing inspiration from Latent Dirichlet Allocation (LDA) and drawing an analogy
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between document and graph data, this methodology integrates the acquired structural
topics into a graph neural network framework for subsequent tasks, including node
classification and link prediction. However, the effectiveness of automatically obtaining
structural node representations for the cascade prediction task remains uncertain.

Hence, this study broadens its focus to encompass the structural aspects of cascade
prediction tasks. It incorporates the structural topic representation assigned to each node
into the deep neural network model, introducing a novel framework termed the Structural
Topic-aware Deep Neural Network (STDNN)model. The STDNNmodel examines diverse
network topologies, considers the self-excitation mechanism among these topologies, and
integrates the influences of both cascading dynamics and network topology. In summary,
the primary contributions of this article include:

• We propose an enhanced DeepHawkes model that incorporates structural themes. The
Graph Anchor LDA (Latent Dirichlet Allocation) topic classification model is employed
to extract structural topics from the network topology, and the deep model is utilized
to learn the representation vectors of these structural topics, effectively simulating the
self-excitation mechanism between them.
• The Structural Topic-aware Deep Neural Network (STDNN) model is introduced,
which combines DeepHawkes, a deep neural network model that specifically solves the
information cascade problem with the Graph structural-topic model. The integration
ensures that the prediction model not only maintains the high interpretability of
DeepHawkes but also thoroughly takes into account the characteristics of the network
topology. It significantly enhances the model’s ability to represent the information
diffusion process, thereby improving the accuracy of popularity prediction.
• We conduct comprehensive experiments using real datasets to systematically compare
the prediction results of multiple algorithms under different conditions to verify the
effectiveness of the proposed method.

In the subsequent sections of this article, ‘Related works’ provides a comprehensive
review of related literature, followed by ‘Structural-topic aware deep neural network’
which elaborates on the proposed methodology. ‘Experiment setup’ delineates the specific
experimental configurations, with corresponding results presented in ‘Experimental
results’. Finally, the conclusions of this research are presented in ‘Conclusions’.

RELATED WORKS
In this section, we will mainly discuss the research most closely related to our work,
including information popularity prediction and topic models.

The methods for predicting information cascades can be categorized into three distinct
groups: feature-based methods, generative process methods, and deep learning-based
methods. The feature-based methods usually regard the popularity prediction task as a
regression problem (Tsur & Rappoport, 2012; Cheng et al., 2014) or a classification problem
(Szabo & Huberman, 2010; Romero, Tan & Ugander, 2013; Shulman, Sharma & Cosley,
2016). The user features (Cui et al., 2013), content features (Tsur & Rappoport, 2012),
structural features (Zhang, Zeng & Tang, 2021), and temporal features (Pinto, Almeida
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& Gonçalves, 2013) for the cascades are meticulously crafted through manual design,
drawing insights directly from the original data. These methods heavily rely on domain
knowledge, making generalization challenging, and the manual feature extraction process
is time-consuming and labor-intensive. Consequently, some scholars have turned their
attention to generative processes for predicting information cascades.

Generative process methods aim to model the cascade propagation process, primarily
relying on Poisson processes or Hawkes processes. For instance, concerning the future
impact of academic papers, the reinforced Poisson process (RPP) (Wang, Song & Barabási,
2013) applied reinforcement mechanisms to model it. PETM (Gao, Ma & Chen, 2015)
expandedupon the foundation of theRPPmodel through a temporalmapping process.Feng
et al. (2020) proposed a feature-regularized reinforced Poisson process (FRRPP), which
leveraged feature regression terms to capture the correlations between different posts.
The second important method in generative approaches is the Hawkes process. SpikeM
(Matsubara et al., 2012) integrated the merits of an epidemic model and the Hawkes model
to simulate the actual transmission process of the cascade. The dual sentimental Hawkes
process (Ding et al., 2015) considered combining self-excitation and cross-excitation
mechanisms to model the impact of information. SEISMIC (self-exciting model of
information cascades) (Zhao et al., 2015) utilized Hawkes processes to model temporal
delay processes for predicting future retweet counts. A hybrid model composed of a
Hawkes process has been proposed by Mishra, Rizoiu & Xie (2016), which integrated the
predictions of random forest with generative processes. However, these generative models
primarily focus on the propagation process of information cascades and do not provide
predictions for the future popularity of information.

In light of advancements in deep learning technology, numerous scholars have directed
their research efforts towards establishing effective prediction models within the realm
of deep learning. For example, Li et al. (2017) proposed the DeepCas model, which
transformed the cascade graph as node sequences through random walk and learns
the representation of each cascade under a deep learning framework. Cao et al. (2017)
introduced DeepHawkes, an extension of DeepCas designed to address the limitations
associated with neglecting the time decay effect. It utilized an end-to-end deep learning
framework, drawing an analogy to the interpretable factors of the Hawkes process.
DeepDiffuse (Islam et al., 2018) effectively captured the network among observed nodes,
enabling accurate predictions of when the next node will participate in the cascade.
The CasCN model (Chen et al., 2019), based on propagation paths, partitioned the cascade
graph intomultiple cascade subgraphs. It utilized an enhanced graph convolution approach
to learn representations of cascade subgraphs, capturing the dynamic evolution of cascade
networks. Zhao, Zhang & Feng (2022) presented CasTCN, which utilized the temporal
and structural information of cascade networks as input to predict the future growth
of information cascades. However, these methods either neglect the impact of cascade
structure on information popularity prediction or excessively focus on subgraphs, resulting
in poor model interpretability.

Another research area related to this study is topic models. Topic modeling is a widely
used technique designed for text clustering, frequently employed to identify latent topic
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information within extensive document sets or corpora. Latent Dirichlet Allocation
(LDA) (Blei, Ng & Jordan, 2003) was the most typical topic models, which consisted of
three layers of generative models. Kou et al. (2018) proposed the STTM model, which
leveraged the spatial and temporal features of short texts in social networks to obtain more
accurate semantics, thereby generating higher-quality topics. Shi et al. (2019) designed
dynamic topic modeling via a self-aggregationmethod (SADTM). This method can capture
aspects of the time-varying topic distribution and address issues related to sparsity. Shi
et al. (2020) used information from users and followers, combining it with user topic
models to uncover the search intentions and preferences of users in social networks. This
effectively addressed issues related to semantic sparsity and historical data. However, these
topic models primarily focus on the text features of social networks, often overlooking
the topological structure patterns of the network. Consequently, Long et al. (2020) have
introduced a Graph Structural-Topic Neural Network, who employed anonymous random
walk to automatically learn structure characteristics of nodes in graphes. Nevertheless, this
methodology has yet to be employed in predicting issues related to information cascades.

Based on the aforementioned, this article introduces a novel information cascade
prediction method named STDNN. It comprehensively integrates the high interpretability
and predictive performance of DeepHawkes with the capability of the Graph Structural-
Topic Neural Network to capture the topological structure of cascade networks.

STRUCTURAL-TOPIC AWARE DEEP NEURAL NETWORK
In this section, we introduce our model STDNN. Figure 1 gives an overview of our model
STDNN and Fig. 2 depicts the structure topic learning process. The backbone of our
STDNN model primarily consists of Graph Anchor LDA and recurrent neural network
(RNN), divided into three main components, as shown in Fig. 1. The first phase is the user
embedding process, where we utilize topic learning based on the Graph Anchor LDAmodel
to comprehensively consider the influence of network topology on user embedding. The
second section focuses on subsequent path encoding and pooling. Specifically, it entails
feeding the forwarding paths, which contain network structures, into a recurrent neural
network (RNN). Subsequently, the values of the last hidden layer are summed and pooled,
facilitating the modeling of the self-excitationmechanism within the forwarding paths. The
final component involves the non-parametric time decay effect, whichmodels the temporal
decay process of information propagation using non-parametric methods. Notably, we
have considered the influence of network topology on information cascade popularity. We
commence by providing foundational definitions and introducing the methodology for
extracting structural topics.

Preliminaries
Definition 1. Information Cascades. Suppose we have M messages, denoted by M =
{mi
}(16 i6M ). For each message mi, it is denoted by a cascade C i

=

{(
uij,v

i
j ,t

i
j

)}
to

record the diffusion process of it, where the tuple (uij,v
i
j ,t

i
j ) corresponds to the jth retweet,

meaning that user v ij retweets message mi from user uij ,and the time elapsed between the
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Figure 1 An overview of structural-topic aware deep neural networks (STDNN). The model consists of
two major components: (A) Extracting structural topic of graph, (B) Deep neural networks.
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original post and the jth retweet is t ij . The popularity R
i
t of message mi up to time t is

defined as the number of its retweets, i.e., |{(uij,v
i
j ,t

i
j )|t

i
j 6 t }|.

The representation of the topological structure of a cascade within a diffusion network
is referred to as a cascade graph. This cascade graph can correspond to one or more pieces
of information, necessitating manual extraction. For instance, an information cascade
sample may correspond to a topological graph representation. Additionally, datasets may
directly provide the topological structure of the cascade graph. This type of topological
graph is typically considered a global network, encompassing the topological structural
relationships of all information cascade sequences in the entire dataset.
Definition 2. Incremental Popularity Prediction. Given the forwarding path {(uj,vj,tj)|tj 6
T } of cascade C within the period [0,T ) (commonly referred to as the observation
window), the corresponding cascade graph is denoted as GT

= (V T ,ET ). The task of
predicting cascade increment popularity involves a regression problem, aiming to predict
the increment in the number of engaged nodes in cascade C after a time interval 1t ,
denoted as 1sC = |V T+1t

C |− |V T
C |. A specific instance of this prediction task is the final
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popularity prediction, which anticipates the increment 1s∞C = |V
∞

C |− |V
T
C | between the

number of observed nodes and the number of final nodes in the cascade.

Extracting structural topic of nodes
In the realm of natural language processing, topic models play a crucial role in elucidating
the distributional distinctions embedded in higher-order structural patterns. This study
undertakes a theoretical analysis to scrutinize the underlying principles of acquiring
substructure topic distributions within graph networks. Subsequently, an adaptive graph
neural network is introduced to adeptly leverage such structural information. Please refer
to Fig. 2 for an intuitive illustration. In particular, we extract structural patterns through
anonymous walks (Micali & Zhu, 2016). Anonymous random walks are sampled for each
node to characterize the local structures of a node. Anonymous walks involve obscuring
the true identity of nodes during a random walk, retaining only the serial number ID as
an identifier to document the transitional rules within the walk. For each node, a set of
random walk sequences with a predefined length is sampled. Subsequently, their potential
distributions of anonymous walk experiences, along with the overall average experience
distribution across the entire graph, are calculated to construct the authentic distribution.

We argue that anonymous walk does not share the identity space of nodes, that is, the
id of nodes in each walk will be counted from scratch, so that the id of nodes in multiple
walks will be repeated. The sequence generated by a random walk, as depicted in the
figure, is transformed into the sequence generated by an anonymous walk. For instance,
(0,15,11,15,1,15) becomes (0,1,2,1,3,1) in Fig. 2. Long et al. (2020) introduced an
algorithm for selecting an anchor structure (‘Anchor’), aiming to filter representative
structural features of the network, thereby reducing representation complexity and
mitigating noise interference. We refer to their practice in the follow-up processing.

Given a graph G= (V ,E), by anonymous walk, two matrices can be learned to depict
the structural information of the nodes in graph. One is node-topic matrix N ∈R|V |×Q,
where each row Ni corresponds to a distribution and N q

i denotes the probability of node
vi belonging to the q-th structural topic. The second is walk-topic matrix M ∈RQ×|Al |,
where each row Mq represents the topic distribution over walks in Al and M a

q denotes
the probability of walk a ∈ Al belonging to the q-th structural topic. Here, Al signifies
a set of possible anonymous walks with a length of l , and Q represents the number of
desired structural topics.represents the desired number of structural topics. Additionally,
we define the set of anonymous walks starting from vi as Bi. According to the definition of
Graph Anchor LDA (Long et al., 2020), we need to get the node-topic matrix N , meaning
of getting the distribution matrix of each node topic. We first identify the ‘anchor’ and
then proceed with topic modeling. Specifically, we set the walk-walk co-occurrence matrix
W ∈R|Al |×|Al |, with Wi,j =

∑
vq∈V I

(
wi ∈Bq,wj ∈Bq

)
, and utilize non-negative matrix

factorization (NMF) to extract anchors

H ,Z = arg min‖W −HZ‖2F
s.t. H ,ZT

∈R|Al |×α,H ,Z ≥ 0. (1)
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Table 1 Key symbols of STDNN.

Symbol Description

mi Label for text content of the message
C i Label for diffusion process of a message cascade
uij The u represents the user who was forwarded, i represents

that the i-th message was forwarded, and j represents that
the current forwarding is the j-th forwarding

v ij The v represents represents the forwarding user, i represents
that the i-th message was forwarded, and j represents that
the current forwarding is the j-th forwarding

t ij The t represents the time interval between the moment
when user v retweets a message and the moment when user
u retweets the same message.

Ri
t Label for the actual number of messages forwarded
1sC Label for forwarding increment within1t time
1s∞C Label for total forwarding increment
N , S,M Labels for node-topic matrix, node-walk matrix and walk-

topic matrix
Q, l Labels for the number of topics and the length of walks
Al Label for a set of possible anonymous walks with a length of

l
Bi Label for the set of anonymous walks starting from node vi
W Label for the walk-walk co-occurrence matrix

We iteratively update H , Z until convergence, and then identify the anchors using
Aq= arg max

(
Zq
)
,q =1 ,...α, where A is the set of indices for anchors, and Zq is the q-th

row of Z . Based on the selected anchors, we can learn the walk-topic distribution M . In
addition, we define node-walk matrix as S∈R|V |×|Al | with Sai denoting the occurrences of
a in Bi. We finally get the node-topic distribution N through N = SM †, whereM † denotes
pseudo-inverse. Table 1 summarizes the symbols and their corresponding meanings of our
model.

User embedding
Each user in the generated retweet path is denoted as a one-hot vector, h∈R|V |, where
|V | is the total number of users. All users share an embedding matrix N ∈R|V |×Q, where
Q is an adjustable dimension of embedding, N is equal the node-topic matric. This user
embedding matrix converts each user into its representation vector:

x =N Th, (2)

where x ∈QK and N T is the transpose of N . It is worth noting that the user embedding
matrix N is learned from the overall structure of the graph, which can represent the whole
information of the graph to some extent. Therefore, the learned user embeddings are
optimized for the initial supervised framework.

Topic path coding
The influence among topics (influence transfer) and the significance of topics in
topic path structure can be modeled through the GRU in recurrent neural networks
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(Mikolov et al., 2010). The influence transfer from one prominent subject to another
influences the prominence of the latter. The importance of topics in the topic path
structure is determined by their frequent occurrence across multiple topic paths. Each
theme path has the most GRU output pooled layer, which achieves Hawkes’ self-exciting
mechanism by accumulating various effects.

When GRU is used to encode each topic e ij
(
16 j 6Q

)
of message mi, where e ij is the

element of matrix x , the d-th hidden state hd =GRU
(
e ij ,hd−1

)
in GRU, where hd ∈RH ′

is the output, and the topic represents the vector when e ij ∈RQ is input. hd−1 ∈RH ′ is the
previous hidden state, Q is the dimension of topic embedding, and H ′ is the dimension
of hidden state.The GRU model is shown below in Fig. 3. Firstly, the reset gate rd ∈RH ′ is
computed by

rd = σ
(
W re ij +Y

rhd−1+br
)
, (3)

where σ is the sigmoid activation function, W r
∈RH ′×Q, Y r

∈RH ′×H ′ and br ∈RH ′ are
GRU parameters learned during training.

Secondly, the update gate zd ∈RH ′ is computed by

zd = σ
(
W ze ij +Y

zhd−1+bz
)
, (4)

whereW z
∈RH ′×Q,Y z

∈RH ′×H ′ and bz ∈RH ′ .
Then, the actual activation of hidden state hd is computed by

hd = zd�hd−1+(1−zd)� h̃d , (5)

where

h̃d = tanh
(
W he ij + rd�

(
Y dhd−1

)
+bd

)
. (6)
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� represents element-wise product,W d
∈RH ′×Q,Y d

∈RH ′×H ′ and bd ∈RH ′ .

Modeling the time decay effect
Given the temporal decay of retweet effects, we incorporate the time decay effect through
a non-parametric approach. Let us consider the propagation of all messages within a
time interval T , and assume the unknown practical delay effect is a continuously changing
function within the range [0,T ). We partition the time length T into P intersecting intervals
{[t0= 0,t1),[t1,t2),...,[tP−1,tP =T )} to estimate this time delay function and derive the
corresponding discrete time delay variable λp. Assuming t ij represents the time elapsed from
the original post to the jth retweet of messagemi, and g (T− t ij ) denotes the corresponding
time interval for the time decay effect of jth retweet, then the mapping function g from
continuous time to discontinuous time is defined as:

g
(
T− t ij

)
= p,if tp−16T− t ij < tp. (7)

Based on the time decay effect, the cascade topic c ie of m
i message can be denoted as:

c i=
Gi
T∑

j=1

λ
g
(
T−t ij

)hij (8)

where c i ∈RH ′ represents the final representation of cascade C , which is assembled by the
sum pooling mechanism, and for each retweet path e ij , we use the last hidden states as the
representation of the entire diffusion path, denoted as hij .

Popularity prediction
Finally, the output from the sum pooling layer (c i) is conveyed as input to the fully
connected layer, known as the multi-layer perceptron (MLP). The MLP constitutes a
feedforward artificial neural network model. We employ the representation vector from
the sum pooling layer, as introduced in our model, directly as the input for the MLP,
with the resulting output serving as the predicted cascade growth scale. This can validate
the effectiveness of our sum pooling layer representation vector after topic learning, path
encoding and time delay effect processing through the implementation of a straightforward
model. The cascade representation vector derived from the pooling layer (c i) can be directly
fed into the MLP model, culminating in the retrieval of information cascade popularity
prediction outcomes:

ŷ it =MLP
(
c i
)
. (9)

The optimization objective function is defined as:

Objmin=
1
m

m∑
i=1

(logŷ it − logy
i
t )
2, (10)

where ŷ it is the predicted incremental popularity of cascade C , y it is the real incremental
popularity and m is the total number of messages.
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EXPERIMENT SETUP
In this section, we put forward a comprehensive empirical experiment to evaluate the
effectiveness of our model (STDNN) and compare the prediction performance of our
model with state-of-the-art approaches.

Data sets
We evaluate the performance of proposed model on two scenarios of information
diffusion popularity prediction and compare with state-of-the-art methods to verify
the effectiveness and generality of our model. The first scenario is to predict the future size
of re-tweet cascades on Sina Weibo, and the second one is to forecast the citation count
of papers from American Physical Society (APS). The weibo data is available at Github
(https://github.com/CaoQi92/DeepHawkes) (Cao et al., 2017). The APS data comes from
public datasets (https://journals.aps.org/datasets/inquiry). All requests will be sent to APS
staff for review, and then researchers will receive a copy of this request via email. The
dataset we used is available at Zenodo (https://zenodo.org/badge/latestdoi/670429356).

In the first scenario, the dataset is sourced from Sina Weibo, a social media platform
based on user relationships and one of the most popular microblogging platforms in
China. To ensure data fitting, we reorganize the Weibo dataset provided in Cao et al.
(2017), which captures all original tweets generated on June 1st, 2016, and tracks all
retweets of each message within the subsequent 24 h. In Fig. 4A, the distribution of cascade
popularity, representing the number of retweets for each message, follows a power-law
distribution. Notably, in contrast to the experimental setup in DeepHawkes (Cao et
al., 2017), the observation time window in this study is limited to only 1 h. After data
arrangement and selection, we obtain 42,183 cascade graphs, comprising 1,390,020 nodes,
each corresponding to a unique Weibo user. Subsequently, a social network graph with
information on all node connections is constructed based on the selected graphs. Next, the
dataset’s 29,529 cascade graphs are allocated to the training set, 6,328 to the validation set,
and 6,327 to the test set.

The second dataset is derived from the American Physical Society (APS), one of the most
prestigious professional physics societies globally, with a history spanning 122 years since
its establishment. This dataset encompasses all papers published by the 11 APS journals
from 1893 to 2009, along with the citations among these papers. In this context, the number
of days elapsed since the publication of the cited paper is recorded. The dataset comprises
24,338 cascade graphs, containing 122,975 nodes. A cascade consists of all the citations to
a paper, and the number of citations reflects the cascade’s popularity. Figure 4B illustrates
the distribution of cascade popularity. Subsequently, we partition the dataset into training,
validation, and test sets, comprising 17,037, 3,651, and 3,650 cascades, respectively.

In summary, the Weibo dataset comprises 42,183 information cascades, while the
APS dataset contains 24,338 information cascades. In both scenarios, nodes represent
users or papers, and each sample in the dataset constitutes an information cascade graph
documenting the diffusion of a target message or paper. Additionally, we allocate 70% of
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（a） （b）

Figure 4 Distribution of popularity. (A) The Sina Weibo dataset; (B) the APS dataset.
Full-size DOI: 10.7717/peerjcs.1870/fig-4

the cascades to the training set, the middle 15% to the validation set, and the remaining
15% to the test set.

Evaluation metric
In order to evaluate the accuracy of predictions, following the practice of relatedmodels, we
use themean square log-transformed error (MSLE) and themedian square log-transformed
error (mSLE).DenoteM the total number ofmessages, and SLEi the square log-transformed
error for a given message mi, MSLE is employed to measure the error between predicted
values and actual values, and it is defined as:

MSLE =
1
M

M∑
i=1

SLEi (11)

The mSLE is capable of effectively mitigating the impact of outliers, which is defined as:

mSLE =median(MSLEi) (12)

where SLEi=
(
logŷi− logyi

)2, ŷi is the predicted increment of the popularity for message
mi and yi is the actual increment of the popularity.

Baseline methods
In this section, we have chosen six state-of-the-art methods for comparative analysis with
our proposed approach, namely Feature-linear/deep, DeepCas, DeepHawkes, CasCN, and
CasTCN, respectively. It is worth noting that the models under consideration employ
comparable or identical datasets as inputs for a fair comparison. Subsequently, we provide
a detailed description of these baseline models.

Feature-based approaches
Feature-linear and Feature-deep (Cheng et al., 2014) are feature-based methods to
implement information cascade prediction. For Feature-linear, temporal features and
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structural features of the cascade graph are input into L2 regularized regression for
prediction. To establish a more robust baseline, the hand-crafted features are also fed into
an MLP for forecasting the future size of the cascade, referred to as Feature-deep.

A diffusion model-based approach
LIS (Wang et al., 2015) is a method that simulates cascade dynamics by learning two
low-dimensional potential vectors from observed cascade information. These vectors are
designed to capture the influence and sensitivity of the cascades, respectively.

Deep learning-based approaches
• DeeCas (Li et al., 2017) is an end-to-end neural graph network framework based on
GRU, attention mechanics and MLP to predict the size of the cascade prediction.
• DeepHawkes (Cao et al., 2017) is a model that depicts the factors of key mechanisms
in the generative process and has a good understanding of the propagation process of
messages.
• CasCN (Chen et al., 2019) is a framework based on graph convolutional networks
(GCN) designed to capture both temporal and structural information for cascade
prediction. The approach involves sampling a sequence of sub-cascade networks from
a larger cascade network and subsequently employs graph convolutions to learn the
representations of each sub-cascade.
• CasTCN (Zhao, Zhang & Feng, 2022) proposes a network-level rather than node-level
deep neural network-based information cascade predictor, which extracts sub-cascade
networks at distinct time intervals. This model employs a dynamic mapping mechanism
on these sub-cascade networks to derive corresponding degree distribution sequences,
and subsequently inputs them into a temporal convolutional network to effectively
model time-dependent information.

Parameter setting
For the baselines above and our proposed structural-topic aware deep neural networks
model (STDNN), in order to obtain the best results for each data validation set, we adjust the
hyper-parameters. For instance, the L2-coefficient is chosen from

{
10−8,10−7,...,0.01,0.1

}
in feature-linear. For LIS, the parameter 231 setting consist withWang et al. (2015). For LIS,
the parameter setting consist withWang et al. (2015). For the MLP, the dimensions of each
layer are {512,256,128,64,32}. Sigmoid functions are employed as activation functions in
the hidden layers, while the output layer utilizes [mention the specific activation function].
The learning rate is set at 0.01. For all the deep learning-based approaches, we follow
the setting of DeepCas, where the embedding size of users is set to 50, and for DeepCas,
DeepHawkes, and CasCN, the GRU in the hidden layer is configured with 32 units. The
hidden dimensions of the two-layer fully connected layers in all MLP-based predictors
are set to 32 and 16, respectively. The CasTCN, all parameters involved are consistent
with those in the original paper. In deep neural networks, we set the time interval of
non-parametric time decay effect to 10 min for Sina Weibo and 3 months for APS.
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Table 2 Overall prediction performance.

Datasets Weibo dataset APS dataset

Metric MSLE mSLE MSLE mSLE

Features-deep 3.450 1.084 2.195 0.845
Features-linear 3.282 0.971 1.752 0.796
LIS 3.497 1.476 2.486 0.938
DeepCas 2.773 0.868 1.804 0.732
DeepHawkes 2.604 0.816 1.363 0.688
CasCN 2.593 0.798 1.348 0.652
CasTCN 2.581 0.746 1.319 0.633
STDNN 2.530 0.679 1.250 0.607

Notes.
Results for the proposed model are shown in bold.

EXPERIMENTAL RESULTS
Overall performance
The prediction performance of our proposed STDNN and the state-of-the-art baselines on
both the Weibo Dataset and the APS Dataset is demonstrated in Table 2. Intuitively, our
proposedmodel demonstrates superior performance compared to all baselines in predicting
information cascades for the two scenarios, as assessed by the MSLE and mSLE evaluation
metrics. Furthermore, our model significantly outperforms feature-based and diffusion
model-based approaches, e.g., Features-deep, LIS. It also outstrips the state-of-the-art
deep learning approaches, e.g., DeepCas, CasCN and CasTCN. Now, in the following, we
compare the differences and effectiveness of the MSLE-based metric among our proposed
model and these baselines and analyze the reasons in detail.

It is observed that features-deep does not outperform features-linear on both the Weibo
and APS datasets. This indicates that, when a set of appropriate features is provided, the
linear method is not necessarily inferior to the deep learning approach. However, the
error of features-linear results is significantly higher than the error of our proposed model
predictions. This emphasizes our previous claim that feature-based approaches heavily
rely on manually crafted features, rendering them challenging to generalize across diverse
scenarios.

For the diffusion model-based methods, LIS did not achieve satisfactory results in
predicting information cascades; it performed the poorest among all methods. The main
reason is that diffusion model-based methods like LIS typically model the propagation
process of information cascades but do not effectively predict the future popularity of
information cascades. Therefore, LIS performed the worst on both datasets.

For the deep-learning approaches, STDNN has also performed better than state-of-the-
art baseline methods. DeepCas relies solely on random walk strategies, failing to capture
crucial information about the network structure, leading to subpar performance in cascade
prediction tasks. On the other hand, DeepHawkes, encoding the dynamics of cascades using
Hawkes processes, combines the advantages of generative processes and deep learning,
resulting in better performance compared to DeepCas. However, DeepHawkes does not

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1870 14/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1870


extract structural information from cascade networks, leading to inferior performance
compared to the latest models like CasCN and CasTCN.

Our proposed STDNN outperforms all peers on all datasets and surpasses the state-
of-the-art methods in information cascade prediction. Regarding the reasons, firstly, our
model rigorously incorporates the topological structure of individual nodes within the
network, facilitating a more precise and comprehensive modeling of the entire cascade
network when contrasted with approaches reliant on subgraph modeling. Secondly, the
utilization of Hawkes processes to encode the propagation of the entire cascade enhances
the interpretability of the model. Our approach that not only combines the advantages of
deep learning and generative methods but also takes into account the network topology of
each cascade, results in highly satisfactory performance.

Ablation experiments
To better analyze the impact of different factors on cascade prediction in the STDNN
model, we design several variants of the STDNN:

• STDNN-Linear: In STDNN-Linear, we refrain from optimizing the user embedding
process. In this configuration, our model effectively degenerates to be consistent with
the DeepHawkes model. We directly utilize the representation vectors learned from the
data as user embeddings.
• STDNN-Node: In STDNN-Node, we do not take the original node’s thematic features
as user embeddings. Instead, we employ the subgraph of node distributions as input,
specifically using the node-walk matrix as user embeddings.
• STDNN-Path: In STDNN-Path, we focus solely on the influence of each forwarding
event in the Hawkes process, rather than encoding the impact of the entire structural
topic path through the GRU structure.

The specific performance of these variant models on the two datasets is summarized
in Table 3 and illustrated in Fig. 5. Firstly, STDNN-Linear demonstrates a significant
advantage over traditional feature-based methods and diffusion-based methods, as our
model aligns with DeepHawkes in this configuration. Secondly, for STDNN-Node, using
the walk-topic matrix as user embeddings yields better performance than STDNN-Linear,
indicating the crucial role of network topology in the prediction process. However, its
performance is inferior to our overall STDNN model, implying that considering the
network topology of individual nodes yields better predictive performance than focusing
solely on subgraph structures. Finally, in STDNN-Path, considering only the influence of
single forwarding events significantly reduces the prediction accuracy, which indicates that
future popularity is not only influenced by the current forwarding user but also by the
entire forwarding path. This further emphasizes the necessity of the proposed approach.

Parameter sensitivity
We primarily conduct sensitivity analyses on two parameters in our model, specifically, the
length of walks l and the number of topicsQ. Following related work, we employ the MSLE
as a metric to assess sensitivity to parameters on two datasets. For the length of walks l , as
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Table 3 Prediction performance of variants of the STDNN.

Datasets Weibo dataset APS dataset

Metric MSLE mSLE MSLE mSLE

STDNN-linear 2.604 0.816 1.363 0.688
STDNN-Node 2.593 0.763 1.325 0.673
STDNN-Path 2.977 0.874 1.974 0.752
STDNN 2.530 0.679 1.250 0.607

Notes.
The best results are shown in bold.

Figure 5 Ablation study of STDNN on two data sets.Where (A) MSLE of Weibo; (B) MSLE of APS; (C)
mSLE of Weibo; (D) mSLE of APS.

Full-size DOI: 10.7717/peerjcs.1870/fig-5

depicted in the Fig. 6, there is a noticeable ‘‘V’’-shaped variation pattern in MSLE with the
increase of l on both datasets. It’s crucial to avoid setting values that are excessively large or
too small, as they can adversely impact the model’s performance. However, the fluctuation
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（a） （b）

Figure 6 Impact of the length of walks (l) on STDNN. (A) The result of Weibo; (B) the result of APS.
Full-size DOI: 10.7717/peerjcs.1870/fig-6

（a） （b）

Figure 7 Impact of the number of topics (Q) on STDNN. (A) The result of Weibo; (B) the result of
APS.

Full-size DOI: 10.7717/peerjcs.1870/fig-7

range is minimal, with a slight difference between the maximum and minimum values of
MSLE, namely 2.557 vs 2.530 and 1.263 vs 1.250, respectively. Concerning the number of
topicsQ, as shown in Fig. 7, with the number of topicsQ increases, the performance on the
two datasets exhibits a slight fluctuation in MSLE, specifically ranging from 2.53 to 2.55
and from 1.25 to 1.27, respectively. These experimental results indicate that our model is
not sensitive to the parameters of the length of walks l and the number of topicsQ, making
it relatively easy to implement in practice.
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CONCLUSIONS
In this article, we extend the DeepHawkes model by considering the impact of cascade
topology on diffusion dynamics, and propose the STDNN model, which integrates the
Graph Anchor LDA topic model into the DeepHawkes framework. This model not only
combines the benefits of deep learning and generative methods but also integrates the
Graph Anchor LDA model to extract structural information from nodes, which leads to
a more comprehensive representation of the information diffusion process. The STDNN
model initiates by extracting structural topic information from nodes, optimizing the
user embedding process to encapsulate the network topology of nodes. Following this, it
employs the Hawkes process to encode cascade propagation paths, encompassing both
the self-excitation mechanism during forwarding and the temporal delay effects during
propagation. This holistic approach contributes to the ultimate enhancement of predictive
performance. STNDD consistently exhibits superior performance over other baseline
methods when evaluated on two publicly available datasets, Sina Weibo and APS.

In our future work, we will try to conduct a more in-depth exploration of information
pertaining to cascading nodes, including temporal attributes associated with nodes.
Furthermore, we intend to investigate the amalgamation of STDNNwith other deep neural
network architectures, seeking to identify more effective predictive methodologies.
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The dataset we used is available in the Supplemental File and at Zenodo: zbz1480491537.
(2023). zbz1480491537/supreme-tribble: The original data for the paper Structural-
topic aware deep neural networks for information cascade prediction (v1.0.0). Zenodo.
https://doi.org/10.5281/zenodo.8180848

The weibo data is available in the Supplemental File and at GitHub: https:
//github.com/CaoQi92/DeepHawkes) which links the data to a Shared Network Disk
(https://pan.baidu.com/s/1c2rnvJq; password: ijp6.)

The raw measurements and all the related codes are available in the Supplemental Files.
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