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ABSTRACT
This study investigates the dynamics and trajectory tracking of quadcopters by uti-
lizing the Disturbance Observer-based Control (DOBC) algorithm. The quadcopter’s
dynamic model, which consists of six degrees of freedom, includes both disturbances
and uncertainties in the model. The DOBC approach incorporates the disturbance
model into the system by introducing it at the input variables. It then compensates
for disturbances to achieve accurate tracking of different reference trajectories. The
simulated trajectories span a range of motion, varying from simple straight paths to
complex spiral paths. In order to verify and evaluate the efficacy of the suggested control
technique, simulations are performed using MATLAB. The simulations conclusively
show that the disturbance observer-based method effectively achieves the tracking
of specified reference trajectories in three-dimensional space. The study highlights
the effectiveness of the DOBC algorithm in reducing the effects of disturbances and
uncertainties, thereby improving the quadcopter’s capacity to accurately track various
trajectories.

Subjects Algorithms and Analysis of Algorithms, Autonomous Systems, Robotics
Keywords Quadcopter mathematical model, Predictive control, Input disturbance compensation,
Disturbance observer

INTRODUCTION
The widespread use of quadcopters in various industries highlights their ability to be
used in different applications, including important roles in military and law enforcement
operations as well as essential functions in fire control departments (Jha, 2017; Sebbane,
2018; Castiglioni et al., 2017). Quadcopters are strategically deployed in various sectors
and have a crucial role in revolutionizing agriculture by offering valuable monitoring
capabilities. Furthermore, their proficiency in quickly capturing incidents or events has
established them as essential instruments in the field of electronic media coverage (Sriram
Reddy & Nippun Kumaar, 2021).

Manufacturers are producing a large number of quadcopters in response to the increasing
demand for these aerial vehicles (Deepak & Singh, 2016). As production goes up, it becomes
clearer how important it is to develop new algorithms that can accurately track references
and make it easier for quadcopters to ignore disturbances (Mendoza-Soto, Corona-Sánchez
& Rodríguez-Cortés, 2018; Song, Zhao & Theil, 2023; Garlick & Bradley, 2021). The need
to increase the effectiveness of quadcopters in various fields is what drives the primary
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emphasis on improving algorithms in this constantly changing environment. The pursuit of
resilient algorithms is in line with the primary objective of fully exploiting the capabilities of
quadcopter technology and guaranteeing its smooth incorporation into various operational
settings.

The distinctive features of rotorcrafts and helicopters, including their proficiency in
vertical takeoff and landing combined with exceptional maneuverability, make them
essential in both manned and unmanned aerial vehicle applications (García Carrillo et
al., 2013). Significantly, in the field of unmanned aerial vehicles (UAVs), their forceful
movements caused by a small moment of inertia increase the difficulty of determining
their current state and require accurate implementation of controllers (Ji, Ma & Ge,
2020; Dalwadi, Deb & Ozana, 2023; Mahony, Kumar & Corke, 2012; Derafa, Madani &
Benallegue, 2006).

The quadcopter, a sophisticated device that combines electronics, mechanics, and the
fundamental principles of aviation, represents this intricate nature (Chen et al., 2016).
Therefore, the development of control algorithms requires a comprehensive approach that
takes into account multiple factors. It is important to prioritize the resolution of input
and output disturbances (Ma et al., 2023) while ensuring the implementation of effective
and efficient control actions (Cole & Wickenheiser, 2019;Wang & Guan, 2022; Xuan-Mung
et al., 2022). This comprehensive strategy considers the complex interaction among the
device’s mechanical structure, electronic systems, and the dynamic flight environment it
operates in.

The design of an efficient control algorithm is crucial to successfully navigating
the complex details of quadcopters, with the ultimate objective of maximizing their
performance in various operational situations (Li, Ge & Lee, 2021; Zhang, Zhou & Li, 2023;
Zhang et al., 2023). This approach guarantees both stability and precision during flight and
highlights the ongoing development of control methods tomeet the changing requirements
of unmanned aerial vehicle technology (Shi et al., 2023; Chen et al., 2022; Lu et al., 2022).

Moreover, within the wide range of research studies focused on quadcopters, a crucial
area of investigation is the analysis of how disturbances affect the state inputs of these
aerial vehicles (Islam, Liu & El Saddik, 2015). This factor has a substantial impact on the
simulation results in terms of their flight paths. This study investigates the utilization of
a disturbance observer-based control method (Li et al., 2014; Chen et al., 2016; Wang
& Guan, 2022; Liu, Chen & Shi, 2022) to effectively address this crucial factor. The
quadcopter’s behavior is mathematically described by a set of nonlinear equations (Joos
et al., 2017; Huang, 2022), which are sometimes approximated as linear equations when
certain assumptions are made.

The system model in quadcopter position control accounts for disturbances that affect
the state inputs, utilizing closed-loop feedback control. From the perspective of control
system design, it is particularly effective to develop a state feedback control system that
includes input disturbance estimation (Wang & Guan, 2022). A comparison of simulation
results using various disturbance models demonstrates the superiority of simulation
outcomes when the disturbance model is in line with the scenario. This methodology
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exhibits impressive tracking abilities that are well-suited for different trajectory needs,
indicating significant potential in the field of quadcopter aviation.

QUADCOPTER MODEL
Quadcopter dynamics
In quadrotor control, the body frame allows for the definition of the total thrust and
rotational torques asthe total thrust T and rotational torques in the body frame can be
defined as

Ttotal=

4∑
i=1

Ti= bt
4∑

i=1

ω2
i ,

τφ = dmmbt
(
ω2
4−ω

2
2
)
, (1)

τθ = dmmbt
(
ω2
3−ω

2
1
)
,

τψ = kd
(
ω2
1+ω

2
3−ω

2
2−ω

2
4
)
,

where kd is the drag constant, ωi is the angular speed of the ith rotor, dmm denotes the
distance extending from the rotor to the center of mass of the quadcopter, bt represents
the thrust constant, which is dependent on variables including air density, as well as the
dimensions of the quadcopter propeller, specifically its length and radius.

The rotor torque τMotori around its axis of rotation is opposite to the aerodynamic drag,
which leads to

τMi = bω2
i + IM ω̇i, (2)

where b is also the drag constant and IM is the inertia moment associated with the
quadcopter’s rotor. The ω̇ can be neglected under quasi-static state, so that

τMi = bω2
i . (3)

For each rotor, the rotation axis also moves in the fixed frame of the fuselage, thus
generating the gyroscopic torque

τgyro=

4∑
i=1

IM (�×Uz)ωi, (4)

where Uz is the unit vector along inertial z-axis and � is the angular velocity.
When transitioning from the quadcopter’s body coordinate system to the inertial

coordinate system, a rotation matrix is employed below,

Ro=

CθCψ SθSφCψ−CφSψ SθCψCφ+SφSψ
CθSψ SθSφSψ+CφCψ SθSψSφ−SφCψ
−Sθ SφCθ CφCθ

,
where Sx = sin(x) andCx = cos(x), with x = θ orψ . In addition, from the angular velocities
η̇= [φ̇,θ̇ ,ψ̇]T of inertial frame to the rates of angular motion �, where �= [p,q,r]T , we
have

�= F η̇, (5)
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where the transformation matrix is

F =

1 0 −sinθ
0 cosφ sinφcosθ
0 −sinφ cosφcosθ

. (6)

For the translational dynamics of the quadcopter establishing. According to Newton’s
second law,

m

ẍÿ
z̈

=
 0

0
−mg

+Ro

 0
0

Ttotal

. (7)

Expending the equation, we have

ẍ =−
kx
m
ẋ+

Ttotal

m
(sinθ cosψ cosφ+ sinφsinψ),

ÿ =−
ky
m
ẏ+

Ttotal

m
(sinθ sinψ cosφ− sinφcosψ), (8)

z̈ =−
kz
m
ż+

Ttotal

m
cosφcosθ−g ,

where ẍ , ÿ , and z̈ represent the acceleration in their respective axes. kx , ky and kz denote
the coefficients of air friction, while ẋ,ẏ,andż are the velocities in the x−, y−, and z−
axes, respectively.

In accordance with Euler’s equation of motion, the rotational dynamics of quadcopter
isṗq̇
ṙ

=
1/Ix 0 0

0 1/Iy 0
0 0 1/Iz


τφτθ
τψ

+
qr(Iy− Iz)/Ixpr(Iz− Ix)/Iy
pq(Ix− Iy)/Iz

.
Simplify the above equation, which leads to

ṗ=
τφ

Ix
+

rq(Iy− Iz)
Ix

,

q̇=
τθ

Iy
+

rp(Iz− Ix)
Iy

, (9)

ṙ =
τψ

Iz
+

qp(Ix− Iy)
Iz

,

where ṗ, q̇, and ṙ stand for the angular acceleration parameters within the quadcopter
body-centric coordinate system. Ix , Iy and Iz represent the inertia tensors associated with
the x−, y−, and z− axes, respectively.

Moreover, the relationship between the Euler angular velocities φ̇, θ̇ ,ψ̇ and the angular
velocities (p,q,r) is expressed as followsφ̇θ̇
ψ̇

=

1 TθSφ TθCφ
0 Cφ −Sφ

0
Sφ
Cθ

Cφ
Cθ


pq
r

. (10)
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Expending the equation, we have

φ̇= p+qTθSφ+ rTθCφ,

θ̇ = qCφ− rSφ, (11)

ψ̇ = q
Sφ
Cθ
+ r

Cφ
Cθ
,

where Tx = tan(x), Sx = sin(x), and Cx = cos(x), with x = φ or θ ; φ̇,θ̇ , and ψ̇ are the
angular velocities within the inertial coordinate system along the x−, y−, and z− axes,
respectively.

State space model
Define ẋ = a, ẏ = b and ż = c , the state space model contains 12 state variables for the
highly coupled quadcopter system:

ẋ = a,

ẏ = b,

ż = c,

ȧ=−
kx
m
a+

Ttotal

m
(sinθ cosψ cosφ+ sinφsinψ),

ḃ=−
ky
m
b+

Ttotal

m
(sinθ sinψ cosφ− sinφcosψ),

ċ =−
kz
m
c+

Ttotal

m
cosφcosθ−g ,

ṗ=
τφ

Ix
+

rq(Iy− Iz)
Ix

,

q̇=
τθ

Iy
+

rp(Iz− Ix)
Iy

,

ṙ =
τψ

Iz
+

qp(Ix− Iy)
Iz

,

φ̇= p+qTθSφ+ rTθCφ,

θ̇ = qCφ− rSφ,

ψ̇ = q
Sφ
Cθ
+ r

Cφ
Cθ
.

From the above equations, we have

Ẋ = f (X ,U ),

where X = (x,y,z,a,b,c,p,q,r,φ,θ,ψ)T represents the state vertor, U =
(
Ttotal,τφ,τθ ,τψ

)
denotes the thrust vector acting as control input, and Y = (x,y,z,θ) is the output vector.
To ensure precise trajectory tracking, the initial focus lies on confirming the alignment of
the first three vectors concerning position control. Given the interconnected nature of the
quadcopter, an additional check involves validating an angular velocity along the y−axis.
This acts as an indirect measure to ascertain the accuracy of the quadcopter’s interlinked
system.
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DISTURBANCE OBSERVER DESIGN
The disturbance observer (DOB) is an advanced control approach used in engineering
to accurately estimate and effectively prevent unexpected interruptions that occur within
control systems. The main purpose of the system is to measure disruptions that arise from
several sources, including external environmental factors, oscillations within the system,
or errors in the modeling process. These disruptions provide a potential danger to the
performance of the control system and require proactive measures to be taken through the
observer’s assessments.

The fundamental principle of DOB is typically based on the mathematical depiction
of the system, encompassing its state variables and outputs. By conducting a comparison
between the projections of the model and the actual behavior of the system, DOB is able
to detect inconsistencies, which are frequently caused by disturbance signals. By evaluating
these disruptions, DOB produces a corrective signal that is incorporated into the input
of the control system. This effectively reduces the negative effects of the disturbances and
maintains the desired performance and stability of the system.

Quadcopter input disturbance observer design
Initially, it presupposes an input disturbance denoted as ν(i) in the system, which
subsequently results in a transformation of the state-space model.

xn(i+1)=Anxn(i)+Bn(u(i)+ν(i)),

y(i)=Cnxn(i), (12)

where u(i) and ν(i) stand for the control inputs, y(i) represents the system responses, and
xn(i) represents the state variable set.

The input disturbance ν(i) is conceptualized as

ν(i)=
j−1ε(i)
D(j−1)

, (13)

where ε(i) is consistent with the dimension of vector ν(i).
Let the disturbance model D(j−1) be

D(j−1)= 1+d1j−1+d2j−2+d3j−3+ ...+dγ j−γ . (14)

Next, use the form of difference equation to express the disturbance vector ν(i+1):

ν(i+1)=−d1ν(i)−d2ν(i−1)− ...−dγ ν(i−γ +1)+ε(i), (15)

where ε(i) represents white noise with a mean value of zero.
Following our previous study (Wang & Guan, 2022), by introducing matrix h(i) of size

nγ ×1 to represent the disturbance group and presenting it with a state space mode, we
have

h(i)=
[
νT (i) νT (i−1) ··· νT (i−γ +1)

]T
. (16)

Then, using the state space model below to obtain the disturbance

h(i+1)=Adish(i)+Bεε(i),
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ν(i)=Cεh(i). (17)

For matrix Adis, it shows the form as below:

Adis=



−d1I −d2I ... −dγ−1I −dγ I
I O ... ... O

O I O ...
...

...
. . .

. . .
. . .

...

O ... O I O


,

where Bε is a nγ ×n matrix and Cε is a n×nγ matrix, they both have the n×n identity
matrix and the rest vertical and horizontal elements of the matrix are zeros. The leftover
rows and columns in both matrices consist of zero matrices. O is a n×n zero matrix and I
is the identity matrices with same dimensions.

For the disturbance D
(
j−1
)
, we have

det
(
j−1I−Ad

)
=D(j−1)n, (18)

where D(j−1) is the disturbance model in backward shift form. Matrix Adis includes n
groups of eigenvalues which related to the zeros of the D(j−1).

The incorporation of the disturbance vector ν(i) into the state space model serves
to mitigate the impact of external interference on the state estimate matrix xn(i). The
introduced augmented state matrix is

x(i)=
[
xTn (i) h(i)T

]T
.

We rewrite the previous state space model as

xn(i+1)=Anxn(i)+BnCεh(i)+Bnu(i).

Under this condition, an augmented system space model is derived:

[
xn(i+1)
h(i+1)

]
=

A︷ ︸︸ ︷[
An BnCε
O1 Adis

][
xn(i)
h(i)

]

+

B︷ ︸︸ ︷[
Bn
O2

]
u(i)+

[
O3

Bε

]
ε(i),

where O1,2,3 are zero matrices to adapt to corresponding dimensions; the integrated A and
B matrices are regarded as the augmented matrices of the system.

The output is computed as

y(i)=

C︷ ︸︸ ︷[
Cn O4

][xn(i)
h(i)

]
,

where C is the augmented output matrix, and O4 is a zero matrix like O1,2,3.
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After establishing the augmented model, we will design the observer on this basis, A
and C matrices will be used in the design of this step. First define an observer gain Kob,
it is a matrix with the same dimension as A and C . To get the value of Kob, we use the
discrete-time LQR algorithm. The selected observer gain is to stabilize the state matrix
(A−KobC) in the closed-loop observer error system deviation dynamics. As a result, the
augmented state matrix x(i) becomes amenable to estimation.

x̂(i+1)=Ax̂(i)+Bu(i)+Kob(y(i)−Cx̂(i)). (19)

Noting that in order to ensure that A and C are observable, it is first necessary
to ensure that the An and Cn matrices are observable, and the system has no
zeroes which related to D(j−1). Under this condition, the observer can operate
effectively.

Disturbance observer-based discrete-time state feedback control
Before appling augmented system state representation, converting continuous model
to discrete model. The state space model in continuous time can be formulated as
follows:

ẋn(k)=Acxn(k)+Bcu(k), (20)

y(k)=Ccxn(k). (21)

The discrete-time formulation of the state space model can be succinctly articulated as
follows:

xn(i+1)=Anxn(i)+Bnu(i), (22)

y(i)=Cnxn(i). (23)

Based on the design of adding disturbance to the input and its compensation in the state
estimation, the design of the state feedback control is undertaken through the subsequent
stepwise procedure. It continues to adopt the state-space formulation detailed in the
preceding section, following the design of model:

xn(i+1)=Anxn(i)+Bn(u(i)+ν(i)),

y(i)=Cnxn(i).

Noting that the input vectors are u(i) and ν(i). It assumes that the observational
properties are satisfied for matrices An and Cn and that the controllability conditions
are met for the pair (An,Bn). Moreover, the system avoid the zeros which related to the
disturbance occurring at the D(j−1).

We define the intermediary control signal at this stage:

ũ(k)= u(k)+µ(k).

Then the original xn(i+1) becomes

xn(i+1)=Anxn(i)+Bnũ(i). (24)
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Following our previous study (Wang & Guan, 2022), the principle behind state feedback
control using a disturbance observer involves designing the state feedback controller K
specifically for the intermediate control signal ũ(k). This controller aims to handle the
estimated variable to effectively compensate for the input disturbance ν(k).

It integrates (xn(i+1),h(i+1)) and y(i) as a complete augmented model

[
xn(i+1)
h(i+1)

]
=

A︷ ︸︸ ︷[
An BnCε
O1 Adis

][
xn(i)
h(i)

]

+

B︷ ︸︸ ︷[
Bn
O2

]
u(i)+

[
O3

Bε

]
ε(i)

y(i) =

C︷ ︸︸ ︷[
Cn O4

][xn(i)
h(i)

]
.

Based on this model, we can use the disturbance compensation strategy to get x̂n(i) and
ν̂(i) from previous disturbance observer design section.

Deriving the controller K utilizing matrices An and Bn to ensure the stability of the
closed-loop control system matrix An−BnK , the interim control variable ũ(i) is computed
as

ũ(i)=−Kx̂n(i). (25)

Secondly, get the observer gain Kob using matrices A and C allowing for the estimation
of both the input disturbance ν(i) and the state variable xn(k) within the augmented state
space model, resulting in ν̂(i) and x̂n(i).

After that, deducting ν̂(i) from ũ(i) results in the control variable u(i):

u(i)= ũ(i)− ν̂(i). (26)

Compare a fixed signal r(i) with our output signal, considering the reference signal r(i),
where the observer formulation takes the following form

x̂(i+1)=Ax̂(i)+Bu(i)+Kob(y(i)− r(i)−Cx̂(i)).

The (A,B,C) matrices are augmented matrices which contains the input disturbance
compensation. Furthermore, it is imperative to validate that the entirety of the eigenvalues
pertaining to the observer error system matrix A−KobC remains strictly bounded within
the confines of the unit circle, thereby guaranteeing system stability and observability.

Determined the closed-loop eigenvalue of the state feedback control system based on
disturbance observer to ensure the stability of the system. For both xn(i) and p̂(i), we adopt
the observation error system[
Exp{x̃n(i+1)}
Exp{h̃(i+1)}

]
= (A−KobC)

[
Exp{x̃n(i)}
Exp{h̃(i)}

]
,
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where Exp represents the error variables xn(i) and ĥ(i), with their expectations denoted as
respective values.

In addition, the proposed disturbance observer state feedback control strategy is
compared to the traditional Proportional-Integral-Derivative (PID) control strategy
based on important performance indicators, including trajectory tracking accuracy,
response time, resilience to external disturbances, and algorithm complexity. At first,
the proposed technique demonstrates superior precision in accurately following a
desired path compared to the classic PID control, especially when dealing with external
disturbances. Furthermore, it demonstrates greater proficiency in maneuvering intricate
and ever-changing surroundings. In terms of response time, this technique efficiently
adjusts control parameters to accommodate variations in external variables, surpassing
the performance of conventional PID control. Our system, which includes the use
of a disturbance observer, is highly effective in resisting external disturbances. It is
particularly adept at withstanding environmental changes like strong winds, ensuring
excellent flight stability and trajectory accuracy. This sets it apart from conventional
methods. Furthermore, although the complexity of our method’s control algorithm
exceeds that of PID control, its benefits in terms of other performance metrics justify this
complexity.

EXPERIMENTS
For simulation, the mass of the UAV is set to 0.5 kilograms, The scale factor of
gravity is g = 9.80122 N/kg. The system model is linearized using the Taylor series
expansion approach, specifically targeting equilibrium points and utilizing the Jacobian
linearization methodology for simulation purposes. The sampling instant is chosen
to 900.

In the context of state feedback control utilizing disturbance observers, we choose a
specific polynomial D(j−1) as

D(j−1)= 1−2cos ωd j−1+ j−2,

where ωd = 0.5. When the aerial reference trajectory follows a linear path, the term cosωd

will be removed.
We assume the quadcopter system has the input disturbance on each axis, for x− and

y−axes, the input disturbance µ(k) can be expressed as

ν(i)=
ε(i)(

1−2cos ωd j−1+ j−2
) . (27)

This is the main disturbance signal that we test in this paper. In addition, if the
controller is an integrator type, it chooses step or random walk type disturbance signal
1−q−1 asD

(
q−1

)
, if the controller is an integrator plus sinusoidal mode,D(j−1) will also be

changed to

(1− j−1)(1−2cos ωd j−1+ j−2).

According to the augmented state space equation, it can accomplish the state feedback
control system with an estimation of the input disturbance.
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Initially, it obtains the augmented state space model (A,B,C) with (An,Bn,Cn).
Since we have 12 state variables, four input variables and four outputs for quadcopter
modeling at the begining. (An,Bn,Cn) are 12× 12, 12× 4 and 4× 12 matrices
respectively. The dimensions of A, B, and C are 20× 20, 20× 4 and 4× 20,
respectively.

Utilizing the MATLAB function dlqr.m with Q as the identity matrix and R set to
one, the state feedback controller is systematically designed based on the pair (An,Bn),
yielding

K =



0 0 0.3172 0
0 −0.3172 0 0

0.9766 0 0 0
0 0 0.3841 0
0 −0.3841 0 0

1.1623 0 0 0
0 1.6566 0 0
0 0 1.6566 0
0 0 0 0.4875
0 0.3536 0 0
0 0 0.3536 0
0 0 0 0.5004



T

.

This state feedback regulator K is used for manipulating the interim con-
trol parameter ũ(i), thereby offsetting the external disturbance ν(i) using the
estimated parameter ν̂(i). In addition, ensure that the matrix An − BnK lies
within the unit circle, thereby maintaining the stability of the closed-loop control
system. Computing the intermediary control variable ũ(i) based on the previous
equation:

ũ(i)=−Kx̂n(i). (28)

With the augmented state space model strategy using the disturbance model, derive the
observer gain Kob utilizing the augmented matrices A and C , followed by estimating both
the input disturbance ν(i) and the state variable xn(i), resulting ν̂(i) and x̂n(i), where the
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Kob equals to

1.2350 0 0 0
0 1.2350 0 0
0 0 0.8012 0

25.0089 0 0 0
0 25.0089 0 0
0 0 6.2022 0
0 −33.2883 0 0

33.2883 0 0 0
0 0 0 1.3037
0 −275.4516 0 0

275.4516 0 0 0
0 0 0 28.1125
0 0 14.1530 0
0 −10.4817 0 0

10.4817 −0 0 0
0 0 0 4.9595
0 0 13.7672 0
0 −10.0984 0 0

10.0984 0 0 0
0 0 0 4.3870



.

Once got the intermediary control signal ũ(i) and estimated input ν̂(i), the previous
difference equation is used to obtain u(i)

u(i)= ũ(i)− ν̂(i). (29)

Comparing the output vector y(i) with the target signal r(i), the observer equation can
be written as

x̂(i+1)=Ax̂(i)+Bu(i)+Kob(y(i)− r(i)−Cx̂(i)).

A sensitivity analysis is performed to evaluate the effectiveness of the control algorithm
under different parameter settings. This is achieved by modifying various parameters of the
quadcopter unmanned aerial vehicle, such as mass, moment of inertia, and aerodynamic
properties, within a simulated environment. This study includes a wide range of parameter
adjustments, including the mass moment of inertia.

The control approach extensively depends on the Dryden turbulencemodel to accurately
measure the impact of wind disturbances. The Power Spectral Density atmospheric
turbulence model represents wind disturbances as stochastic fluctuations in a continuous
random process. White noise, which has a consistent power spectral density and equal
strength across certain frequency ranges, is subjected to shaping filtration in order to create
the intended turbulence effects.

Disturbances are intentionally produced in a predetermined direction for a quadcopter
drone operating in space in our simulated scenario. The transfer functions of the filter are
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expressed as follows:

Hu(s)= σu

√
2Lu
πV

1

1+ Lu
V s
, (30)

where Lu and σu represent the scale length of turbulence and turbulence intensity,
respectively; V represents the air velocity.

Once the white noise is filtered, it is included into the simulationmodel, and the resulting
simulation results are thoroughly evaluated.

RESULTS
Trajectory types
First of all, we have assumed three cases for the reference trajectory in 3D space. The first
case is a single straight-line trajectory. The second case is the cylindrical spiral track, which
contains sine and cosine curves and can represent the turning or hovering situation of the
UAV in general. The third case is the second conic trajectory, which can be understood
as a high-order extension in the second case. Because the conic curve contains elliptical,
parabolic, and hyperbolic trajectories, it can represent more realistic UAV flight trajectories
and has certain representativeness in the aviation field. The simulation results are presented
below.

Reference following. Figure 1 shows the reference tracking performance with the
integrator mode controller and random walk disturbances: D(j−1)= 1− j−1.

Figure 2 illustrates the simulation results with a sinusoidal mode controller and the
disturbance in the corresponding sinusoidal mode: D(j−1)= 1−2cos ωd j−1+ j−2.

Figure 3A shows that the reference signal is extended to a conic track with a variable
turning radius. In addition, Fig. 3B shows an intuitive 3D space simulation result. Figure 1
to Fig. 3 show that for different reference trajectories and controllers, selecting appropriate
corresponding disturbance models D(j−1) can complete the disturbance compensation
issue and make the simulation results consistent with the reference trajectories.

To experiment with a contrast test on the premise of conic trajectory, if theD(j−1) model
is changed to not correspond to the controller, the quadcopter will not be able to effectively
complete the compensation of disturbance and trajectory tracking. The simulation results
are shown in Fig. 4, taking the y−axis as an example.

Unmanned aerial vehicles may undergo alterations in their mass and moment of inertia
during actual use, which can be caused by factors such as cargo variations, battery usage,
or ambient conditions. Therefore, it is essential to evaluate the stability and efficiency
of the control strategy in light of these variations in parameters. This study thoroughly
examines the resilience of the suggested control approach when faced with different aircraft
parameter fluctuations.

The analysis considers the fluctuation in the weight of the unmanned aerial vehicle,
utilizing simulated scenarios that incorporate a gradual rise in weight up to 1.5 kg. Our
simulation results show that the suggested control method maintains a high level of
trajectory tracking performance even when there are changes in mass that affect how the

Ren et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1861 13/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1861


0 100 200 300 400 500 600 700 800 900

sampling instant

0

200

400

600

x 
(m

)

0 100 200 300 400 500 600 700 800 900

sampling instant

0

200

400

600
y 

(m
)

0 100 200 300 400 500 600 700 800 900

sampling instant

0

200

400

600

z 
(m

)

Figure 1 Reference signal (brown) and following results (blue) with a steep slope track in the x-, y-,
and z-axes.
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Figure 2 Reference signal (brown) and following results (blue) with a cylindrical spiral track (A) in the
x-, y-, and z-axes and (B) in 3D space.
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Figure 3 Reference signal (brown) and following results (blue) with a conic track (A) in the x-, y-, and
z-axes and (B) in 3D space.
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Figure 4 Reference signal (brown) and following results (blue) based on the integral type D with conic
track in the y-axis (A) and in 3D space (B).
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system moves. This validates the efficacy of the technique in addressing fluctuations in
mass. The study examines the impact of changes in the weight of the unmanned aerial
vehicle, specifically focusing on cases where the weight decreases. Following a 30% decrease
in mass, the trajectory tracking, as illustrated in Fig. 5A, continues to provide very good
performance. The simulation effectively retains its tracking performance, similar to its
performance before the drop in mass, using the y-axis as an illustration. It ultimately
approaches the reference trajectory after approximately two sinusoidal oscillation cycles.
The results of the simulation show that the suggested control method consistently achieves
a high level of trajectory tracking performance, even when there are changes in mass that
affect how the system moves.

Furthermore, a thorough examination of the influence of changes in the moment of
inertia on the control system is conducted. After a specific decrease of 15% in inertia, the
trajectory tracking, as seen in Fig. 5B, exhibits a comparable pattern. Illustrating the y-axis
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Figure 5 Reference signal (brown) and following result (blue) with conic y-axis track presentation for
the mass (A) and inertial (B) change conditions.
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as an instance, at a small scale, the simulation presently reaches a state of convergence with
the reference trajectory after around three cycles of sinusoidal oscillation. At a large scale,
the general ability to accurately follow a desired path continues to be exceptional, as the
error values consistently stay within the range of 0.002 m.

CONCLUSIONS
In conclusion, this article presents a control method for tracking trajectories that utilizes
disturbance-observer-based control. Thismethod is showcased in the context of quadcopter
trajectory control by simulating it across three different reference trajectories. The results
demonstrate the method’s ability to precisely monitor sinusoidal trajectories in three-
dimensional space, with particularly impressive performance in tracking conic curves.
Significantly, its flexibility encompasses intricate flight paths for UAVs, even when faced
with irregular turning radii. Moreover, its potential uses range from accurate position
manipulation to broader effects in controlling UAVs in aviation. This approach offers
favorable opportunities in the fields of Unmanned Aerial Vehicle technology and flight
control.
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