
Submitted 27 October 2023
Accepted 17 January 2024
Published 28 February 2024

Corresponding authors
Tehseen Mazhar,
tehseenmazhar719@gmail.com
Muhammad Amir Khan,
amirkhan@uitm.edu.my

Academic editor
Bilal Alatas

Additional Information and
Declarations can be found on
page 30

DOI 10.7717/peerj-cs.1860

Copyright
2024 Ali et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Enhancing software defect prediction:
a framework with improved feature
selection and ensemble machine learning
Misbah Ali1,*, Tehseen Mazhar1,*, Amal Al-Rasheed2, Tariq Shahzad3,
Yazeed Yasin Ghadi4 and Muhammad Amir Khan5

1Department of Computer Science & Information Technology, Virtual University of Pakistan, Lahore,
Pakistan

2Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint
Abdulrahman University, Riyadh, Saudi Arabia

3Department of Computer Sciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
4Department of Computer Science and Software Engineering, Al Ain University, Abu Dhabi, UAE
5 School of Computing Sciences, College of Computing, Informatics and Mathematics, Universiti Teknologi
MARA, Shah Alam, Selangor, Malaysia

*These authors contributed equally to this work.

ABSTRACT
Effective software defect prediction is a crucial aspect of software quality assurance,
enabling the identification of defective modules before the testing phase. This study
aims to propose a comprehensive five-stage framework for software defect prediction,
addressing the current challenges in the field. The first stage involves selecting a cleaned
version of NASA’s defect datasets, including CM1, JM1, MC2, MW1, PC1, PC3, and
PC4, ensuring the data’s integrity. In the second stage, a feature selection technique
based on the genetic algorithm is applied to identify the optimal subset of features. In
the third stage, three heterogeneous binary classifiers, namely random forest, support
vector machine, and naïve Bayes, are implemented as base classifiers. Through iterative
tuning, the classifiers are optimized to achieve the highest level of accuracy individually.
In the fourth stage, an ensemblemachine-learning technique known as voting is applied
as a master classifier, leveraging the collective decision-making power of the base
classifiers. The final stage evaluates the performance of the proposed framework using
five widely recognized performance evaluation measures: precision, recall, accuracy, F-
measure, and area under the curve. Experimental results demonstrate that the proposed
framework outperforms state-of-the-art ensemble and base classifiers employed in
software defect prediction and achieves a maximum accuracy of 95.1%, showing its
effectiveness in accurately identifying software defects. The framework also evaluates
its efficiency by calculating execution times. Notably, it exhibits enhanced efficiency,
significantly reducing the execution times during the training and testing phases by
an average of 51.52% and 52.31%, respectively. This reduction contributes to a more
computationally economical solution for accurate software defect prediction.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence,
Data Mining and Machine Learning, Software Engineering, Neural Networks
Keywords Features selections, Software defect predication, Machine learning, Ensemble,
Deep learning, AI, Quality, RN, SVM, NB

How to cite this article Ali M, Mazhar T, Al-Rasheed A, Shahzad T, Yasin Ghadi Y, Amir Khan M. 2024. Enhancing software
defect prediction: a framework with improved feature selection and ensemble machine learning. PeerJ Comput. Sci. 10:e1860
http://doi.org/10.7717/peerj-cs.1860

https://peerj.com/computer-science
mailto:tehseenmazhar719@gmail.com
mailto:amirkhan@uitm.edu.my
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1860
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj-cs.1860


INTRODUCTION
The world is becoming a global village, and the software industry’s primary focus is process
improvement and automation. Software applications are the backbone of this global village.
A quality software product is defect-free and delivered using minimum resources (Omri
& Sinz, 2020). The three most important factors to ensure software quality during the
development life cycle are time, money, and manpower. The software development life
cycle is a multi-stage process. Testing is one of the critical stages that can help ensure that
the software is of high quality and free of defects before it is deployed to the production
environment (Liu et al., 2023b; Hou et al., 2023). Software defect prediction is a process
that feeds historical defect datasets to the machine learning classifiers that predict which
modules are likely to contain defects (Qiao et al., 2020); hence, only defective modules
should be passed on to the testing stage. The presence of irrelevant features in the dataset
can harm the performance of software defect prediction (SDP) models (Bindu & Sabu,
2020). Therefore, it is essential to carefully select and pre-process only the meaningful
features (Xiaolong, Wen & Xinheng, 2021; Zhou & Zhang, 2022; Liu et al., 2023a; Zhang et
al., 2023). In addition to choosing the most suitable features, classification techniques
have an essential role in SDP because they can help to identify and address potential
defects (Shah & Pujara, 2020). Previous classification techniques implemented for SDP
have been ineffective due to over fitting/under fitting or inadequate results (Goyal, 2022;
Liu, Wang & Wang, 2021). Hence, there is a need to choose a combination of classifiers
that outperforms the former classification approaches. Researchers have also experimented
with ensemble classification techniques but are vulnerable to biases (Kaur & Kaur, 2021).
To deal with all these issues, a framework is required that addresses the problem of SDP
efficiently, engaging fewer resources and in a cost-effective manner. For classification,
random forest (RF), support vector machine (SVM), and naive Bayes (NB) are popular
classifiers that are used extensively to tackle the software defect prediction problem.
Furthermore, the effectiveness of classification techniques can be boosted by incorporating
ensemble techniques. Voting is an effective ensemble technique employed for software
defect prediction as it combines the predictions of multiple base classifiers to improve
overall accuracy and robustness (Tewari & Dwivedi, 2020).

This research proposes a comprehensive five-stage framework for software defect
prediction, aiming to address the critical need for efficient and cost-effective solutions.
This framework integrates feature selection using a genetic algorithm, implementing
heterogeneous binary classifiers, applying ensemble techniques, and evaluating
performance using comprehensive measures. The primary contribution is found in the
feature selection stage, where accuracy is enhanced, computational costs are reduced, and
interpretability is improved compared to existing techniques (Iqbal et al., 2019a; Aljamaan
& Alazba, 2020; Alsghaier & Akour, 2020).

This research aims to develop an efficient pre-testing solution for defect prediction using
classification techniques by achieving the following objectives:

- To enhance predictive power by optimizing feature selection with genetic search for
effective defect prediction

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1860 2/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1860


- To improve the accuracy of the software defect prediction system by developing an
ensemble-based classification framework

- To compare the performance of the proposed framework with state-of-the-art
techniques to showcase its effectiveness

Motivation of the study
Software quality assurance (SQA) aims to ensure software quality throughout its
development life cycle. A critical SQA task is the early identification of defective modules,
as addressing defects in later stages is resource-intensive (Iqbal et al., 2019b). Effective
defect prediction relies on optimal feature selection from historical software data.
Previous studies have demonstrated that feature selection techniques can enhance classifier
accuracy (Balogun et al., 2021; Singh & Haider, 2022). However, classification techniques
alone have not consistently delivered exceptional results. By integrating diverse classification
techniques, Ensemble learning crucially enhances predictive accuracy and robustness (Jacob
et al., 2021; Ali et al., 2020; Alazba & Aljamaan, 2022). Recent research (Iqbal & Aftab,
2020) in software defect prediction using machine learning classifiers; has revealed varying
accuracy rates—ranging from 79.59% for CM1 to 74.8% for PC4—indicating suboptimal
outcomes in some instances (62.78% for JM1, 62.16% for MC2, 77.33% for MW1, 89.65%
for PC1, and 75.94% for PC3). Therefore, there is a demand for a framework that combines
feature selection via genetic algorithms with heterogeneous classification methods like RF,
SVM, and NB, along with a voting ensemble approach, to achieve higher accuracy.

Organization of the study
This study has been organized as follows: ‘Literature Review’ provides an overview of
existing research in the field through the literature review. ‘Materials and Methods’
outlines the proposed framework, with detailed descriptions of its stages. ‘Results and
Discussion’ encompasses an extensive analysis and discussion of the results obtained
by applying the proposed framework. ‘Threats to Validity’ discusses the potential validity
concerns associatedwith the research. Finally, ‘Conclusion’ concludes the study by concisely
summarizing the findings and directions for future research.

LITERATURE REVIEW
Software defect prediction is crucial in the SDLC, identifying modules requiring detailed
testing. ML techniques, mainly supervised and unsupervised, are commonly used for
prediction purposes alongside other ML categories like semi-supervised and reinforcement
learning (Long et al., 2023). Figure 1 shows the categorization of ML techniques. Among
these techniques, classification techniques are highly prevalent for software defect
prediction. These techniques are often coupled with feature selection to enhance accuracy
by selecting optimal features and eliminating those hindering performance.

Feature selection
Regarding the prediction of software defects, a hybrid frameworkusing various classification
algorithms was developed by implementing twelve NASA datasets (Iqbal et al., 2019b). The

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1860 3/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1860


Figure 1 Machine learning (ML) categories.
Full-size DOI: 10.7717/peerjcs.1860/fig-1

experiment had two individual approaches; the first was with feature selection, and the
other was without feature selection. Each approach implemented two ensemble strategies,
i.e., bagging and boosting, taking RF as the base classifier, improving the framework’s
accuracy. Similarly, a researcher in Balogun et al. (2019a) explored filter feature ranking
along with fourteen filter subset selection (FSS) techniques with five NASA datasets and
best first search (BFS) as an FS technique. They concluded that the FS strategy generates
results with better prediction accuracy and that the feature filter ranking methods were
more stable for prediction purposes. Another researcher worked on FS and studied eight
FS techniques using five supervised and five unsupervised learning models to cross-check
the variance in performance. Both learning models performed better when implemented
with the FS technique. They observed that the results of neural network-based techniques
are better for unsupervised learning models, while consistency & and correlation-based FS
methods work better for supervised learning models (Kondo et al., 2019). There are several
ML techniques for FS; among them, the Genetic Algorithm (GA) is a robust algorithm
used to solve optimization problems (Ayon, 2019). This algorithm is closer to nature,
is based on the natural process of evolution, and is efficient in solving computationally
expensive problems (Hamdia, Zhuang & Rabczuk, 2021). A recent study reviewed genetic
algorithms and their variants, mainly focusing on multimedia and wireless network
applications (Katoch, Chauhan & Kumar, 2021). Another FS technique using a Genetic
search and encoder–decoder (E–D) model having long short-term memory (LSTM) was
implemented to forecast air pollution particulatematter (PM) 2.5 using datasets taken from
Hanoi and Taiwan. The E–Dmodel generated results showing improved accuracy (Nguyen
et al., 2021).

Classification
Classification, a supervised machine learning technique, is widely applied in various
prediction models, including weather forecasting, disease prediction, sentiment analysis,
and software defect prediction (Iqbal et al., 2019b; Luo et al., 2022; Li, Ortegas & White,

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1860 4/37

https://peerj.com
https://doi.org/10.7717/peerjcs.1860/fig-1
http://dx.doi.org/10.7717/peerj-cs.1860


2023). In software defect prediction (SDP), a comparative analysis of four classifiers was
conducted using NASA’s datasets (Daoud et al., 2022). The fused artificial neural network
Bayesian regularization (ANN-BR) classifier, particularly the Bayesian regularization
(BR) classifier, demonstrated remarkable performance. Iqbal et al. (2019a) expanded
this research by analyzing twelve datasets from NASA, employing multiple classifiers,
and comparing results using various performance measures. Across different datasets and
algorithms, significant variations in classification performance were observed. For example,
the JM1 dataset excelled when paired with the RBF algorithm, while KC3 demonstrated
improved results with the MLP algorithm. MC1 achieved remarkable results using KStar,
and PC2 also performed well with KStar. In another study, ten classifiers were evaluated for
SDP, with the random forest classifier showing enhanced performance on the PROMISE
datasets (Cetiner & Sahingoz, 2020). Additionally, a software defect prediction model
utilizing LASSO-SVM with a reduced-dimension dataset was proposed, incorporating
cross-validation to enhance model performance (Wang et al., 2021). In Iqbal (2019),
researchers developed a model using artificial neural networks and conducted an empirical
comparison of backpropagation training algorithms, including Liebenberg-Marquardt,
Bayesian Regularization, Scaled Conjugate Gradient, and BFGS Quasi-Newton techniques,
on CM1, KC3, MW1, PC1, and PC2 datasets from NASA and remarkable accuracies were
achieved on all the employed datasets.

Ensemble learning
Ensemble learning (EL) is a technique in ML in which predictions from several weak
classifiers are integrated to produce a strong classifier that generates better results than
standalone classifiers (Mehta & Patnaik, 2021). EL offers a range of homogeneous classifiers
like bagging, boosting, rotational forest, etc., and several heterogeneous classifiers, including
voting, stacking, etc. (Wu &Wang, 2023). Voting is a heterogeneous ensemble classifier that
combines predictions from diverse base classifiers. A software defect prediction framework
was proposed by a researcher in Javed (2021) using a nested EL technique, i.e., voting as the
master classifier, and three base ensemble classifiers, i.e., bagging, boosting, and stacking.
The accuracy produced by the proposed framework on two different NASA datasets was
83.46% and 79.65%. Moreover, a software defect prediction model was developed by a
researcher inMatloob (2020) using multi-layer feed-forward neural networks and stacking
as an ensemble technique. Six search methods were implemented for feature selection and
multilayer perceptron was used as a subset evaluator. The accuracy achieved on NASA’s
datasets using best-first search, greedy stepwise search, and genetic search was 80%, 75%,
and 76% respectively.

Limitations of previous research
The existing studies in software defect prediction have made noteworthy contributions;
however, several limitations have been identified, particularly low accuracy. Authors
in Amin (2019) implemented iterative feature selection using SMOTE and BORUTA
approaches with SVM and neural networks as classifiers, achieving a maximum accuracy
of 76% on NASA’s datasets. However, the absence of ensemble learning techniques in

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1860 5/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1860


the methodology is notable, potentially introducing bias and low accuracy, limiting the
overall predictive capabilities. Iqbal et al. (2019a) analyzed twelve datasets from NASA,
employing various classifiers such as naïve Bayes, multilayer perceptron (MLP), radial
basis function (RBF), SVM, K nearest neighbor (KNN), kStar, OneR, PART, decision
tree (DT), and random forest (RF). While showcasing diverse classifiers, the study lacked
the incorporation of feature selection and ensemble learning methods. This absence may
hinder the model’s generalization of datasets, impacting predictive accuracy. Similarly,
the authors in Iqbal (2019) developed a model using artificial neural networks, comparing
backpropagation algorithms empirically. Despite achieving notable accuracies ranging
from 81.70% to 86.85% on different NASA datasets, the study lacked the incorporation of
feature selection and ensemble learning methods with a combination of diverse classifiers.
This limitation may affect the model’s robustness and generalization to diverse software
defect scenarios.

To address these limitations, a framework is proposed for software defect prediction that
implements a genetic algorithm to perform feature selection and voting as an ensemble
learning technique with a heterogeneous combination of RF, SVM, and NB as base
classifiers for enhancing the prediction power of software defect prediction.

The summary of the literature review is presented in Table 1. It outlines the techniques
proposed for SDP, the source of datasets used for experimentation, the specific datasets
employed, and the performance measures employed to analyze the results.

MATERIALS AND METHODS
This research introduces an intelligent ensemble-based software defect prediction
framework that significantly enhances predictive accuracy by integrating a genetic
algorithm-based feature selection technique. The proposed framework uses the collective
strengths of diverse supervised machine learning classifiers. The IECGA framework
comprises two layers: training and testing. The training layer comprises three stages: (1)
feature selection, (2) base classification, and (3) ensemble classification. In the training
layer, the process unfolds through three sequential stages: feature selection, conducted
with a genetic algorithm, followed by base classification employing random forest, support
vector machine, and naive Bayes. Finally, the predictive accuracy of base classifiers is
skillfully combined through the voting ensemble classifier, contributing to developing the
IECGA framework. The testing layer encompasses a single stage, specifically prediction,
which involves predicting defects in new modules using the trained model. A cleaned
version of seven widely used, publicly available NASA datasets with a binary prediction
class has been applied to implement this framework. Five performance measures have been
used, i.e., precision, recall, accuracy, F-measure, and area under the curve (AUC).

The proposed framework is comprised of the following five stages:
Stage 1: Dataset selection
Stage 2: Dataset pre-processing—feature selection
Stage 3: Classification
Stage 4: Ensemble learning
Stage 5: Performance evaluation

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1860 6/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1860


Table 1 Comprehensive summary of literature review.

Goyal (2022) Feature selection-based classifi-
cation for SDP using bagging and
boosting ensemble techniques

NASA CM1, MC1,JM1, KC1, KC3, MC2,
MW1, PC1, PC2,PC3, PC4, PC5

Precision, Recall, F-
measure, Accuracy,
AUC, MCC

Liu, Wang & Wang
(2021)

Feature selection-based classifica-
tion for SDP using four algorithms,
including NB, DT, LR, and KNN

NASA CM1, KC1, KC3, MW1, PC2 Accuracy, Co-efficient of
Variation (CV)

Kaur & Kaur (2021) A comparative analysis of two fea-
ture selection techniques for SDP:
1) correlation and consistency-
based feature selection. 2) Neural
network-based feature reduction

PROMISE,
NASA,
AEEEM

PROMISE(Ant v1.7, Camel v1.6,
Ivy v1.4, Jedit v4.0, Log4j v1.0,
Lucene v2.4, POI v3.0, Tomcat
v6.0, Xalan v2.6, Xerces v1.3)
NASA(CM1, JM1, KC3, MC1,
MC2, MW1, PC1, PC2,PC3, PC4,
PC5) AEEEM(Eclipse JDT Core,
Equinox, Apache Lucene, Mylyn,
Eclipse PDE UI)

AUC , interquartile
range (IQR)

Aljamaan & Alazba
(2020)

A review of genetic algorithms for
feature selection mainly focused on
multimedia and wireless network
applications.

– – –

Alsghaier & Akour
(2020)

Genetic algorithm-based feature se-
lection model to predict pollution
particulate matter (PM) 2.5

- Hanoi and Taiwan –

Balogun et al. (2021) A comparative analysis among four
classifiers based on a back propa-
gation strategy for software defect
prediction

NASA CM1, MC1,JM1, KC1, KC3, MC2,
MW1, PC1, PC2,PC3, PC4, PC5

Specificity, precision,
Recall, F-measure, AUC,
accuracy, R2, mean-
square error

Singh & Haider (2022) Performance analysis on ten ma-
chine learning classifiers, including
NB, MLP, RBF, SVM, KNN, kStar,
One Rule (OneR), PART, Decision
Tree (DT), and RF

NASA CM1, MC1,JM1, KC1, KC3, MC2,
MW1, PC1, PC2,PC3, PC4, PC5

Precision, Recall, F-
measure, Accuracy,
MCC

Jacob et al. (2021) A comparative analysis of machine
learning-based software defect pre-
diction systems by analyzing ten su-
pervised classification algorithms

PROMISE CM1, KC1, KC2, JM1, and PC1 Accuracy, Precision, Re-
call

Ali et al. (2020) LASSO –SVM-based model for
software defect prediction using a
reduced-dimension dataset

NASA PC1 Precision, Recall, F-
measure, accuracy

Iqbal & Aftab (2020) Nested ensemble learning using
voting as a master classifier along
with bagging, boosting, and stack-
ing as base classifiers for SDP

NASA CM1, KC1, KC3, MC1, MW1, PC1,
PC2, PC3, PC4, PC5

F-measure, MCC, Accu-
racy

Long et al. (2023) multi-layer feed-forward neural
networks using stacking as an en-
semble technique for SDP

NASA KC1, KC3, MC2, MW1, PC4 and
PC5

Accuracy, Precision, Re-
call, F-measure, MCC,
AUC

Dataset selection
This research utilizes seven NASA datasets, namely CM1, JM1, MC2, MW1, PC1, PC3,
and PC4 which are publicly accessible. These datasets were collected from NASA’s real
software projects and developed in different languages. In Shepperd et al. (2013), researchers

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1860 7/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1860


Table 2 Cleaning criteria.

Criterion Data quality category Explanation

1 Identical cases Instances that have identical values for all metrics, including class label
2 Inconsistent cases Instances that satisfy all conditions of Case 1 but where class labels differ
3 Cases with missing values Instances that contain one or more missing observations
4 Cases with conflicting feature values Instances with 2 or more metric values violate some referential integrity con-

straint. For example, LOC TOTAL is less than Commented LOC. However,
Commented LOC is a subset of LOC Total.

5 Cases with implausible values Instances that violate some integrity constraint. For example, the value of
LOC=1.1

Table 3 Description of NASA’s cleaned D′′ software defect datasets.

Dataset No. of
attributes

No. of
modules

Defective
modules

Non-defective
modules

Defective
instances
(%)

CM1 38 327 42 285 12.8
JM1 22 7,720 1,612 6,108 20.8
MC2 40 124 44 80 35.4
MW1 38 250 25 225 10
PC1 38 679 55 624 8.1
PC3 38 1,053 130 923 12.3
PC4 38 1,270 176 1,094 13.8

analyzed NASA’s defect datasets and produced two individually cleaned versions of the
datasets, i.e., DS’ and DS’’, the benchmark datasets. The DS dataset contains identical and
conflicting values. Meanwhile, D excludes duplicate and inconsistent data. This research
uses seven datasets from the DS’’ version to implement the proposed framework. Table 2
presents the cleaning criteria used for NASA datasets implemented by Shepperd et al.
(2013).

Each dataset consists of many independent attributes, i.e., BRANCH_COUNT, CYCLO-
MATIC_COMPLEXITY, HALSTEAD_EFFORT, LOC_TOTAL, LOC_EXECUTABLE, etc.,
and one dependent attribute called the target class. The dependent attribute is predicted
based on the independent attributes. The target class contains a Boolean value ‘‘Y’’ or ‘‘N’’
where ‘‘Y’’ represents that the particular module is defective and ‘‘N’’ represents that it is
non–defective. The dataset was partitioned into training and testing sets following a 70–30
proportion, employing a class-based splitting rule to ensure a representative distribution
across classes. The details of the datasets used in this research are given in Table 3.

The target class distribution of the employed datasets is presented in Fig. 2.

Feature selection
The software consists of many features, but only a few features positively impact the
performance of classifiers (Kondo et al., 2019;Ali et al., 2023). In this research, a filter-based
feature selection technique has been used that evaluates all the attributes available in the
underlying dataset and draws only those attributes that are more appropriate based on the

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1860 8/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1860


Figure 2 Class distribution.
Full-size DOI: 10.7717/peerjcs.1860/fig-2

target class. The feature selection technique comprised two parts, i.e., (1) the searchmethod
and (2) the attribute evaluation method. This research employs a GA search method and
CfsSubsetEval as an attribute evaluation method. GA involves stages like population
initialization, fitness function calculation, selection of fittest individuals, crossover,
mutation, and termination upon reaching a defined threshold. GA was incorporated
with the following parameter values: a population size of 20 individuals, a maximum of
20 generations, a crossover probability set to 0.6, and a mutation probability of 0.033.
These parameters were precisely chosen through empirical testing and iterative tuning to
optimize the effectiveness and efficiency of the feature selection process. GA’s evolutionary
approach allows it to efficiently explore diverse feature subsets, aligningwell with the feature
selection problem. Its capability to handle non-linear relationships within the dataset is
particularly advantageous, contributing to identifying informative features while mitigating
computational costs (Bindu & Sabu, 2020;Maleki, Zeinali & Niaki, 2021). The adaptability
of GA to problem complexity adds a robust dimension to the feature selection process,
enhancing the overall predictive power of the framework (Hamdia, Zhuang & Rabczuk,
2021). Hence, the algorithm identifies and returns the best-performing individuals crucial
for problem-solving (Peng et al., 2021). This research employs the Correlation-based
Feature Selection (CFS) method, a filter technique for evaluating each attribute’s predictive
power concerning the output class. Attributes with the highest correlation to the output
class are selected while minimizing inter-correlation among dataset attributes (Zhu et al.,
2021). GA-driven feature selection identified an optimal subset of features, ensuring that the
most informative attributes were retained through an iterative selection process, crossover,

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1860 9/37

https://peerj.com
https://doi.org/10.7717/peerjcs.1860/fig-2
http://dx.doi.org/10.7717/peerj-cs.1860


Figure 3 Genetic algorithm.
Full-size DOI: 10.7717/peerjcs.1860/fig-3

Table 4 Feature subset generated after feature selection.

Datasets CM1 JM1 MC2 MW1 PC1 PC3 PC4

Original features 38 22 40 38 38 38 38
Selected features 8 10 10 8 7 9 9

and mutation. This process dynamically explored the solution space to converge upon
subsets that maximize the classifier’s predictive accuracy. The graphical representation of
selecting the most optimal features using a genetic algorithm is shown in Fig. 3.

The features produced after applying the genetic algorithm are listed in Table 4.
A thorough feature correlation analysis was conducted for subsequent analysis to

gain deeper insights into the dataset and understand the relationships among different
features. This analysis is crucial in revealing potential dependencies or redundancies among
the selected features. The feature selection process, which leveraged a genetic algorithm
search method in conjunction with the CfsSubsetEval evaluator, aimed to identify the

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1860 10/37

https://peerj.com
https://doi.org/10.7717/peerjcs.1860/fig-3
http://dx.doi.org/10.7717/peerj-cs.1860


Figure 4 Correlation graph for NASA datasets.
Full-size DOI: 10.7717/peerjcs.1860/fig-4

optimal subset of features for the given task. Before showcasing the results of this feature
selection process, examining the degree of correlation between the features themselves is
imperative. Correlation diagrams visually represent these relationships and play a pivotal
role in the decision-making process when selecting our predictive model’s final set of
features. By unveiling feature correlations, this analysis ensures that the selected features
are both informative and independent, thus contributing to the overall effectiveness of our
software defect prediction framework. The correlation graph for each training dataset is
presented in Fig. 4, which uses color intensity to represent the strength and direction of
feature correlations. Darker shades indicate stronger correlations, with positive correlations
represented by warmer and negative correlations by cooler colors.

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1860 11/37

https://peerj.com
https://doi.org/10.7717/peerjcs.1860/fig-4
http://dx.doi.org/10.7717/peerj-cs.1860


Classification
This research implies three classification algorithms of heterogeneous nature, i.e., RF,
SVM, and NB, that produced significant results in the development of a software defect
prediction framework. The description of each classifier is given as follows:

Random forest (RF): RF utilizes the strength of decision trees, where each tree is
trained on a subset of the dataset and makes independent predictions. The final output is
determined through a voting mechanism, providing a more robust and accurate prediction
(Soe, Santosa & Hartanto, 2018; Ibrahim, Ghnemat & Hudaib, 2017). This approach
enhances predictive accuracy and fosters resilience against overfitting and variability
in software defect patterns (Alshammari, 2022; Mafarja et al., 2023). In mathematical
terms, we can describe RF as an ensemble of decision trees:

RF(X)=Tree_1(X)+Tree_2(X)+···+Tree_N(X). (1)

where RF(X) represents the Random Forest’s prediction for input data point X. Tree_1(X),
Tree_2(X), . . . , Tree_N(X) represent the predictions of individual decision trees in the
forest. Each tree _i (X) is the output of an individual decision tree, which can be a complex,
recursive structure involving feature selection, node splitting, and class prediction.

Support vector machine (SVM): SVM operates by identifying a hyperplane that best
separates different classes in the feature space, maximizing themargin between them (Wang
et al., 2021; Kumar & Singh, 2017). By leveraging the principles of margin maximization,
SVM enhances the framework’s ability to distinguish complicated patterns, providing a
valuable addition to accurate software defect prediction (Mustaqeem & Saqib, 2021). SVM
classifier can be represented in mathematical form as follows:

Given a dataset with feature vectors x_i (i= 1, 2, . . . , N) and corresponding binary
labels y_i (y_i ∈ {-1, 1}), the goal of SVM is to find a decision boundary in the feature
space that maximizes the margin between the two classes while minimizing classification
errors (Husin, Pribadi & Yohannes, 2022).

The decision boundary can be defined as:

f(x)= sign(
∑
[alpha_i.y_i(x_i.x)+b]). (2)

where f (x) is the decision boundary function for classifying a new data point x , alpha_i
represents the Lagrange multipliers associated with each data point, x_i represents the
support vectors (data points that lie on the margin or are misclassified), x ·x_i represents
the dot product between the feature vectors x and x_i,b is a constant bias term.

In the case of a polynomial kernel of degree 2 (quadratic), the kernel function K (x,x_i)
is defined as:

k(x,xi)= (x.xi+1)̂2. (3)

So, the decision boundary for the SVM with a polynomial kernel of degree 2 (C = 2)
would involve using this kernel function within the decision boundary equation:

f(x)= sign
(∑
[alpha_i.y_i.(k(x,x_i))+b]

)
. (4)

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1860 12/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1860


Naive Bayes (NB): NB is a probabilistic classification algorithm that works on the
principles of Bayes’ theorem. It is based on the assumption of feature independence,
meaning that each feature in the dataset is considered unrelated to others, given the
class label (Rahim et al., 2021; Hernández-Molinos et al., 2023). Naive Bayes efficiently
categorizes instances by calculating the likelihood of each class given the observed
features (Tua & Danar Sunindyo, 2019). Its simplicity, efficiency, and ability to handle
diverse feature sets make it valuable in our framework. The mathematical form of Gaussian
Naive Bayes can be simplified as follows:

P(y|x)= (1/(sqrt(2∗π∗σ 2)))∗ê(−((x−µ)2/(2∗σ 2))). (5)

where P(yjx) represents the probability of class y given the feature vector x , µ is the mean
(average) of the feature values for class y , σ 2 is the variance (spread) of the feature values
for classy, e is the base of the natural logarithm, approximately equal to 2.71828.

Machine learning classifiers consist of parameters that can be adjusted to find
optimized values. A systematic tuning approach was adopted to determine the optimal
hyperparameters for each classifier. Initially, a hit-and-trial method was employed to
explore a broad range of hyperparameter values for each classifier. Subsequently, an
iterative tuning process was conducted, refining the hyperparameter values based on the
performance metrics observed during multiple trial runs. RF showed significant results
when the max depth parameter was set to ‘‘10’’, and the n_estimators parameter was set
to ‘‘500’’. SVM showed the optimal performance when the kernel parameter was chosen
as ‘‘poly’’, and the Regularization Parameter C was set to ‘‘2’’. NB achieved the highest
performance when ‘‘GaussianNB’’ was implemented. The process of classifier tuning is
shown in Fig. 5. The combination of RF, ‘, and NB was deliberately chosen due to their
diverse and heterogeneous nature and complementary strengths. Each classifier contributes
its unique characteristics: RF is based on decision trees; SVM employs a probability-based
approach; and NB is rooted in Bayes’ theorem (Ibrahim, Ghnemat & Hudaib, 2017; Tua &
Danar Sunindyo, 2019; Azzeh et al., 2023).

ENSEMBLE LEARNING
Ensemble classification combinesmultiple base classifiers to enhance accuracy and stability.
This research employs a voting algorithm as a heterogeneous ensemble classifier to improve
framework accuracy. Voting ensembles can be categorized as hard voting, where the output
class label is determined bymajority votes, and soft voting, where the prediction probability
of each classifier informs the final prediction (Ali et al., 2020). Soft voting is implemented
in this research to boost software defect prediction performance. Figure 6 presents the
IECGA framework for software defect prediction, providing a visual overview of the
critical components and stages of our proposed methodology.

The source code file and the datasets employed in the IECGA framework have been
publicly posted on GitHub (https://github.com/misbah-here/IECGA-Framework).

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1860 13/37

https://peerj.com
https://github.com/misbah-here/IECGA-Framework
http://dx.doi.org/10.7717/peerj-cs.1860


Figure 5 Classifiers tuning.
Full-size DOI: 10.7717/peerjcs.1860/fig-5

Performance evaluation
After implementing the proposed framework, the most critical task is to examine its
performance. Various machine learning tools provide several evaluation measures that
comprehensively present performance, such as recall, precision, and G-mean (Iqbal, 2019).
The best approach to evaluate the framework’s efficiency is to organize the results using a
confusion matrix (Alsawalqah et al., 2020). To evaluate the effectiveness of the proposed
approach, five widely recognized evaluation measures, namely precision, recall, accuracy,
F-measure, and AUC, were thoughtfully applied (Balogun et al., 2019a).

Precision measures the accuracy of optimistic predictions, expressing the ratio of true
positives to the total predicted positives. It is particularly relevant when minimizing false
positives, which is crucial. Recall evaluates the model’s ability to capture all relevant
instances. It is calculated as the ratio of true positives to actual positives. Accuracy is a
fundamental metric representing the overall correctness of the model. It is calculated as
the ratio of correctly predicted instances to the total instances, providing a holistic view of
the model’s performance (Balogun et al., 2019a). The F-measure is the harmonic mean of
precision and Recall. It offers a balanced assessment by considering both false positives and
false negatives. AUC assesses themodel’s ability to distinguish between positive and negative
instances across various threshold levels. A higher AUC indicates superior discrimination
capability, commonly used in binary and multiclass classification tasks (Lear et al., 2021).
These measures were derived using a confusion matrix and were calculated with Python
functions. The formula used to calculate each performance measure is given as:

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1860 14/37

https://peerj.com
https://doi.org/10.7717/peerjcs.1860/fig-5
http://dx.doi.org/10.7717/peerj-cs.1860


Figure 6 IECGA framework for software defect prediction.
Full-size DOI: 10.7717/peerjcs.1860/fig-6

Precision=
TP

TP+FP
(6)

Recall=
TP

TP+FN
(7)

Accuracy=
(TP+TN)

(TP+TN+FP+FN)
(8)

F−measure=
2∗Recall∗Precision
Recall+Precision

(9)

AUC=
1+TPr−FPr

2
. (10)

In the provided equations, TP corresponds to the accurate identification of defective
software modules by the model, while TN signifies the correct recognition of non-defective
software modules. The values FP and FN indicate discrepancies between the actual and
predicted outcomes. Specifically, FP signifies instances where a non-defective module was
predicted as defective. In contrast, FN indicates cases where a module, actually defective,
was predicted as non-defective by the model. In contrast, TPr represents the actual positive
rate, measuring the proportion of correctly predicted positive instances among all actual
positives. FPr represents the false positive rate, indicating the proportion of incorrectly
predicted negative instances among all negatives.

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1860 15/37

https://peerj.com
https://doi.org/10.7717/peerjcs.1860/fig-6
http://dx.doi.org/10.7717/peerj-cs.1860


Table 5 Detailed results of classifiers on the CM1 dataset.

ML classifier Dataset Precision Recall Accuracy (%) F -Measure AUC

Training 1 1 100 1 1
RF

Testing 0.25 0.08 84.85 0.12 0.63
Training 1 0.1 88.6 0.19 0.35

SVM
Testing 1 0.08 87.88 0.14 0.42
Training 0.43 0.41 85.53 0.42 0.74

NB
Testing 0.38 0.23 84.85 0.29 0.73
Training 1 0.38 92.11 0.55 0.96

IECGA
Testing 0.33 0.08 85.86 0.12 0.65

Table 6 Detailed results of classifiers on the JM1 dataset.

ML Classifier Dataset Precision Recall Accuracy% F -Measure AUC

Training 1 0.37 86.77 0.54 0.93
RF

Testing 0.61 0.15 80.18 0.24 0.71
Training 0.86 0.01 79.22 0.01 0.67

SVM
Testing 1 0.01 79.49 0.03 0.67
Training 0.49 0.21 79 0.29 0.64

NB
Testing 0.52 0.2 79.49 0.29 0.63
Training 0.74 0.2 81.83 0.32 0

IECGA
Testing 0.55 0.16 79.66 0.25 0.71

RESULTS AND DISCUSSION
In this research, an intelligent ensemble-based software defect prediction framework
named IECGA was implemented. To perform the experiments, seven publicly accessible
NASA datasets (CM1, JM1, MC2, MW1, PC1, PC3, and PC4) were extracted from
the MDP repository. In the pre-processing step, feature selection was performed using
genetic algorithms, enriching the model’s predictive capabilities. Following the class-based
splitting rule, the datasets were subsequently divided into training and testing subsets using
70:30 ratios (Kaur & Kaur, 2021). Initially, three heterogeneous supervised classification
algorithmswere employed to train themodel: RF, SVM, andNB.These classifiers underwent
iterative optimization to maximize their accuracy for the selected datasets. The predictive
accuracy from individual classifiers was carefully integrated using a voting ensemble
technique, further boosting the model’s performance. To evaluate the effectiveness of the
proposed approach, five widely recognized evaluation measures, namely precision, Recall,
accuracy, F-measure, and AUC, were thoughtfully applied (Iqbal et al., 2019a; Mumtaz et
al., 2021). These measures were derived using a confusion matrix and were calculated with
Python functions. The results obtained from training and testing datasets for each dataset
are systematically presented in Tables 5–11, emphasizing the impact of feature selection
using genetic algorithms on the enhancement of software defect prediction.

Results achieved from the CM1 dataset are presented in Table 5. It reveals that RF
excelled in precision and recall during training, while SVM showed high precision but

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1860 16/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1860


Table 7 Detailed results of classifiers on theMC2 dataset.

ML Classifier Dataset Precision Recall Accuracy (%) F -Measure AUC

Training 1 1 100 1 1
RF

Testing 0.55 0.46 68.42 0.5 0.62
Training 0.8 0.13 67.44 0.22 0.74

SVM
Testing 1 0.15 71.05 0.27 0.61
Training 0.77 0.32 72.09 0.45 0.7

NB
Testing 0.57 0.31 68.42 0.4 0.58
Training 0.83 0.32 73.26 0.47 0.96

IECGA
Testing 0.67 0.31 71.05 0.42 0.62

Table 8 Detailed results of classifiers on theMW1 dataset.

ML Classifier Dataset Precision Recall Accuracy % F -Measure AUC

Training 1 1 100 1 1
RF

Testing 0.5 0.25 89.33 0.33 0.8
Training 1 0.12 91.43 0.21 0.71

SVM
Testing 0 0 89.33 0 0.95
Training 0.32 0.53 84.57 0.4 0.71

NB
Testing 0.4 0.75 85.33 0.52 0.88
Training 1 0.47 94.86 0.64 0.95

IECGA
Testing 0.5 0.25 89.33 0.33 0.86

Table 9 Detailed results of classifiers on the PC1 dataset.

ML Classifier Dataset Precision Recall Accuracy % F -Measure AUC

Training 1 1 100 1 1
RF

Testing 0.86 0.35 94.12 0.5 0.91
Training 1 0.16 93.26 0.27 0.79

SVM
Testing 0.67 0.24 92.65 0.35 0.63
Training 0.23 0.34 85.68 0.28 0.82

NB
Testing 0.48 0.71 91.18 0.57 0.91
Training 1 0.34 94.74 0.51 0.94Proposed

IECGA Testing 0.89 0.47 95.1 0.62 0.93

lower recall. NB achieved good overall accuracy with balanced precision and recall. The
IECGA framework exhibited impressive precision, decent recall, and excellent F-measure
during training, proving its effectiveness. Although Recall decreased slightly in testing,
it maintained solid precision, a reasonable F-Measure, and competitive accuracy. This
underscores the framework’s balanced and effective software defect prediction, highlighting
its potential for enhancing software quality assurance.

The graphical representation of all performance measures on the CM1 testing dataset is
shown in Fig. 7.

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1860 17/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1860


Table 10 Detailed results of classifiers on the PC3 dataset.

ML Classifier Dataset Precision Recall Accuracy % F -Measure AUC

Training 1 1 100 1 1
RF

Testing 0.67 0.21 88.92 0.31 0.8
Training 1 0.03 88.06 0.06 0.7

SVM
Testing 0.25 0.03 87.03 0.05 0.68
Training 0.34 0.58 80.73 0.43 0.82

NB
Testing 0.33 0.54 81.01 0.41 0.77
Training 1 0.51 93.89 0.67 0.95

IECGA
Testing 0.57 0.21 88.29 0.3 0.81

Table 11 Detailed results of classifiers on the PC4 dataset.

ML Classifier Dataset Precision Recall Accuracy % F -Measure AUC

Training 1 1 100 1 1
RF

Testing 0.62 0.43 88.45 0.51 0.91
Training 1 0.03 86.61 0.06 0.78

SVM
Testing 1 0.02 86.35 0.04 0.7
Training 0.53 0.39 86.73 0.45 0.83

NB
Testing 0.65 0.87 88.71 0.51 0.87
Training 0.96 0.38 91.23 0.55 0.98

IECGA
Testing 0.82 0.34 89.76 0.48 0.91

Results achieved from the JM1 dataset are presented in Table 6. It indicates that RF had
perfect precision during training but lower Recall. SVM had high precision but very low
Recall, prioritizing false positive reduction. NB had moderate precision and Recall. IECGA
had competitive precision and Recall during training. In testing, RF maintained a good
balance, SVM prioritized precision, NB remained consistent, and IECGA demonstrated
potential, albeit with slightly reduced Recall.

The graphical representation of all performance measures on the JM1 testing dataset is
shown in Fig. 8.

Results obtained from the MC2 dataset are shown in Table 7. It reveals that RF achieved
perfect precision and recall during training, resulting in flawless accuracy and F-measure.
SVM showed good precision but lower recall, ensuring reasonably high accuracy. NB
maintained balanced precision and Recall, leading to decent overall accuracy and F-
measure. IECGA demonstrated competitive precision and recall in training. In testing,
RF maintained good precision and recall, while SVM prioritized precision over recall. NB
maintained its balance, and IECGA remained competitive, although with a slight decrease
in recall compared to training.

The graphical representation of all performance measures on the MC2 testing dataset is
shown in Fig. 9.

Results obtained from the MW1 dataset are displayed in Table 8. It shows that in the
training phase, RF achieved perfect precision and recall, indicating its strong ability to
identify defects. SVM had perfect precision but lower recall, while NB achieved balanced

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1860 18/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1860


Figure 7 Performance measures on the CM1 testing dataset.
Full-size DOI: 10.7717/peerjcs.1860/fig-7

Figure 8 Performance measures on the JM1 testing dataset.
Full-size DOI: 10.7717/peerjcs.1860/fig-8

precision and recall. The proposed IECGA framework demonstrated perfect precision,
good recall, and high accuracy during training. In the testing phase, RF maintained a good
balance between precision and recall with competitive accuracy. SVM showed low recall

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1860 19/37

https://peerj.com
https://doi.org/10.7717/peerjcs.1860/fig-7
https://doi.org/10.7717/peerjcs.1860/fig-8
http://dx.doi.org/10.7717/peerj-cs.1860


Figure 9 Performance measures on theMC2 testing dataset.
Full-size DOI: 10.7717/peerjcs.1860/fig-9

during testing, while NB improved recall, resulting in a good F-measure and accuracy. The
proposed IECGA framework reasonably balanced precision and recall during testing.

The graphical representation of all performance measures on the MW1 testing dataset
is shown in Fig. 10.

Results achieved from the PC1 dataset are presented in Table 9. It demonstrates that
in training, RF achieved perfect precision and recall, while SVM had perfect precision but
lower recall, and NB showed a balanced performance. The proposed IECGA framework
exhibited perfect precision and good recall. In testing, RF maintained a balance between
precision and recall, SVM had a lower recall but reasonable precision, and NB improved
its recall. The proposed IECGA framework maintained a balanced performance.

The graphical representation of all performance measures on the PC1 testing dataset is
shown in Fig. 11.

Table 10 displays the results obtained from PC3. The training phase exhibited perfect
results for the random forest (RF) classifier, raising concerns about overfitting. In testing, RF
maintained decent precision and recall, suggesting effective defect identification. Support
vector machine (SVM) had low recall in both phases, indicating difficulty in recognizing
defects. Naive Bayes (NB) achieved balanced results suitable for software defect prediction.
The proposed IECGA framework excelled in training and maintained effectiveness in
testing, showing potential for enhancing software quality assurance.

The graphical representation of all performance measures on the PC3 testing dataset is
shown in Fig. 12.

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1860 20/37

https://peerj.com
https://doi.org/10.7717/peerjcs.1860/fig-9
http://dx.doi.org/10.7717/peerj-cs.1860


Figure 10 Performance measures on theMW1 testing dataset.
Full-size DOI: 10.7717/peerjcs.1860/fig-10

Figure 11 Performance measures on the PC1 testing dataset.
Full-size DOI: 10.7717/peerjcs.1860/fig-11

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1860 21/37

https://peerj.com
https://doi.org/10.7717/peerjcs.1860/fig-10
https://doi.org/10.7717/peerjcs.1860/fig-11
http://dx.doi.org/10.7717/peerj-cs.1860


Figure 12 Performance measures on the PC3 testing dataset.
Full-size DOI: 10.7717/peerjcs.1860/fig-12

Execution results on the PC4 dataset are displayed in Table 11. It represents that
the RF classifier achieved perfection in the training phase, which may suggest over-fitting.
However, in the testing phase, RFmaintained decent precision and recall, demonstrating its
ability to identify defective modules effectively. The SVM showed low recall in training and
testing, indicating challenges in recognizing defects. NB achieved a balanced performance
in both phases, making it suitable for software defect prediction. The proposed IECGA
framework demonstrated impressive precision and competitive recall during training,
and it maintained effectiveness in testing, showcasing its potential for enhancing software
quality assurance.

The graphical representation of all performance measures on the PC4 testing dataset is
shown in Fig. 13.

In the presented results, it is noteworthy that the RF classifier consistently exhibits
overfitting across various datasets. This phenomenon can be attributed to the relatively
small size of NASA datasets and their inherent class imbalance issues (Liu et al., 2022). The
limited amount of data available for training can lead RF to excessively capture noise in
the data, resulting in the observed overfitting behavior. At the same time, class imbalance
may skew RF’s predictions.

The IECGA framework delivers unbiased results by effectively integrating the accuracy
of individual classifiers, ensuring a balanced and reliable approach to software defect
prediction across various training datasets, as presented in Fig. 14.

IECGA framework provides unbiased results by effectively integrating the accuracy of
individual classifiers, ensuring a well-balanced and dependable approach to software defect
prediction across a range of testing datasets, as shown in Fig. 15.

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1860 22/37

https://peerj.com
https://doi.org/10.7717/peerjcs.1860/fig-12
http://dx.doi.org/10.7717/peerj-cs.1860


Figure 13 Performance measures on the PC4 testing dataset.
Full-size DOI: 10.7717/peerjcs.1860/fig-13

Figure 14 Performance comparison based on classification accuracy of training data.
Full-size DOI: 10.7717/peerjcs.1860/fig-14

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1860 23/37

https://peerj.com
https://doi.org/10.7717/peerjcs.1860/fig-13
https://doi.org/10.7717/peerjcs.1860/fig-14
http://dx.doi.org/10.7717/peerj-cs.1860


Figure 15 Performance comparison based on classification accuracy of testing data.
Full-size DOI: 10.7717/peerjcs.1860/fig-15

Table 12 GA-based accuracy comparison on training datasets.

Dataset CM1 JM1 MC2 MW1 PC1 PC3 PC4

No FS-Accuracy% 91.67 81.31 74.42 95.43 94.95 98.78 88.64
FS-Accuracy% 92.11 81.83 73.26 94.86 94.74 93.89 91.23

Genetic algorithm-based performance comparison
A comparative analysis has been conducted to evaluate the IECGA framework’s accuracy
with and without feature selection (FS). The evaluation encompasses training and testing
datasets, highlighting the influence of the GA-based feature selection on the overall
effectiveness of the framework. Table 12 presents the performance comparison on the
training datasets, showing the impact of FS using genetic algorithms within the IECGA
framework. Figure 16 shows the GA-based accuracy comparison on training datasets.

In the case of the CM1, JM1, and PC4 datasets, the FS led to a significant increase in
accuracy, from 91.67% to 92.11%, 81.31% to 81.83%, and 88.64% to 91.23%, respectively.
This reflects the effectiveness of the GA-based FS in identifying and retaining the most
informative features, potentially reducing computational costs. For MC2, MW1, PC1, and
PC3 datasets, there is a marginal decrease in accuracy with FS from 74.42% to 73.26%,
95.43% to 94.86%, 94.95% to 94.74%, and 98.78% to 93.89%. While there is a slight
decrease in accuracy, the reduced number of features contributes to significant savings
in computational resources, including time, money, and manpower. This emphasizes

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1860 24/37

https://peerj.com
https://doi.org/10.7717/peerjcs.1860/fig-15
http://dx.doi.org/10.7717/peerj-cs.1860


Figure 16 GA-based accuracy comparison on training datasets.
Full-size DOI: 10.7717/peerjcs.1860/fig-16

the trade-off between feature richness and the practical efficiency of the classifiers in
real-world applications. Figure 17 shows the graphical representation of the GA-based
accuracy comparison on training datasets.

Table 13 presents the performance comparison on the testing datasets, showing the
impact of FS using genetic algorithms within the IECGA framework.

In the MC2, PC1, and PC4 datasets, FS contributes to an accuracy boost from 68.42% to
71.05%, 93.63% to 95.1%, and 87.66% to 89.76%, respectively. The results indicate that the
GA effectively selects and retains pertinent features, optimizing the predictive performance
of the IECGA framework. Despite the accuracy of 85.86% in CM1 and 89.33% in MW1
datasets, the GA-based feature selection is influential in reducing computational resources.
The maintained accuracy indicates that the GA accurately identifies and preserves the
most relevant features. The marginal reduction in accuracy is observed in the JM1 and PC3
datasets, from79.84% to 79.66% and 88.92% to 88.29%, respectively. The trade-off between
accuracy and resource optimization is evident, emphasizing FS’s strategic application in
scenarios where resource efficiency’s benefits outweigh the marginal decrease in accuracy.
Figure 17 shows the graphical representation of the GA-based accuracy comparison on
testing datasets.

While GA-based FS aims to retain the most relevant features, its intrinsic evolutionary
nature may occasionally lead to the omission of some features that, although less impactful
individually, contribute collectively to the framework’s predictive ability (Hamdia, Zhuang
& Rabczuk, 2021; Katoch, Chauhan & Kumar, 2021). This accuracy drop should not
be viewed solely as a compromise; instead, it reflects a strategic decision to prioritize

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1860 25/37

https://peerj.com
https://doi.org/10.7717/peerjcs.1860/fig-16
http://dx.doi.org/10.7717/peerj-cs.1860


Figure 17 GA-based accuracy comparison on testing datasets.
Full-size DOI: 10.7717/peerjcs.1860/fig-17

Table 13 GA-based accuracy comparison on testing datasets.

Dataset CM1 JM1 MC2 MW1 PC1 PC3 PC4

No FS-Accuracy% 85.86 79.84 68.42 89.33 93.63 88.92 87.66
FS-Accuracy% 85.86 79.66 71.05 89.33 95.1 88.29 89.76

computational efficiency and interpretability by discarding features that might introduce
noise or redundancy.

Computational efficiency evaluation
Investigating the execution time of the frameworkwith andwithout feature selection reveals
notable improvements in computational efficiency. The application of FS consistently
resulted in reduced execution time in both training and testing phases across all datasets.
A comparative analysis of the execution time on both training and testing datasets has
been presented in Table 14. Specifically, the time spent training with the original features
significantly decreases when FS is employed, presenting a streamlined computational
process. Similarly, in the testing phase, FS demonstrates its effectiveness by substantially
lowering execution time, indicative of its role in optimizing the framework’s overall
computational efficiency. Notably, the IECGA framework demonstrates enhanced
efficiency, achieving a substantial average reduction of 51.52% in training times and 52.31%
in testing times. These findings emphasize the practical advantages of incorporating FS,
showcasing its potential to enhance computational performance.

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1860 26/37

https://peerj.com
https://doi.org/10.7717/peerjcs.1860/fig-17
http://dx.doi.org/10.7717/peerj-cs.1860


Table 14 Comparative analysis of the execution time on training and testing datasets.

Dataset Sample Execution time
without FS
(seconds)

Execution time
with FS
(seconds)

Reduction
in time
(%)

Training 6.061 2.322 61.684
CM1

Testing 4.908 2.174 55.697
Training 86.555 85.161 1.611

JM1
Testing 34.248 32.417 5.346
Training 2.659 1.677 36.93

MC2
Testing 2.522 1.633 35.266
Training 3.749 1.891 49.546

MW1
Testing 3.570 1.775 50.267
Training 7.315 2.815 61.520

PC1
Testing 7.302 2.669 63.449
Training 18.902 5.749 69.585

PC3
Testing 17.831 6.0458 66.094
Training 31.958 6.466 79.767

PC4
Testing 32.587 3.234 90.073

Figure 18 Comparative analysis of the execution time on training and testing datasets.
Full-size DOI: 10.7717/peerjcs.1860/fig-18

A graphical representation of the comparative analysis of the execution time on both
training and testing datasets has been reflected in Fig. 18.

Performance comparison
In this section, the accuracy of the proposed feature selection-based ensemble software
defect prediction (IECGA) framework is compared to state-of-the-art software defect

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1860 27/37

https://peerj.com
https://doi.org/10.7717/peerjcs.1860/fig-18
http://dx.doi.org/10.7717/peerj-cs.1860


Table 15 Accuracy comparison of the IECGA framework with modern techniques.

Datasets CM1 JM1 MC2 MW1 PC1 PC3 PC4

Alsaeedi & Khan (2019) 83 78 68 91 84 84
Balogun et al. (2019a) 84.1 83.6
Aljamaan & Alazba (2020) 82.28 78.08 68.59 86.52 91.15 85.79
Iqbal et al. (2019a) 77.55 73.96 64.86 82.66 92.64 82.59 86.08
Azam, Nouman & Gill (2022) 83 77 93.86
Mehta & Patnaik (2021) 84 93.6
Balogun et al. (2020a) 83.79 69.6 83.79
Goyal & Bhatia (2020) 84.94 77.93
Bhutamapuram & Sadam (2022) 31.79 83.02
Iqbal & Aftab (2020) 79.59 62.78 62.16 77.33 89.65 75.94 74.8
Goyal (2022) 49.43 92.99
Goyal (2020) 93
Alkhasawneh (2022) 67.29 86.89
Balogun et al. (2020b) 70.16 86.61
Iqbal et al. (2019b) 67.56 89.7 87.34 –
Balogun et al. (2019b) 68.32 60.05 94.96 73.7 86.9
Alsghaier & Akour (2020) 67.09 93.66 88.2
Javed (2021) 93.59
Shafiq et al. (2023) 92
Balogun et al. (2021) 91.9 84.59 88.89
Singh & Haider (2022) 92.4
Amin (2019) 94
Cetiner & Sahingoz (2020) 92.2
Bajeh et al. (2022) 81.92
Mumtaz et al. (2021) 81.79 89.79
IECGA 85.86 79.66 71.05 89.33 95.1 88.29 89.76

prediction techniques, as implemented in recent research conducted over the past five
years. The comparison involves twenty published studies, with a focus on various datasets.
Specifically, CM1 is the subject of ten studies; eight researchers examined JM1, MC2 was
investigated in ten studies, MW1 was explored in eight studies, and PC1 was experimented
with in eighteen studies. Additionally, the PC3 was analyzed in eight studies, and the
PC4 was examined in seven. The results highlight the significance of incorporating
heterogeneous base classifiers into feature selection-based ensemble classification, as it
substantially enhances the accuracy of the software defect prediction process. The accuracy
comparison between the IECGA framework andmodern techniques is detailed in Table 15.

The graphical representation of the accuracy comparison of the IECGA framework with
that of state-of-the-art techniques is shown in Fig. 19.

THREATS TO VALIDITY
Validity threats encompass elements or challenges that could diminish research results’
precision, reliability, or applicability. These challenges can potentially emerge at

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1860 28/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1860


Figure 19 Accuracy comparison of the IECGA framework with modern techniques.
Full-size DOI: 10.7717/peerjcs.1860/fig-19

various phases of the research endeavor and may impact the integrity of the study’s
deductions (Yucalar et al., 2020). Here are some of the paramount validity threats to
consider:

Internal validity: It is related to evaluating whether the selected prediction techniques
are suitable for the particular datasets utilized in this study or for other datasets addressing
similar issues (Sharma B & Sadam, 2022). In this investigation, we employed three
supervised classification algorithms—RF, SVM, and NB along with GA for feature
selection—each characterized by distinct computational mechanisms and performance.
However, GA may have limitations, such as sensitivity to parameter tuning and the
potential for suboptimal convergence. While the Genetic Algorithm has demonstrated
effectiveness, future research could explore alternative feature selection methods such
as recursive feature elimination (RFE), information gain, principal component analysis
(PCA), or hybrid approaches combiningmultiple techniques further to enhance the internal
validity of software defect prediction frameworks. Additionally, researchers may consider
incorporating clustering algorithms in conjunction with feature selection techniques to
assess their impact on the efficiency of software defect prediction frameworks.

External validity: It examines whether the proposed solution is equally effective when
applied to other datasets associated with the same problem domain (Abdu et al., 2022). This
research employed seven benchmark datasets, namely CM1, JM1, MC2, MW1, PC1, PC3,
and PC4 from NASA’s defect repository, to implement the proposed IECA framework.
Hence, the conclusion of this research cannot be generalized to other defect datasets having
different attributes. However, the pre-processing steps, including dataset splitting, feature

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1860 29/37

https://peerj.com
https://doi.org/10.7717/peerjcs.1860/fig-19
http://dx.doi.org/10.7717/peerj-cs.1860


selection, and parameter optimization in the classification step, can be implemented by
other researchers in their studies.

Construct validity: This is associated with the suitability of the chosen performance
measures for assessing the proposed frameworks’ performance (Liu et al., 2022). In this
research, five performance metrics, precision, recall, accuracy, F-measure, and AUC, were
employed to evaluate the effectiveness of the proposed IECGA framework. Nevertheless,
only the accuracy metric was utilized to compare the performance with state-of-the-art
techniques.

Conclusion validity: It is relevant to the degree to which the inferences made in a study
faithfully reflect the genuine relationships or effects observed in the proposed model (Abdu
et al., 2022). In this research, the inference is derived from the accuracy comparison with
state-of-the-art techniques, demonstrating better results of the proposed framework than
contemporary research.

CONCLUSION
This research presents an intelligent feature selection-based voting ensemble software defect
prediction formwork named IECGA, which provides a promising approach to enhancing
the accuracy and effectiveness of the software defect prediction process. Through extensive
experimentation on NASA datasets, including CM1, JM1, MC2, MW1, PC1, PC3, and
PC4, the IECGA framework demonstrated its ability to achieve competitive accuracy
consistently. Its capacity to mitigate class imbalance issues and provide unbiased results is
particularly noteworthy, making it a valuable tool in software quality assurance. Integrating
genetic algorithms for feature selection further bolstered the model’s predictive power.
A comprehensive comparison with contemporary state-of-the-art techniques, involving
twenty-five recent studies, highlighted the prowess of IECGA in accuracy across diverse
datasets. These findings underscore the model’s potential to contribute significantly to
early defect detection in software development, ultimately creating more reliable and
high-quality software products. As the software industry continues to evolve, the IECGA
framework is a promising pre-testing solution to meet the ongoing challenge of software
defect prediction. In the future, the focus should be on enhancing defect prediction
models’ identification and pattern recognition capabilities, possibly through advanced
feature extraction techniques, deep learning, and transfer learning.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was funded by the Princess Nourah bint Abdulrahman University Researchers
Supporting Project number (PNURSP2024R235), Princess Nourah bint Abdulrahman
University, Riyadh, Saudi Arabia. The funders had a role in study design, final proofreading
and final preparation of the manuscript, and decision to publish. The funders had no role
in data collection and analysis.

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1860 30/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1860


Grant Disclosures
The following grant information was disclosed by the authors:
Princess Nourah bint Abdulrahman University Researchers Supporting Project number:
PNURSP2024R235.
Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Misbah Ali conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, writing code, and approved the final draft.
• Tehseen Mazhar conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, writing draft,Supervision, and approved the
final draft.
• Amal Al-Rasheed conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, proof reading, and approved the final draft.
• Tariq Shahzad conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, data Collection, and approved the final draft.
• Yazeed Yasin Ghadi conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the article, proof reading,Investigation,
and approved the final draft.
• Muhammad Amir Khan conceived and designed the experiments, performed
the experiments, analyzed the data, performed the computation work, prepared
figures and/or tables, authored or reviewed drafts of the article, edit and proof
reading,adminstration, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The raw data is available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1860#supplemental-information.

REFERENCES
Abdu A, Zhai Z, Algabri R, Abdo HA, Hamad K, Al-antari MA. 2022. Deep learning-

based software defect prediction via semantic key features of source code—
systematic survey.Mathematics 10(17):3120 DOI 10.3390/math10173120.

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1860 31/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1860#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1860#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1860#supplemental-information
http://dx.doi.org/10.3390/math10173120
http://dx.doi.org/10.7717/peerj-cs.1860


Alazba A, Aljamaan H. 2022. Software defect prediction using stacking gener-
alization of optimized tree-based ensembles. Applied Sciences 12(9):4577
DOI 10.3390/app12094577.

Ali U, Aftab S, Iqbal A, Nawaz Z, Bashir MSalman, Anwaar SaeedM. 2020. Software
defect prediction using variant based ensemble learning and feature selection
techniques. International Journal of Modern Education and Computer Science
12(5):29–40 DOI 10.5815/ijmecs.2020.05.03.

Ali M, Mazhar T, Shahzad T, Ghadi Y, Mohsin SM, Akber SMA, Ali M. 2023. Analysis of
feature selection methods in software defect prediction models. IEEE Access pp:1–1
DOI 10.1109/ACCESS.2023.3343249.

Aljamaan H, Alazba A. 2020. Software defect prediction using tree-based ensembles. In:
Proceedings of the 16th ACM international conference on predictive models and data
analytics in software engineering, virtual USA. 1–10 DOI 10.1145/3416508.3417114.

AlkhasawnehMS. 2022. Software defect prediction through neural network and feature
selections. Applied Computational Intelligence and Soft Computing 2022:1–16
DOI 10.1155/2022/2581832.

Alsaeedi A, KhanMZ. 2019. Software defect prediction using supervised machine learn-
ing and ensemble techniques: a comparative study. Job Safety and Environmental
Analysis 12(05):85–100 DOI 10.4236/jsea.2019.125007.

Alsawalqah H, Hijazi N, Eshtay M, Faris H, Radaideh AAl, Aljarah I, Alshamaileh Y.
2020. Software defect prediction using heterogeneous ensemble classification based
on segmented patterns. Applied Sciences 10(5):1745 DOI 10.3390/app10051745.

Alsghaier H, AkourM. 2020. Software fault prediction using particle swarm algorithm
with genetic algorithm and support vector machine classifier. Software: Practice and
Experience 50(4):407–427 DOI 10.1002/spe.2784.

Alshammari FH. 2022. Software defect prediction and analysis using enhanced random
forest (extrf) technique: a business process management and improvement concept
in IOT-based application processing environment.Mobile Information Systems
2022:1–11 DOI 10.1155/2022/2522202.

Amin S. 2019. Software defect prediction viamachine learning classifiers. Available at
https://vspace.vu.edu.pk/detail.aspx?id=378.

Ayon SI. 2019. Neural network based software defect prediction using genetic algorithm
and particle swarm optimization. In: 2019 1st international conference on advances
in science, engineering and robotics technology (ICASERT), Dhaka, Bangladesh. 1–4
DOI 10.1109/ICASERT.2019.8934642.

AzamM, NoumanM, Gill ARehman. 2022. Comparative analysis of machine learning
techniques to improve software defect prediction. KIET Journal of Computing and
Information Sciences 5(2) DOI 10.51153/kjcis.v5i2.

AzzehM, Elsheikh Y, Nassif AB, Angelis L. 2023. Examining the performance of kernel
methods for software defect prediction based on support vector machine. Science of
Computer Programming 226:102916 DOI 10.1016/j.scico.2022.102916.

Bajeh AO, Bajeh AO, Balogun AO, Alanamu ZO, Adewole KS, Akintola AG, Salihu
SA, Usman-Hamza FE, Mojeed HA. 2022. An empirical study on data sampling

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1860 32/37

https://peerj.com
http://dx.doi.org/10.3390/app12094577
http://dx.doi.org/10.5815/ijmecs.2020.05.03
http://dx.doi.org/10.1109/ACCESS.2023.3343249
http://dx.doi.org/10.1145/3416508.3417114
http://dx.doi.org/10.1155/2022/2581832
http://dx.doi.org/10.4236/jsea.2019.125007
http://dx.doi.org/10.3390/app10051745
http://dx.doi.org/10.1002/spe.2784
http://dx.doi.org/10.1155/2022/2522202
https://vspace.vu.edu.pk/detail.aspx?id=378
http://dx.doi.org/10.1109/ICASERT.2019.8934642
http://dx.doi.org/10.51153/kjcis.v5i2
http://dx.doi.org/10.1016/j.scico.2022.102916
http://dx.doi.org/10.7717/peerj-cs.1860


methods in addressing class imbalance problem in software defect prediction. In:
Software engineering perspectives in systems. Cham: Springer International Publishing,
594–610 DOI 10.1007/978-3-031-09070-7_49.

Balogun AO, Basri S, Abdulkadir SJ, Hashim AS. 2019a. Performance analysis of feature
selection methods in software defect prediction: a search method approach. Applied
Sciences 9(13):2764 DOI 10.3390/app9132764.

Balogun AO, Basri S, Capretz LF, Mahamad S, ImamAA, Almomani MA, Adeyemo VE,
Alazzawi AK, Bajeh AO, Kumar G. 2021. Software defect prediction using wrapper
feature selection based on dynamic re-ranking strategy. Symmetry 13(11):2166
DOI 10.3390/sym13112166.

Balogun AO, Basri S, Jadid SA, Mahamad S, Al-momani MA, Bajeh AO, Alazzawi
AK. 2020a. Search-based wrapper feature selection methods in software de-
fect prediction: an empirical analysis. In: Silhavy R, ed. Intelligent algorithms
in software engineering. Cham: Springer International Publishing, 492–503
DOI 10.1007/978-3-030-51965-0_43.

Balogun AO, Lafenwa-Balogun FB, Mojeed HA, Adeyemo VE, Akande ON, Akintola
AG, Bajeh AO, Usman-Hamza FE. 2020b. SMOTE-based homogeneous ensemble
methods for software defect prediction. In: Gervasi O, Murgante B, Misra S, Garau
C, Blečić I, Taniar D, Apduhan BO, Rocha AMAC, Tarantino E, Torre CM, Karaca
Y, eds. Computational science and its applications—ICCSA 2020. Cham: Springer
International Publishing, 615–631 DOI 10.1007/978-3-030-58817-5_45.

Balogun A, Oladele RO, Mojeed HA, Amin-Balogun B. 2019b. Performance analysis of
selected clustering techniques for software defects prediction. IEEE Nigeria Chapter
12:30–42.

BhutamapuramUS, Sadam R. 2022.With-in-project defect prediction using
bootstrap aggregation based diverse ensemble learning technique. Journal of
King Saud University—Computer and Information Sciences 34(10):8675–8691
DOI 10.1016/j.jksuci.2021.09.010.

BinduMG, SabuMK. 2020. A hybrid feature selection approach using artificial bee
colony and genetic algorithm. In: 2020 Advanced computing and communication
technologies for high performance applications (ACCTHPA). Cochin, India. 211–216
DOI 10.1109/ACCTHPA49271.2020.9213197.

Cetiner M, Sahingoz OK. 2020. A comparative analysis for machine learning based
software defect prediction systems. In: 2020 11th International Conference on
Computing, Communication and Networking Technologies (ICCCNT), Kharagpur,
India. 1–7 DOI 10.1109/ICCCNT49239.2020.9225352.

DaoudM Sh, Aftab S, AhmadM, KhanMA, Iqbal A, Abbas S, Iqbal M, Ihnaini B.
2022.Machine learning empowered software defect prediction system. Intelligent
Automation & Soft Computing 31(2):1287–1300 DOI 10.32604/iasc.2022.020362.

Goyal S. 2020.Heterogeneous stacked ensemble classifier for software defect prediction.
126–130 DOI 10.1109/PDGC50313.2020.9315754.

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1860 33/37

https://peerj.com
http://dx.doi.org/10.1007/978-3-031-09070-7_49
http://dx.doi.org/10.3390/app9132764
http://dx.doi.org/10.3390/sym13112166
http://dx.doi.org/10.1007/978-3-030-51965-0_43
http://dx.doi.org/10.1007/978-3-030-58817-5_45
http://dx.doi.org/10.1016/j.jksuci.2021.09.010
http://dx.doi.org/10.1109/ACCTHPA49271.2020.9213197
http://dx.doi.org/10.1109/ICCCNT49239.2020.9225352
http://dx.doi.org/10.32604/iasc.2022.020362
http://dx.doi.org/10.1109/PDGC50313.2020.9315754
http://dx.doi.org/10.7717/peerj-cs.1860


Goyal S. 2022.Handling class-imbalance with KNN (neighbourhood) under-sampling
for software defect prediction. Artificial Intelligence Review 55(3):2023–2064
DOI 10.1007/s10462-021-10044-w.

Goyal S, Bhatia PK. 2020. Comparison of machine learning techniques for software qual-
ity prediction. International Journal of Knowledge and Systems Science 11(2):20–40
DOI 10.4018/IJKSS.2020040102.

Hamdia KM, Zhuang X, Rabczuk T. 2021. An efficient optimization approach for
designing machine learning models based on genetic algorithm. Neural Computing
and Applications 33(6):1923–1933 DOI 10.1007/s00521-020-05035-x.

Hernández-Molinos MJ, Sánchez-García AJ, Barrientos-Martínez RE, Pérez-Arriaga
JC, Ocharán-Hernández JO. 2023. Software defect prediction with Bayesian
approaches.Mathematics 11(11):2524 DOI 10.3390/math11112524.

Hou X, Zhang L, Su Y, Gao G, Liu Y, Na Z, Xu Q, Ding T, Xiao L, Li L, Chen T. 2023. A
space crawling robotic bio-paw (SCRBP) enabled by triboelectric sensors for surface
identification. Nano Energy 105:108013 DOI 10.1016/j.nanoen.2022.108013.

Husin TF, Pribadi MR, Yohannes . 2022. Implementation of LSSVM in classification
of software defect prediction data with feature selection. In: 2022 9th international
conference on electrical engineering, computer science and informatics (EECSI), Jakarta,
Indonesia. 126–131 DOI 10.23919/EECSI56542.2022.9946611.

IbrahimDR, Ghnemat R, Hudaib A. 2017. Software defect prediction using feature se-
lection and random forest algorithm. In: 2017 International conference on new trends
in computing sciences (ICTCS), Amman. 252–257 DOI 10.1109/ICTCS.2017.39.

Iqbal A. 2019. SDPM An effective model for software defect prediction using artificial
neural networks. Available at https://vspace.vu.edu.pk/detail.aspx?id=302.

Iqbal A, Aftab S. 2020. A classification framework for software defect prediction using
multi-filter feature selection technique and MLP. International Journal of Modern
Education and Computer Science 12(1):18–25 DOI 10.5815/ijmecs.2020.01.03.

Iqbal A, Aftab S, Ali U, Nawaz Z, Sana L, AhmadM, Husen A. 2019a. Performance
analysis of machine learning techniques on software defect prediction using NASA
datasets. International Journal of Advanced Computer Science and Applications
10(5):300–308.

Iqbal A, Aftab S, Ullah I, Salman Bashir M, Anwaar SaeedM. 2019b. A feature se-
lection based ensemble classification framework for software defect prediction.
International Journal of Modern Education and Computer Science 11(9):54–64
DOI 10.5815/ijmecs.2019.09.06.

Jacob RJ, Kamat RJ, Sahithya NM, John SS, Shankar SP. 2021. Voting based
ensemble classification for software defect prediction. In: 2021 IEEE Mysore
sub section international conference (MysuruCon), Hassan, India. 358–365
DOI 10.1109/MysuruCon52639.2021.9641713.

JavedMA. 2021. A framework for software defect prediction using nested-ensemble
learning and feature selection techniques. Thesis, Virtual University of Pakistan.

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1860 34/37

https://peerj.com
http://dx.doi.org/10.1007/s10462-021-10044-w
http://dx.doi.org/10.4018/IJKSS.2020040102
http://dx.doi.org/10.1007/s00521-020-05035-x
http://dx.doi.org/10.3390/math11112524
http://dx.doi.org/10.1016/j.nanoen.2022.108013
http://dx.doi.org/10.23919/EECSI56542.2022.9946611
http://dx.doi.org/10.1109/ICTCS.2017.39
https://vspace.vu.edu.pk/detail.aspx?id=302
http://dx.doi.org/10.5815/ijmecs.2020.01.03
http://dx.doi.org/10.5815/ijmecs.2019.09.06
http://dx.doi.org/10.1109/MysuruCon52639.2021.9641713
http://dx.doi.org/10.7717/peerj-cs.1860


Katoch S, Chauhan SS, Kumar V. 2021. A review on genetic algorithm: past,
present, and future.Multimedia Tools and Applications 80(5):8091–8126
DOI 10.1007/s11042-020-10139-6.

Kaur I, Kaur A. 2021. Comparative analysis of software fault prediction using various
categories of classifiers. International Journal of System Assurance Engineering
12(3):520–535 DOI 10.1007/s13198-021-01110-1.

KondoM, Bezemer C-P, Kamei Y, Hassan AE, Mizuno O. 2019. The impact of feature
reduction techniques on defect prediction models. Empirical Software Engineering
24(4):1925–1963 DOI 10.1007/s10664-018-9679-5.

Kumar R, Singh KP. 2017. SVM with feature selection and extraction techniques for
defect-prone software module prediction. In: Deep K, Bansal JC, Das KN, Lal
AK, Garg H, Nagar AK, Pant M, eds. Proceedings of sixth international conference
on soft computing for problem solving. Singapore: Springer Singapore, 279–289
DOI 10.1007/978-981-10-3325-4_28.

Lear A, Dada E, Oyewola D, Joseph S, Dauda A, Bassi S, Baba A. 2021. Ensemble
machine learning model for software defect prediction. 2:11–21.

Li D, Ortegas KD,White M. 2023. Exploring the computational effects of advanced deep
neural networks on logical and activity learning for enhanced thinking skills. Systems
11(7):319 DOI 10.3390/systems11070319.

Liu X,Wang S, Lu S, Yin Z, Li X, Yin L, Tian J, ZhengW. 2023a. Adapting feature
selection algorithms for the classification of Chinese texts. Systems 11(9):483
DOI 10.3390/systems11090483.

LiuW,Wang B,WangW. 2021. Deep learning software defect prediction meth-
ods for cloud environments research. Scientific Programming 2021:1–11
DOI 10.1155/2021/2323100.

Liu Y, ZhangW, Qin G, Zhao J. 2022. A comparative study on the effect of data im-
balance on software defect prediction. Procedia Computer Science 214:1603–1616
DOI 10.1016/j.procs.2022.11.349.

Liu X, Zhou G, KongM, Yin Z, Li X, Yin L, ZhengW. 2023b. Developing multi-
labelled corpus of twitter short texts: a semi-automatic method. Systems 11(8):390
DOI 10.3390/systems11080390.

LongW, Xiao Z,Wang D, Jiang H, Chen J, Li Y, AlazabM. 2023. Unified spatial-
temporal neighbor attention network for dynamic traffic prediction. IEEE Trans-
actions on Vehicular Technology 72(2):1515–1529 DOI 10.1109/TVT.2022.3209242.

Luo J, Wang G, Li G, Pesce G. 2022. Transport infrastructure connectivity and con-
flict resolution: a machine learning analysis. Neural Computing and Applications
34(9):6585–6601 DOI 10.1007/s00521-021-06015-5.

Mafarja M, Thaher T, Al-Betar MA, Too J, AwadallahMA, Doush IA, Turabieh H.
2023. Classification framework for faulty-software using enhanced exploratory whale
optimizer-based feature selection scheme and random forest ensemble learning.
Applied Intelligence 53(15):18715–18757 DOI 10.1007/s10489-022-04427-x.

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1860 35/37

https://peerj.com
http://dx.doi.org/10.1007/s11042-020-10139-6
http://dx.doi.org/10.1007/s13198-021-01110-1
http://dx.doi.org/10.1007/s10664-018-9679-5
http://dx.doi.org/10.1007/978-981-10-3325-4_28
http://dx.doi.org/10.3390/systems11070319
http://dx.doi.org/10.3390/systems11090483
http://dx.doi.org/10.1155/2021/2323100
http://dx.doi.org/10.1016/j.procs.2022.11.349
http://dx.doi.org/10.3390/systems11080390
http://dx.doi.org/10.1109/TVT.2022.3209242
http://dx.doi.org/10.1007/s00521-021-06015-5
http://dx.doi.org/10.1007/s10489-022-04427-x
http://dx.doi.org/10.7717/peerj-cs.1860


Maleki N, Zeinali Y, Niaki STA. 2021. A k-NN method for lung cancer prognosis with
the use of a genetic algorithm for feature selection. Expert Systems with Applications
164:113981 DOI 10.1016/j.eswa.2020.113981.

Matloob F. 2020. Software defect prediction model using multi-layer feed-forward neural
networks. Doctoral dissertation, thesis, Virtual University of Pakistan.

Mehta S, Patnaik KS. 2021. Improved prediction of software defects using ensemble ma-
chine learning techniques. Neural Computing and Applications 33(16):10551–10562
DOI 10.1007/s00521-021-05811-3.

Mumtaz B, Kanwal S, Alamri S, Khan F. 2021. Feature selection using artificial immune
network: an approach for software defect prediction. Intelligent Automation & Soft
Computing 29(3):669–684 DOI 10.32604/iasc.2021.018405.

MustaqeemM, SaqibM. 2021. Principal component based support vector machine
(PC-SVM): a hybrid technique for software defect detection. Cluster Computing
24(3):2581–2595 DOI 10.1007/s10586-021-03282-8.

NguyenMH, Le Nguyen P, Nguyen K, Le VA, Nguyen T-H, Ji Y. 2021. PM2.5 prediction
using genetic algorithm-based feature selection and encoder-decoder model. IEEE
Access 9:57338–57350 DOI 10.1109/ACCESS.2021.3072280.

Omri S, Sinz C. 2020. Deep learning for software defect prediction: a survey. In:
Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering
Workshops, Seoul Republic of Korea. 209–214 DOI 10.1145/3387940.3391463.

Peng C,Wu X, YuanW, Zhang X, Zhang Y, Li Y. 2021.MGRFE: multilayer recursive
feature elimination based on an embedded genetic algorithm for cancer classi-
fication. IEEE/ACM Transactions on Computational Biology and Bioinformatics
18(2):621–632 DOI 10.1109/TCBB.2019.2921961.

Qiao L, Li X, Umer Q, Guo P. 2020. Deep learning based software defect prediction.
Neurocomputing 385:100–110 DOI 10.1016/j.neucom.2019.11.067.

Rahim A, Hayat Z, Abbas M, Rahim A, RahimMA. 2021. Software defect pre-
diction with Naïve Bayes classifier. In: 2021 International Bhurban confer-
ence on applied sciences and technologies (IBCAST), Islamabad, Pakistan.
DOI 10.1109/IBCAST51254.2021.9393250.

Shafiq M, Alghamedy FH, Jamal N, Kamal T, Daradkeh YI, ShabazM. 2023. Sci-
entific programming using optimized machine learning techniques for soft-
ware fault prediction to improve software quality. IET Software 17(23):n/a–n/a
DOI 10.1049/sfw2.12091.

ShahM, Pujara N. 2020. A review on software defects prediction methods. ArXiv
arXiv:2011.00998.

Sharma B U, Sadam R. 2022. Towards developing and analysing metric-based software
defect severity prediction model. ArXiv arXiv:2210.04665 (accessed on 06 November
2022).

ShepperdM, Song Q, Sun Z, Mair C. 2013. Data quality: some comments on the NASA
software defect datasets. IEEE Transactions on Software Engineering 39(9):1208–1215
DOI 10.1109/TSE.2013.11.

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1860 36/37

https://peerj.com
http://dx.doi.org/10.1016/j.eswa.2020.113981
http://dx.doi.org/10.1007/s00521-021-05811-3
http://dx.doi.org/10.32604/iasc.2021.018405
http://dx.doi.org/10.1007/s10586-021-03282-8
http://dx.doi.org/10.1109/ACCESS.2021.3072280
http://dx.doi.org/10.1145/3387940.3391463
http://dx.doi.org/10.1109/TCBB.2019.2921961
http://dx.doi.org/10.1016/j.neucom.2019.11.067
http://dx.doi.org/10.1109/IBCAST51254.2021.9393250
http://dx.doi.org/10.1049/sfw2.12091
http://arXiv.org/abs/2011.00998
http://arXiv.org/abs/2210.04665
http://dx.doi.org/10.1109/TSE.2013.11
http://dx.doi.org/10.7717/peerj-cs.1860


Singh S, Haider TU. 2022. Selection of best feature reduction method for module-based
software defect prediction. Journal of Physics: Conference Series 2273(1):012002
DOI 10.1088/1742-6596/2273/1/012002.

Soe YN, Santosa PI, Hartanto R. 2018. Software defect prediction using random forest
algorithm. In: 2018 12th South East Asian technical university consortium (SEATUC),
Yogyakarta, Indonesia. 1–5 DOI 10.1109/SEATUC.2018.8788881.

Tewari S, Dwivedi UD. 2020. A comparative study of heterogeneous ensemble methods
for the identification of geological lithofacies. Journal of Petroleum Exploration and
Production Technology 10(5):1849–1868 DOI 10.1007/s13202-020-00839-y.

Tua FM, Danar SunindyoW. 2019. Software defect prediction using software metrics
with Naïve bayes and rule mining association methods. In: 2019 5th interna-
tional conference on science and technology (ICST), Yogyakarta, Indonesia. 1–5
DOI 10.1109/ICST47872.2019.9166448.

Wang K, Liu L, Yuan C,Wang Z. 2021. Software defect prediction model based
on LASSO–SVM. Neural Computing and Applications 33(14):8249–8259
DOI 10.1007/s00521-020-04960-1.

WuX,Wang J. 2023. Application of bagging, boosting and stacking ensemble and
easyensemble methods for landslide susceptibility mapping in the three gorges
reservoir area of China. International Journal of Environmental Research and Public
Health 20(6):4977 DOI 10.3390/ijerph20064977.

Xiaolong X,Wen C, XinhengW. 2021. RFC: a feature selection algorithm for software
defect prediction. Journal of Systems Engineering and Electronics 32(2):389–398
DOI 10.23919/JSEE.2021.000032.

Yucalar F, Ozcift A, Borandag E, Kilinc D. 2020.Multiple-classifiers in software
quality engineering: combining predictors to improve software fault prediction
ability. Engineering Science and Technology, an International Journal 23(4):938–950
DOI 10.1016/j.jestch.2019.10.005.

Zhang S, Li C, Jia Z, Liu L, Zhang Z,Wang L. 2023. Diag-IoU loss for object detection.
IEEE Transactions on Circuits and Systems for Video Technology 33(12):7671–7683
DOI 10.1109/TCSVT.2023.3277621.

Zhou X, Zhang L. 2022. SA-FPN: an effective feature pyramid network for crowded
human detection. Applied Intelligence 52(11):12556–12568
DOI 10.1007/s10489-021-03121-8.

Zhu K, Ying S, Zhang N, Zhu D. 2021. Software defect prediction based on enhanced
metaheuristic feature selection optimization and a hybrid deep neural network.
Journal of Systems and Software 180:111026 DOI 10.1016/j.jss.2021.111026.

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1860 37/37

https://peerj.com
http://dx.doi.org/10.1088/1742-6596/2273/1/012002
http://dx.doi.org/10.1109/SEATUC.2018.8788881
http://dx.doi.org/10.1007/s13202-020-00839-y
http://dx.doi.org/10.1109/ICST47872.2019.9166448
http://dx.doi.org/10.1007/s00521-020-04960-1
http://dx.doi.org/10.3390/ijerph20064977
http://dx.doi.org/10.23919/JSEE.2021.000032
http://dx.doi.org/10.1016/j.jestch.2019.10.005
http://dx.doi.org/10.1109/TCSVT.2023.3277621
http://dx.doi.org/10.1007/s10489-021-03121-8
http://dx.doi.org/10.1016/j.jss.2021.111026
http://dx.doi.org/10.7717/peerj-cs.1860

