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ABSTRACT
The accurate detection of brain tumors through medical imaging is paramount for
precise diagnoses and effective treatment strategies. In this study, we introduce an
innovative and robust methodology that capitalizes on the transformative potential
of the Swin Transformer architecture for meticulous brain tumor image classification.
Our approach handles the classification of brain tumors across four distinct categories:
glioma, meningioma, non-tumor, and pituitary, leveraging a dataset comprising
2,870 images. Employing the Swin Transformer architecture, our method intricately
integrates a multifaceted pipeline encompassing sophisticated preprocessing, intricate
feature extraction mechanisms, and a highly nuanced classification framework. Uti-
lizing 21 matrices for performance evaluation across all four classes, these matrices
provide a detailed insight into the model’s behavior throughout the learning process,
furthermore showcasing a graphical representation of confusion matrix, training and
validation loss and accuracy. The standout performance parameter, accuracy, stands
at an impressive 97%. This achievement outperforms established models like CNN,
DCNN, ViT, and their variants in brain tumor classification. Our methodology’s
robustness and exceptional accuracy showcase its potential as a pioneering model
in this domain, promising substantial advancements in accurate tumor identification
and classification, thereby contributing significantly to the landscape of medical image
analysis.
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INTRODUCTION
Cancer is one of the most studied diseases. Among all the other types of cancer, brain
tumors are considered a highly studied type of cancer (Tiwari et al., 2022). The rate of
brain tumors in humans is about 250,000 per year with about 2% of malignancies. Brain
tumors appear with different kinds of symptoms related to age, abnormality, and mental
circumstances. The infinite cell divisions inside the brain produced the tumor (Bhanothu,
Kamalakannan & Rajamanickam, 2020). Primary tumors and metastatic tumors are two
major types of brain tumors. Primary brain tumors could be spotted anywhere in the
brain, but do not have locomotive ability. While metastatic brain tumor initiates itself as
a cancer that could be found anywhere in the body and then it leads the way to the brain.
We can classify primary brain tumors into subgroups i.e., malignant brain tumors and
benign brain tumors (Çınarer & Emiroğlu, 2019). We can track down malignant tumors
by the techniques of image processing and algorithms responsible for the classification.
Diagnostics of brain cancer can be done in the form of invasive or non-invasive. Invasive
approaches include tumor sampling and biopsy techniques, These techniques have been
used as a gold standard for the diagnosis of cancerous cells by observing features of cells
for malignancy conformation under a microscope. The non-invasive method required the
thorough evaluation and scanning of the brain utilizing various techniques of imaging.
CT (computed tomography), MRI (magnetic resonance imaging), and X-ray techniques
are safer and faster ways to diagnose cancer instead of biopsy. Image modalities help
radiologists to figure out brain disorders in surgical progressions.

CAT (computer-assisted tools) MRI (magnetic resonance imaging) has led computing
machines and helps to decrease hardware costs for cancer diagnosis. Different CAT-based
methods have been introduced i.e., machine learning (ML) and deep learning (DL) for
automatic tumor segmentation (Tandel et al., 2019). To classify images obtained from
an MRI of the brain, uncontrolled techniques are used in combination with classifiers
i.e., artificial neural networks (ANN), and support vector machines (SVM). In this context,
a supervised classificationmethod has been proposed i.e., the K-NNmethod. Unsupervised
neural networks (UNN) have been introduced for the classification of results obtained
from brain MRI images. In, the hybrid technique discussed the results in two different
ways i.e., normal and abnormal, with the machine learning (ML) algorithm named SVM.
Two methods i.e., BPNN and KNN classifiers. While in terms of accuracy, 70% accuracy
has been shown by KNN and 72.5% by BPNN. An accuracy of 80% has been observed by
using tissue analysis to classify low and high grades of glioma heterogeneity (Singh & Kaur,
2012). Based on the imaging features a multivariate estimation model has been proposed
with an accuracy of 74% (Jafari & Shafaghi, 2012). In, 90% accuracy has been recorded for
the classification of non-tumor MRI using the random forest classifier (Sudharani, Sarma
& Prasad, 2016).
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DL is often preferred over traditional machine learning approaches for the detection of
brain tumors as it is capable of automatically learning and obtaining meaningful features
from input. Various other features include feature learning, hierarchical representations,
handling high-dimensional data, and generalization. DL has gained significant traction in
brain image analysis across various applications, including the classification of normal or
abnormal brain tumors, segmentation of different regions (such as edema), andAlzheimer’s
diagnosis (Litjens et al., 2017). AmongDLmodels, the convolutional neural network (CNN)
stands out as the most utilized for medical image classification.

CNNs excel in capturing the spatial relationships between pixels in a way of hierarchy.
This is accomplished through the application of learned filters that convolve the images,
thereby constructing hierarchical manners of feature maps (Zhou, He & Jia, 2020). By
employing multiple layers of convolution, the resulting features exhibit translation and
distortion invariance, leading to a high level of accuracy (Biswas et al., 2018). The image
processing is efficiently done by using CNN. Four transfer learning models are used
including ResNet-50, Inception V3 VGG16, and Mobile Net to analyze the brain tumor by
using MRI dataset (Kumar, Dabas & Godara, 2017). An automatic classification model has
been proposed (Ramteke & Monali, 2012). The results were generated by a CNN classifier
with 80% accuracy. An accuracy of 82.49% has been produced by Graves, Mohamed &
Hinton (2013) on medical images. In a recent study, the authors incorporated transfer
learning from pre-trained models such as VGG16, VGG19, ResNet50, and DenseNet21
using various optimization algorithms. After thorough analysis, the authors found that
ResNet50 demonstrated the highest performance compared to the other models (Polat &
Güngen, 2021). Nevertheless, a drawback of CNNs is their inability to effectively grasp long-
range data or dependencies, chiefly ascribed to their diminutive kernel size (Hatamizadeh
et al., 2021). Long-range dependencies refer to situations where the desired output is
influenced by image sequences that are presented at distant time points. In medical images,
visual representations often exhibit a sequential organization due to the human organs’
similarities (Tan et al., 2023). The destruction of these sequential dependencies can have
a substantial effect on the efficiency of CNN models. This is because the dependencies
existing between the properties of image sequence including patch, modality, and slice
hold valuable information that contributes to the overall understanding and analysis of the
images (Dai, Gao & Liu, 2021).

Techniques capable of processing sequence relations are effective in handling these long-
range dependencies. A specialized type of transformer model, called Vision Transformer
(ViT), is designed for image analysis purposes. Notably, the ViT showcased superior
performance compared to CNN models, particularly when trained on the JFT dataset
containing a massive collection of 300 million images (Dosovitskiy et al., 2021). ViT
architecture is built upon the foundation of the vanilla Transformer which has garnered
significant attention recently due to excellent performance in machine translation and
NLP tasks. The mechanism of self-attention utilized in ViT plays a crucial role in modeling
such dependencies, which is particularly valuable for precise segmentation of the brain
tumor. Global and local featured learning can be done by combining ViT-based models
and token embeddings, allowing them to effectively capture and leverage the information
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Table 1 Difference between ViT and Swin Transformer.

Feature ViT Swin Transformer
Self-attention mechanism Global Window-based
Computational complexity High Low
Efficiency Low High
Performance Good Better

contained in long-range dependencies (Raghu et al., 2021). ViT has shown promising
performance across various benchmark datasets (Wang et al., 2021). Attention-based
transformer networks have gained significant prominence in natural language processing
tasks in recent times (Touvron, Cord & Jégou, 2022).

In the ViTs, the encoder module is specifically utilized for performing the classification
of images. It achieves this by mapping a sequence of image patches to their corresponding
semantic labels. Unlike traditional CNN architectures that primarily employ filters
with a limited local receptive field, the ViT leverages the power of the attention
mechanism (Girdhar et al., 2023). This allows themodel to analyze images based on regions
and collect data images, enabling a more comprehensive understanding and analysis of
the visual content. Despite high efficiency and significant results, ViTs also have some
limitations (Kenton & Toutanova, 2019). The main limitation of the research is its necessity
for a large amount of labeled data (Dai et al., 2021). Due to various parameters and for
satisfactory performance, labeled training data is needed. But this task is too expensive and
time-consuming. One of the ways to overcome this limitation is to adapt the pre-trained
ViT models. This includes large-scale ViT like ImageNet (Cha et al., 2022). It trains the ViT
on a large dataset in a semi-supervised manner. By using smaller datasets, the pre-trained
ViT models help the model to give a competitive performance with a limited labeled
dataset (Weng et al., 2022). Using a pre-trained model and fine-tuning it according to the
need, will save computational resources and time. This is an effective approach for various
tasks including segmentation, object recognition, and image classification.

Several studies have discovered the use of ViT models for dense vision tasks like
the detection of objects and segmentation. However, these approaches have exhibited
comparatively lower performance, often employing direct up-sampling or deconvolution
techniques (Tournier et al., 2008). Meanwhile, other works have attempted to enhance
image classification by modifying the ViT architecture (Jiang et al., 2021). ViT uses a global
self-attention mechanism, which means that it computes the attention between all pairs of
tokens in the input sequence. This can be computationally expensive, especially for large
images. The shifted window partitioning approach of the Swin Transformer addresses
this issue by computing self-attention only within each local window. This reduces the
computational complexity and makes the Swin Transformer more efficient. Table 1
summarizes the key differences between the ViT and Swin Transformer architectures.

Asiri et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1867 4/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1867


In the proposed work, the Swin Transformer architecture introduces a novel approach to
image analysis by utilizing a patch-splittingmodule to segment input RGB images into non-
overlapping patches, each treated as a ‘‘token’’. These tokens are then embedded into a user-
defined feature size. The architecture incorporates stages with patch merging layers that
progressively reduce token count, forming a hierarchical representation while maintaining
resolution. Crucially, a shifted window partitioning approach alternates between regular
and shifted window strategies, enhancing cross-window connections without sacrificing
efficiency.While inspired by theVision Transformer, it also addresses its limitations, such as
quadratic complexity in global self-attention, by employing a window-based self-attention
strategy. The architecture’s Swin Transformer block integrates a Multi-Head Self-Attention
(MSA) module with GELU-activated MLPs, introducing inter-window connectivity and
information flow. This window-based approach significantly enhances computational
scalability. Collectively, these components endow the Swin Transformer with the capacity
to capture intricate patterns in image data, positioning it as a promising alternative to
traditional convolutional neural networks and mitigating certain limitations of the Vision
Transformer.

This article is organized as follows: detailed dataset description and the proposed
Swin model architecture is given in ‘Material and methodology’, experimental results
and discussion are given in ‘Result and Discussion’, and finally, a conclusion is given in
‘Conclusion’.

MATERIAL AND METHODOLOGY
We sourced this dataset from Kaggle, a well-known online platform recognized for its
extensive collection of high-quality datasets and resources for machine learning and
data science. Anyone can access and download the specific dataset we used for this
research from the following link: https://www.kaggle.com/datasets/sartajbhuvaji/brain-
tumor-classification-mri/versions/2. The dataset’s comprehensive nature, along with
its well-defined class labels, provides a solid foundation for training and evaluating
our proposed Swin Transformer model for the crucial task of multi-class brain tumor
detection and classification on MRI images as shown in Fig. 1. The dataset utilized for
this research consists of 2,870 MRI images depicting the human brain. These images were
carefully selected and divided into four distinct classes, representing different brain-related
conditions. In the dataset, the pituitary class (827 images), which encompasses glandular
tumors; the glioma class (826 images), representing glial cell tumors; the no-tumor class
(395 images), indicating the absence of tumors; and the meningioma class (822 images),
includes tumors originating from the protective membranes surrounding the brain. To
ensure a robust evaluation of our proposed model, we split a dataset containing 2,870
images across four classes into training and testing sets. It divides the dataset into train
images and test images using an 85/15 ratio. Additionally, it further divides the dataset into
a train set and a validation set with an 80/20 ratio for training and validation purposes,
respectively. Both splits use a random state of 42 for reproducibility. For training themodel,
we allocated 2,296 images, allowing it to learn the intricate patterns and characteristics
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Figure 1 Sample image from each label of the dataset.
Full-size DOI: 10.7717/peerjcs.1867/fig-1

associated with various brain tumor types. For an unbiased assessment of the model’s
performance, we reserved 574 images as a validation set and 431 as a testing set. This test
set served as a benchmark to evaluate how well the model generalizes and performs on
previously unseen data.

Preprocessing steps
Data preprocessing holds immense importance in machine learning pipelines. It lays the
foundation for model success by shaping raw data into a format that is conducive to
effective learning. The following preprocessing steps were involved.

Data gathering
Four directories are defined, each containing images for a specific type of brain tumor or
healthy brain tissue. A loop iterates through these directories, listing all the image files
within each. File paths and corresponding labels (tumor type or ‘‘no tumor’’) are appended
to separate lists.

Data preprocessing
Pandas Series objects are created for file paths and labels. These series are combined into
a single DataFrame (tumor_df ). The first five rows of the data frame are printed to get
a glimpse of the data. Class distribution across labels is printed using value_counts() to
understand the balance of classes. The data frame’s shape is obtained to reveal the total
number of data points and features.

Train-test-validation split
Scikit-learn’s train_test_split function is used to split the data into separate training, testing,
and validation sets. The training set is further split into training and validation subsets
using the same function.

Image data augmentation
Keras Image Data Generator is used for data augmentation and image preprocessing. The
mobilenet version 2 preprocess function is specified for preprocessing, which involves
mean subtraction and scaling specific to MobileNet V2 architecture. Three separate image
data generator instances are created for training, testing, and validation sets.
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Each instance is configured with:

• Data source (data frame, x_col for file path, y_col for label)
• Target image size (both width and height resized to 128 pixels)
• Color mode (‘‘RGB’’ for color images)
• Class mode (‘‘categorical’’ for multi-class classification)
• Batch size (specifies the number of images processed together)
• Shuffle disabled (important to maintain order for cross-validation)

These steps prepare the data for training a proposedmodel for brain tumor classification.
These preprocessing steps and their utilization in the proposed work has been presented
in Algorithm 1.

Swin Transformer architecture
In the Swin Transformer (Swin-T) architecture, the patch-splitting module is employed
to partition the RGB input image into non-overlapping patches. Each patch is treated as a
‘‘token’’, and its properties are formed bymerging or combining the pixels of the input RGB.
This approach utilizes 4× 4 dimensions, resulting in a feature dimension of 48 (4 × 4 × 3).
Subsequently, a linear embedding process is applied to the features, mapping them to a
user-defined size denoted as C. Multiple blocks within Swin-T incorporate a customized
self-attention calculation, which is then applied to these tokens. The amalgamation of these
blocks and the embedded system constitutes what is termed ‘‘stage 1’’. This stage ensures
the uniformity of token count, specifically H * 4 ×W * 4.

As the network’s depth increases, patch merging layers are employed to progressively
reduce the number of tokens, resulting in a hierarchical arrangement. Initially, the patch
merging layer combines the attributes of neighboring patches in a 2 × 2 group. This is
followed by a linear layer operating on the concatenated 4C-dimensional features, effectively
downsampling the token count by a factor of 2 × 2, equivalent to a 2× down-sampling
of resolution. The resulting output size is 2C. After the downsampling in ‘‘Stage 1’’,
Swin Transformer blocks are employed to transform the features while preserving the
resolution at H * 8×W * 8. This stage, encompassing the initial patch merging and feature
transformation, is denoted as ‘‘Stage 2’’. These steps are then reiterated twice more, known
as ‘‘Stage 3’’ and ‘‘Stage 4’’, resulting in output resolutions of H * 16 × W * 16 and H
* 32 × W * 32, respectively. By integrating these stages, a hierarchical representation is
constructed with feature map resolutions comparable to conventional methods. As a result,
the proposed architecture possesses the potential to function as a versatile alternative to the
spine systems in existing approaches, yielding enhanced performance across a spectrum of
vision objectives.

Block of Swin Transformer
The Swin-T architecture presents an alteration to the conventional Transformer block by
incorporating a Multi-Head Self-Attention (MSA) module founded on a shifted window
approach.While the other layerswithin the Swin-T block remain unaltered, Fig. 2 illustrates.
Specifically, the Swin Transformer block is structured with a shifted window-based MSA
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Algorithm 1: Swin Transformer Image Classification
Data: Input data
Result: Output data
Import necessary libraries and packages
Function Data_Preparation

Define class names class_names← [’glioma’, ’meningioma’, ’no tumor’, ’pitu-
itary’]
class_names_label← CreateDictionary(class_names)
Define dataset directories tumor_directory← "path/to/tumor_directory"
for directory in [class names] do

file_list← GetFilesInDirectory(directory) for file in file_list do
Append file to filepaths if directory is glioma then

Append ’glioma_tumor’ to labels

else if directory ismeningioma then
Append ’meningioma_tumor’ to labels

else if directory is pituitary then
Append ’pituitary_tumor’ to labels

else
Append ’no_tumor’ to labels

Created DataFrame
Function Swin_Transformer_Model_Setup

Hyperparameters and settings patch_size← (2, 2)
dropout_rate← 0.03
num_heads← 8
embed_dim← 64
window_size← 2
shift_size← 1
num_mlp← 256
num_patch_x← input_shape[0] / patch_size[0]
num_patch_y← input_shape[1] / patch_size[1]
learning_rate← 1e-3
batch_size← 128
num_epochs← 10
weight_decay← 0.0001
label_smoothing← 0.1
Function window_partition
Function window_reverse
Function DropPath
FunctionWindowAttention
Function PatchExtract
Function PatchEmbedding
Function PatchMerging

Main
Data_Preparation Swin_Transformer_Model_Setup
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Figure 2 Overall architecture of the proposed Swin Transformer.
Full-size DOI: 10.7717/peerjcs.1867/fig-2
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module, succeeded by a 2-layer multi-layer perceptron (MLP) with GELU non-linearity
situated in-between. Layer normalization (LN) layers are applied to precede each MSA
module and each MLP layer, and residual connections are introduced after each module
to guarantee the preservation of information flow.

Non-overlapping windows for self-attention
To address the computational inefficiencies of global self-attention, self-attention within
localized windows has been used. These windows are organized in a non-overlapping
fashion to achieve an even partition of the image. Each window is composed of M ×M
patches, with a typical default value of M being 7. By adopting this window-based self-
attention, the computational complexity transforms into a linear relationship with the
number of patches, h×w , in contrast to the quadratic complexity associated with global
self-attention. This transition to a window-based approach enhances scalability and
affordability, particularly in scenarios involving a substantial number of patches (h×w),
where the computational demands of global self-attention become infeasible.

Shifted window partitioning approach
To address the constraint of the window-based self-attention module, which does not
establish connections across windows, an innovative solution known as the shifted
window partitioning technique is used. This novel approach brings in cross-window
connections while upholding the efficiency of non-overlapping windows. In successive
Swin Transformer blocks, we adopt two distinct partitioning strategies alternately. The
first module utilizes a regular window partitioning strategy, dividing the initial 8× 8
feature map into 2× 2 windows of size 4× 4 (M = 4). In the subsequent module, a
shifted windowing configuration is adopted, where the windows are shifted from the
previous layer’s configuration. This alternating approach enhances the connectivity
between windows and enables more comprehensive information exchange throughout
the network. The displacement is achieved by moving the windows by (bM/2,bM/2)
pixels from the regularly partitioned windows. This shifted window partitioning approach
allows for the computation of consecutive Swin Transformer blocks while incorporating
cross-window connections. It enhances the modeling power of the architecture while
maintaining efficient computations. The internal connection of the mathematical working
of Swin-T:

z l =MLP
(
LN(ẑ l)

)
+ ẑ l (1)

z l+1=MLP
(
LN(ẑ l+1)

)
+ ẑ l+1 (2)

ẑ l =W-MSA
(
LN(z l−1)

)
+z l−1 (3)

ẑ l+1= SW-MSA
(
LN(z l)

)
+z l (4)
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The standard Window-based, multi-head, and self-attention module (W-MSA) is
a major part of the Swin Transformer block. The LN is present in the front, whereas
S(W)-MSA is situated at the back. There are two GELU non-linearities in the last part of
the block, that is, MPL. Due to this reason, this transformer has a multiple of two. In the
above equations, the output of f (S) W-MSA is indicated as ẑ l , that of MPL is z l whereas l
is the position of the block of the Swin Transformer.

Self-attention, multi-head and Window-based module
W-MSA first applies linear transformations to the input features, separating them into
query, key, and value components. The attention scores are calculated by multiplying the
query and key tensors and scaled by the square root of the head dimension. To introduce
cross-window connections, a relative position bias is computed and added to the attention
scores. This bias captures the relationships between different positions within the local
windows. Additionally, if a mask is provided, it is incorporated into the attention scores
to handle masked tokens. The attention scores are then softmax along the last dimension,
followed by applying dropout. Finally, the value tensor is multiplied by the attention
scores, and the resulting tensor is reshaped, projected, and subjected to dropout before
being returned as the output of the self-attention and window-based module. Overall, the
multi-head functionality is implicitly included in the Window Attention implementation.
The attention scores are calculated independently for each attention head, allowing the
model to capture different aspects of the input information. This helps enhance the model’s
representational capacity and allows for capturing diverse patterns and dependencies in
the data.

To evaluate the model’s performance, several parameters were used, which play a crucial
role in classification algorithms: true positive (TP), true negative (TN), false negative (FN),
and false positive (FP). These metrics are essential in assessing how well the model is
performing in terms of correctly identifying tumor classes.

• True positive rate (TPR): The percentage of real positive cases that a classification
model correctly classifies as positive.

TPR=
TP

TP+FN
(5)

• True negative rate (TNR): It signifies the proportion of negative instances correctly
classified as negative by a classification model.

(TNR)=
TN

TN+FP
(6)

• Positive predictive value (PPV): It denotes the proportion of successfully predicted
positive cases to all instances that a model accurately believed to be positive.

PPV=
TP

TP+FP
(7)
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• Negative predictive value (NPV): It signifies the percentage of correctly predicted
negative cases among all instances that a model predicts to be negative.

NPV=
TN

TN+FN
(8)

• False negative rate (FNR): It represents the ratio of actual positive instances incorrectly
classified as negative by a model.

FNR=
FN

FN+TP
(9)

• False positive rate (FPR): It indicates the ratio of genuine negative instances incorrectly
predicted as positive by a model.

FPR=
FP

FP+TN
(10)

• False discovery rate (FDR): It represents the percentage of expected positive cases that
are not positive.

FDR=
FP

FP+TP
(11)

• False omission rate (FOR): It signifies the percentage of real negative events that are
mistakenly forecast as positive.

FOR=
FN

FN+TN
(12)

• Positive likelihood ratio (LdRo+): It is the link between the likelihood of a positive
test result under specific conditions and the likelihood of a positive test result under
different conditions.

LdRo+=
TPR
FPR

(13)

• Negative likelihood ratio (LdRo-): It is the ratio of the likelihood that a test result will
be negative given the absence of a condition to the likelihood that the condition will be
present.

LdRo-=
FNR
TNR

(14)

• Prevalence threshold (PT): It is the predictive probability level at which the positive
predictive value matches the negative predictive value.

PT=

√
FPR

√
TPR+

√
FPR

(15)

• Threat score (TS): It is the product of the True positive rate and the positive predictive
value, encapsulating the combined accuracy of positive predictions.

TS=
TP

TP+FN+FP
(16)
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• Prevalence (Pe): It pertains to the proportion of the population (P) afflicted by the
condition (N) under study.

Pe=
P

P+N
(17)

• Accuracy (AC): It represents the proportion of correct predictions made by a model
across all instances.

AC=
TP+TN

TP+TN+FP+FN
(18)

• Balanced accuracy (BA): It is the mathematical mean of the real positive rates and real
negative rates, offering a holistic view of model performance.

BA=
TPR+TNR

2
(19)

• F1 score (F1): It is the harmonicmean of the true positive rate and the positive predictive
value, balancing precision and recall.

F1=
2×TP

2×TP+FP+FN
(20)

• Matthews correlation coefficient (MCC): It gauges the effectiveness of a binary
classification model, considering true and false positives and negatives.

MCC=
TP×TN−FP×FN

√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

(21)

• Fowlkes–Mallows Index (FMI): It quantifies the resemblance between observed and
predicted classifications.

FMI=
√
TPR×PPV (22)

• Informedness (BM): It is the disparity between the true positive rate and the false
positive rate, providing insight into classification model performance.

BM=TPR+TNR−1 (23)

• Markedness (MK): It signifies the difference between the positive predictive value and
the negative predictive value, reflecting the model’s predictive accuracy.

MK=PPV+NPV−1 (24)

• Diagnostic odds ratio (DOR): It is the ratio of the positive likelihood ratio to the
negative likelihood ratio, capturing the diagnostic power of a test.

DOR=
LdRo+
LdRo-

(25)

RESULT AND DISCUSSION
Python, known for its versatility and extensive libraries, was chosen as the programming
language for implementing and experimenting with the Swin Transformer model. Libraries
such as Matplotlib, NumPy, TensorFlow, and TensorFlow Addons (tfa) were imported
to support the development and training of the classification model. Matplotlib enabled
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Table 2 Performance metrics for different classes.

Metrics Glioma Meningioma No tumor Pituitary

TP 131 125 53 108
FP 2 7 5 0
TN 291 295 371 323
FN 7 5 2 0
TPR 0.95 0.96 0.96 1.00
TNR 0.99 0.98 0.99 1.00
PPV 0.98 0.95 0.91 1.00
NPV 0.98 0.98 0.99 1.00
FNR 0.05 0.04 0.04 0.00
FPR 0.01 0.02 0.01 0.00
FDR 0.02 0.05 0.09 0.00
FOR 0.02 0.02 0.01 0.00
LdRo+ 139.07 41.48 72.47 undefined
LdRo- 0.05 0.04 0.04 0.00
PT 0.08 0.13 0.11 0.00
TS 0.94 0.91 0.88 1.00
Pe 0.32 0.30 0.13 0.25
AC 0.98 0.97 0.98 1.00
BA 0.97 0.97 0.98 1.00
F1 0.97 0.95 0.94 1.00
MCC 0.95 0.93 0.93 1.00
FM 0.97 0.95 0.94 1.00
BM 0.94 0.94 0.95 1.00
MK 0.96 0.93 0.91 1.00
DOR 2,722.93 1,053.57 1,966.30 undefined

powerful visualization capabilities for analyzing the model’s performance, while NumPy
facilitated numerical computations and array manipulations. TensorFlow, the underlying
machine learning framework, was utilized through its high-level API, Keras,making it easier
to define and train the model. TensorFlow Addons extended the capabilities of TensorFlow
by providing additional functionalities such as custom loss functions, activation functions,
and optimizers.

In Table 2, the performance metrics offer a comprehensive overview of the model’s
classification accuracy and effectiveness across different classes. The model excelled in
correctly classifying instances as positive, with TP values of 131, 125, 53, and 108 in classes
1, 2, 3, and 4, respectively. The model also misclassified only two, seven, and five instances
as positive in these classes except class 4, respectively.

Themodel also performedwell in correctly identifying negative instances, with TN values
of 291, 295, 371, and 323 in Classes 1, 2, 3, and 4, respectively. The model misclassified
only seven, five, two, and zero instances as negative in these classes, respectively, indicating
a high sensitivity to actual positive instances.

Asiri et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1867 14/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1867


The TPR and TNR metrics provide further insights into the model’s performance. The
TPR values were consistently above 95% across all classes, indicating the model’s overall
capability to accurately detect positive instances. Similarly, the TNR values remained strong
with values above 98% in all classes, indicating the model’s proficiency in differentiating
between true negative instances and positive instances.

The PPV and NPV metrics evaluate the accuracy of positive and negative predictions,
respectively. The model achieved high precision in class 1 and class 4, with values exceeding
98%, suggesting that the majority of its positive predictions were accurate. In class 2 and
class 3, the model’s precision was still noteworthy at around 95% and 91% respectively. The
NePeVe, reflecting the accuracy of negative predictions, was consistent across all classes,
with values ranging from 98% to 1.00%. This implies that the model’s negative predictions
were generally reliable.

FNR indicates the proportion of actual positives that were incorrectly classified as
negative. It ranges from 0.00 to 0.05, with lower values being better. FPR indicates the
proportion of actual negatives that were incorrectly classified as positive. It ranges from
0.00 to 0.02, with lower values being better.

The FDR and FOR metrics provide insights into prediction errors. The FDR, which
represents the proportion of predicted positives that are not truly positive, was relatively
low in class 4 but higher in the other classes, indicating potential areas of improvement. The
FOR, on the other hand, was particularly high in class 1 and 2, suggesting that a significant
portion of actual negative instances was incorrectly predicted as positive. This could be an
area of concern for applications where minimizing false positives is crucial.

The LdRo+ and LdRo- metrics delve into the relationships between test outcomes
and the presence or absence of the condition. The LR+ was high, particularly in class 1,
indicating that a positive test outcome was strongly associated with the presence of the
condition. Conversely, the LR- was relatively low, suggesting that a negative test outcome
was moderately associated with the absence of the condition. These ratios provide insights
into the diagnostic value of the model’s predictions.

The PT reflects the point at which positive and negative predictive values are balanced.
The PT values were relatively low across all classes, indicating that the model’s predictions
leaned more toward positive classifications. This suggests that the model might be
conservative in making positive predictions, potentially leading to missed opportunities
for true positives.

The TS and F1 metrics combine precision and recall to assess overall classification
performance. The TS values were consistently above 88% in all classes, indicating a
strong combined accuracy of positive predictions. The F1 score, which balances precision
and recall, showed values above 0.94 across classes, suggesting a good trade-off between
precision and recall in the model’s predictions.

Pe metric is the ratio of true positives to the total number of positive classifications.
It ranges from 0.13 to 0.32, with higher values indicating that the test is more precise in
identifying true positives. AC is the proportion of all cases that were correctly classified.
It is 0.97 for all tumor types, indicating that the test has a high overall accuracy. BA is the
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average of the true positive rate and the true negative rate. It is 0.97 for all tumor types,
indicating that the test performs well on both positive and negative cases.

The MCC assesses overall classification performance, considering both true and false
positives and negatives. The MCC values were commendable across all classes, with values
ranging from 0.93 to 1.00. These values indicate the model’s effectiveness in capturing the
overall accuracy of its predictions.

The FM, BM, and MK metrics provide insights into the relationship between observed
and predicted classifications, as well as the predictive accuracy of the model. The FM
index values were consistently high across classes, suggesting a strong resemblance between
observed and predicted classifications. The informedness values ranged from 0.94 to 1.00,
indicating the model’s ability to distinguish between positive and negative instances. The
markedness values were also high, reflecting the model’s positive predictive accuracy.

Finally, the DOR captures the diagnostic power of the model’s test. The DOR values
were notably high across classes, indicating that the model is performing well on multiple
classes.

Visual depiction of model’s performance
Themodel’s accuracy underwent comprehensive assessment and visualization via a training
and validation accuracy graph depicted in Fig. 3. Within this graph, the blue line denotes
the accuracy progression of the training set, while the orange line signifies the model’s
accuracy concerning the validation set. Initially, the training accuracy commenced slightly
above 0.90 on the vertical axis and showed a gradual ascent across epochs. It eventually
reached a stable phase marginally below 0.98, suggesting a consistent training pattern
where the model’s accuracy improved and then plateaued. Conversely, the orange line,
representing validation accuracy, commenced at 0.96 on the y-axis. It demonstrated amore
variable trajectory characterized by fluctuations, signifying the model’s varying efficiency
on the validation set during training. These fluctuations showcased moments of higher
accuracy interspersed with periods of comparatively lower accuracy.

Figure 4 illustrates the model’s loss dynamics. The blue line tracks the training loss,
while the orange line showcases the validation loss. Initially, the training loss starts at its
highest value on the y-axis and progressively diminishes across epochs, steadily converging
towards a specific value. Around a point marginally below 0.4, the training loss levels off,
forming a horizontal plateau parallel to the x-axis, denoting convergence. Contrastingly,
the orange line, denoting validation loss, initiates at 0.47. It portrays a more fluctuating
pattern, characterized by peaks, signifying fluctuations in the model’s performance on the
validation set throughout the training process.

The confusion matrix illustrates the model’s performance in classifying different tumor
types, highlighting strengths and areas needing improvement. It showcases the model’s
ability to differentiate between various classes while indicating potential focus areas for
enhancing classification accuracy, especially in classes with higher false predictions. In
Fig. 5, the model shows robust performance in correctly identifying glioma and pituitary
tumors, with very few false predictions. Meningioma and ‘‘no tumor’’ classes have slightly
higher false predictions, indicating some misclassification. Overall, there are minimal false
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Figure 3 Training and validation accuracy of the proposed Swin Transformer.
Full-size DOI: 10.7717/peerjcs.1867/fig-3

Figure 4 Training and validation loss of the proposed Swin Transformer.
Full-size DOI: 10.7717/peerjcs.1867/fig-4
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Figure 5 Confusionmatrix of the proposed Swin Transformer.
Full-size DOI: 10.7717/peerjcs.1867/fig-5

negatives (FN) across all classes, suggesting the model’s sensitivity in detecting actual
positive instances.

Correctly classified images: Fig. 6 showcasing sample images correctly classified by
the model adds credibility to its accuracy. Highlighting these instances demonstrates
the model’s capability to accurately identify distinct tumor types. Incorrectly classified
images: Fig. 7 presents images that the model misclassified and provides valuable insights
into its limitations. Understanding where the model faltered can guide improvements
or adjustments in future iterations. By incorporating visual examples, we are not just
presenting numbers but providing real-world instances that enhance the audience’s
understanding of the model’s capabilities and potential areas for enhancement.

In Table 3, we evaluate the effectiveness of our proposed Swim Transformer algorithm
in the context of brain tumor classification, alongside several established methods. The
metrics under consideration primarily revolve around accuracy, a crucial factor in medical
image analysis. Swin Transformer exhibits remarkable performance, achieving an accuracy
of 97%, outperforming the other methods presented in the table. Notably, the Swin
Transformer surpasses the accuracy of CNN, Deep-CNN, Fused-based ensemble methods,
deep neural networks, CNN and NADE, ViT model, ensemble CNN, BMO-ViT, and
Ensemble XG-Ada-RF model by a significant margin. The distinguishing factor lies in the
innovative training techniques andmodel adaptations incorporated in our implementation,
enabling superior performance compared to prior studies. Specifically, our model’s unique
approach to feature extraction and inter-window connectivity fosters heightened accuracy
in discerning intricate patterns within brain tumor images. This outcome underscores the
Swin Transformer’s potential as a formidable tool, promising substantial advancements
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Figure 6 Correct classification of the proposed Swin Transformer.
Full-size DOI: 10.7717/peerjcs.1867/fig-6

Figure 7 Incorrect classification of the proposed Swin Transformer.
Full-size DOI: 10.7717/peerjcs.1867/fig-7
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Table 3 Comparison with existing work.

Reference Proposed algorithm Accuracy

Amin et al. (2018) Fusedbased ensemble method 86%
Mallick et al. (2019) Deep Neural Network 89%
Badža & Barjaktarović (2020) CNN 95.40%
Hashemzehi et al. (2020) CNN and NADE 95%
Bodapati et al. (2021) Deep-CNN 95.23%
Nallamolu et al. (2022) ViT Model 93.48%
Isunuri & Kakarla (2023) Ensemble CNN 96.95%
Khan et al. (2023) Ensemble XG-Ada-RF model 95.9%
Şahin, Özdemir & Temurtaş (2024) BMO-ViT 96.6%
Proposed Swin Transformer 97%

in brain tumor detection accuracy critical for precise medical diagnostics and improved
patient care. By showcasing superior accuracy and reliability compared to existingmethods,
our research demonstrates the distinctive contributions and advancements brought forth
by our Swin-Transformer implementation.

CONCLUSION
In our study, we introduce a novel approach for multi-class brain tumor detection
and classification on MRI images, leveraging the Swin Transformer architecture. This
architecture, incorporating patch splitting and merging modules, exhibited efficient
processing and analysis of RGB input images. Utilizing self-attention mechanisms
within non-overlapping windows, the model adeptly captured long-range dependencies,
showcasing remarkable scalability. Across 21 evaluated matrices, precision, recall, F1-
score, and accuracy emerge as pivotal indicators. The model demonstrates exceptional
performance across diverse tumor classifications, exhibiting an impressive average F1-
score of 0.96 through macro averaging and a weighted average of 0.97. In specific tumor
categorizations, it excels consistently, achieving a precision of 0.98 for glioma, 0.95 for
meningioma, 0.91 for no tumor, and a perfect precision of 1.00 for pituitary. Additionally,
the model showcases robust recall metrics, scoring 0.95 for glioma, 0.96 for meningioma,
0.96 for no tumor, and a flawless 1.00 for pituitary. The exceptional performance extends
to F1-scores, attaining 0.97 for glioma, 0.95 for meningioma, 0.94 for no tumor, and a
perfect score of 1.00 for pituitary. This comprehensive performance, coupled with an
accuracy rate of 97%, underscores the model’s ability to reliably and accurately classify
various tumor types while maintaining a strong balance between precision and recall
across the dataset. Comparing our proposed model with existing algorithms, we observed
that the Swin Transformer outperformed traditional machine deep learning, and vision
transformer approaches in terms of accuracy and performance matrices. Future work may
involve further optimizing the model, exploring additional datasets, and investigating the
Swin Transformer’s applicability in other medical image analysis tasks.
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