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ABSTRACT
Emerging from the information-theoretic characterization of secrecy, physical-layer
security exploits the physical properties of the wireless channel for security purpose. In
recent years, a great deal of attention has been paid to investigating the physical-layer
security issues in multiple-input multiple-output (MIMO) wireless communications.
This paper analyzes the secrecy performance of transmit-receive diversity system and
spatial multiplexing systems with zero-forcing equalization and minimum mean-
square-error equalization. Specifically, exact and asymptotic closed-form expressions
are derived for the secrecy outage probability of such MIMO systems in a Rayleigh
fading environment, and the corresponding secrecy diversity orders and secrecy array
gains are determined. Numerical results are presented to corroborate the analytical
results and to examine the impact of various system parameters, including the numbers
of antennas at the transmitter, the legitimate receiver, and the eavesdropper. These
contributions bring about valuable insights into the physical-layer security in MIMO
wireless systems.

Subjects Computer Networks and Communications, Security and Privacy
Keywords Physical-layer security, Secrecy outage probability, Transmit-receive diversity,
Multiple-Input Multiple-Output, Spatial multiplexing

INTRODUCTION
Wireless communication systems are intrinsically prone to eavesdropping because of the
open nature of the wireless medium. In this context, physical-layer security arising from the
information-theoretic analysis of secrecy has attracted a lot of interest so far. This approach
indeed takes advantage of the physical characteristics of the radio channel to support secure
communications. Groundbreaking works on physical-layer security (Wyner, 1975; Csiszár
& Körner, 1978; Leung-Yan-Cheong & Hellman, 1978; Bloch et al., 2008) focused on a basic
wiretap channel, where the transmitter, the legitimate receiver, and the eavesdropper
possess a single antenna, and established the so-called secrecy capacity. One of their
common remarks was that to have a positive secrecy capacity, the channel quality of the
transmitter–receiver link has to be better than that of the transmitter-eavesdropper link.

Stimulated by advances in multiple-antenna technology for wireless communications,
the physical-layer security issues in multiple-input multiple-output (MIMO) wiretap
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1In our context, a MIMO wiretap channel
implies that there are multiple antennas at
the transmitter, the legitimate receiver, and
the eavesdropper. This is generally known
as co-located MIMO. For a discussion
on its alternative, called distributed or
cooperative MIMO, readers are referred
to (Dong et al., 2010; He, Man &Wang,
2011; Zou, Wang & Shen, 2013;Wang et al.,
2016a).

2For this kind of channel, the channel gains
are allowed to change from channel use to
channel use (Poor & Schaefer, 2017).

channels1 have been recently explored in the literature (Goel & Negi, 2008;Khisti & Wornell,
2010;Oggier & Hassibi, 2011;Mukherjee & Swindlehurst, 2011; Yang et al., 2013; Ferdinand,
Da Costa & Latva-aho, 2013; Lin, Tsai & Lin, 2014; Wang, Wang & Ng, 2015; Schaefer &
Loyka, 2015;Wang et al., 2016b;Maichalernnukul, 2018). A brief overview of these works is
provided in the following subsection.

Related works
InKhisti & Wornell (2010), a closed-formexpression for the secrecy capacity of theGaussian
MIMO wiretap channel was derived from solving a minimax problem. Meanwhile, the
problem of computing the perfect secrecy capacity of such a channel was analytically
investigated in Oggier & Hassibi (2011). By relaxing the assumption of perfect channel
state information (CSI) used in Khisti & Wornell (2010), Oggier & Hassibi (2011), Schaefer
& Loyka (2015) studied the secrecy capacity of the compound Gaussian MIMO wiretap
channel. In Mukherjee & Swindlehurst (2011), a few beamforming schemes were proposed
to improve the secrecy capacity of the Gaussian MIMO wiretap channel in the presence
of CSI errors. With the objective of achieving perfect secrecy at the physical layer, MIMO
precoding and postcoding designs using the signal-to-noise ratio (SNR) criterion were
presented in Lin, Tsai & Lin (2014).

In all aforementioned works, the channel was assumed to be fixed over the whole
transmission time. More precisely, the channel gains for the Gaussian MIMO wiretap
channel are constant. This is rarely practical for the wireless medium as multipath
propagation normally makes transmission conditions vary with time (Poor & Schaefer,
2017). Such variation is called fading. In (Yang et al., 2013; Ferdinand, Da Costa & Latva-
aho, 2013; Maichalernnukul, 2018), the secrecy capacity of the fading MIMO wiretap
channel2 was characterized. Specifically, Yang et al. (2013) focused on the physical-layer
security enhancement through transmit antenna selection in a flat-fading MIMO channel,
and characterized the corresponding performance in terms of the secrecy outage probability
and the probability of non-zero secrecy capacity. In the meantime, Ferdinand, Da Costa
& Latva-aho (2013) analyzed the secrecy outage probability of orthogonal space–time
block code (OSTBC) MIMO systems when the transmitter–receiver and transmitter-
eavesdropper links experience different kinds of fading. In contrast to space–time coding
(which is based on transmit diversity), transmit beamforming and receive combining
(which is based on transmit-receive diversity) achieve additional array gain (Tse &
Viswanath, 2005). Besides, Goel & Negi (2008) showed that multiple transmit antennas
can be deployed to generate artificial noise, such that only the transmitter-eavesdropper
link is degraded. This idea enables secret communication (Csiszár & Körner, 1978)
and has been extended to more practical MIMO scenarios, e.g., frequency-division
duplex systems (Wang, Wang & Ng, 2015) and heterogeneous cellular networks (Wang
et al., 2016b).

More recently, in Maichalernnukul (2018), the average secrecy capacity of transmit-
receive diversity systems in the fading MIMO wiretap channel and its upper bound were
derived in closed form. Nevertheless, the corresponding secrecy outage probability has not
been investigated yet. There are two reasons why we should study this performance. First,
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3The rationale for using these ‘‘classical’’
detection techniques for the spatial
multiplexing MIMO systems is twofold.
First, the ZF and MMSE detectors are the
basic building blocks of advanced MIMO
communication architectures (e.g., layered
space–time architectures (Foschini, 1996;
Seethaler, Artés & Hlawatsch, 2004) and
joint transmit-receive equalizers (Palomar
& Lagunas, 2003; Jiang, Li & Hager, 2005)),
and have been extensively addressed
in the MIMO literature (Jankiraman,
2004; Biglieri et al., 2007; Heath Jr &
Lozano, 2018). Second, they have low
computational complexity compared
to the (optimum) maximum likelihood
(ML) detector, and their performance
can be very close to the ML performance
for a well-conditioned MIMO channel,
i.e., its condition number is near to unity
(see Seethaler, Artés & Hlawatsch (2005) for
more details).

the closed-form results ofMaichalernnukul (2018) are complicated, and from these results,
it is not clear how the system parameters (e.g., the numbers of antennas at the transmitter,
the legitimate receiver, and the eavesdropper) affect the secrecy performance. In fact,
quantifying the secrecy outage probability at high SNR in terms of two parameters, namely
secrecy diversity order and secrecy array gain, can provide insights into this effect (Yang
et al., 2013). Second, it was shown in Bashar, Ding & Li (2011) that although transmit
beamforming in the transmit-receive diversity systems maximizes the achievable capacity
of the main channel (i.e., that for the transmitter–receiver link), they still have secrecy
outages at an arbitrary target secrecy rate. The first objective of our work is to present the
exact and asymptotic (high-SNR) analysis of the secrecy outage probability of these systems.

It is well known that the multiple antennas of MIMO systems can be exploited to obtain
spatial multiplexing, i.e., transmission of independent data streams in parallel (Tse &
Viswanath, 2005). This leads to an increase in the data rate. While several key performance
metrics of spatial multiplexing MIMO systems, e.g., error probability, outage and ergodic
capacity, have been extensively studied in the literature (Chen & Wang, 2007; Smith, 2007;
Ordóñez et al., 2007; Kumar, Caire & Moustakas, 2009; Jiang, Varanasi & Li, 2011), little
is known about the secrecy performance of these systems in the fading MIMO wiretap
channel. The second objective of our work is to fill this knowledge gap by providing a
relevant secrecy outage probability characterization.

Contributions
The main contributions of this work are summarized as follows:

• We derive exact and asymptotic closed-form expressions for the secrecy outage
probability of a transmit-receive diversity system in the fading MIMO wiretap channel.
We also do the same for the secrecy outage probability of spatial multiplexing systems
with linear equalization, especially zero-forcing (ZF) and minimum mean-square-error
(MMSE).3 It is shown that all exact secrecy outage results simplify to the well-known
result (Bloch et al., 2008, Equation (9)) for the case where the transmitter, the legitimate
receiver, and the eavesdropper have a single antenna.
• We determine the secrecy diversity order and secrecy array gain that the above systems
achieve, and discuss the impact of the numbers of antennas at the transmitter, the
legitimate receiver, and the eavesdropper, denoted as Mt, Mr, and Me, respectively, on
the system secrecy and complexity. Through numerical results, it is verified that the
transmit-receive diversity system attains a secrecy diversity order of MtMr, while the
spatial multiplexing systems with ZF equalization and MMSE equalization yield the
same secrecy diversity order ofMr−Mt+1. All of these secrecy diversity orders turn out
to be independent ofMe.

Notation and organization
Throughout this paper, we write a function g (x) of variable x as o(x) if limx→0

g (x)
x = 0,

and denote
(
·

·

)
as the multinomial coefficient, E[·] as the expectation operator, d

dx (·) as the
first derivative operator with respect to variable x , ‖·‖ as the Euclidean norm of a vector,
and IN as the identity matrix of size N ×N . Moreover, det(·), (·)T, (·)†, (·)−1, and [·]ij
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4This assumption holds, for example,
if the receiver and eavesdropper are
able to perfectly estimateHr andHe,
respectively, and the receiver sendsHr
to the transmitter through a noiseless
broadcast channel, which can be heard by
the eavesdropper (Goel & Negi, 2008).

denote the determinant, transpose, conjugate transpose, inverse, and (i,j)-th element of
a matrix, respectively, and ϒ(·,·) and 0(·,·) are the lower and upper incomplete gamma
functions defined in (Gradshteyn & Ryzhik, 2000, Equation (8.350.1)) and (Gradshteyn &
Ryzhik, 2000, Equation (8.350.2)), respectively. We also denote CN (0,K) as a zero-mean
circularly-symmetric complex Gaussian distribution with covariance K (Gallager, 2008,
Section 7.8.1), and Lmax{·} and P{·} as the largest eigenvalue of a square matrix and the
associated eigenvector, respectively.

The layout of the paper is as follows. ‘System Model’ describes the system model of
interest. ‘Exact Secrecy Outage Probability’ and ‘Asymptotic Secrecy Outage Probability’
present exact and asymptotic analysis of the corresponding secrecy outage probability,
respectively. ‘Numerical Results’ provides the numerical results of theoretical analysis and
simulations, followed by the conclusion given in ‘Conclusion’.

SYSTEM MODEL
In this section, we consider transmit-receive diversity and spatial multiplexing systems
where the transmitter, the legitimate receiver, and the passive eavesdropper are equipped
with Mt, Mr, and Me antennas, respectively. The instantaneous secrecy capacity of these
systems is given by (Bloch et al., 2008, Lemma 1)

Cs=
{log2(1+γr)− log2(1+γe), if γr>γe
0, if γr≤ γe

(1)

where γr and γe are the instantaneous received SNRs at the receiver and the eavesdropper,
respectively.

Transmit-receive diversity system
For the transmit-receive diversity system, the received signal vector at the legitimate
receiver, yr ∈CMr×1, and that at the passive eavesdropper, ye ∈CMe×1, depend on the
transmitted symbol s∈C (with E[|s|2] = P) according to

yr=Hrwts+nr (2)

and

ye=Hewts+ne (3)

respectively, where wt ∈CMt×1 is the transmit weight (beamforming) vector, and nr and ne
are independent circularly-symmetric complex-valued Gaussian noises: nr∼ CN (0,σ 2

r IMr)
and ne∼ CN (0,σ 2

e IMe). We focus on a Rayleigh-fading wiretap channel, meaning that the
channel matrices Hr and He have independent identically-distributed CN (0,1) entries.
In addition, we assume that the three terminals know Hr, but He is available only at the
eavesdropper.4

The receiver estimates the symbol s by applying the receive weight (combining) vector
zr to the received signal vector yr:

z†ryr= z†rHrwts+z†rnr.
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The optimal choices of wt and zr in the sense of maximizing the SNR of this estimate
(i.e., the instantaneous received SNR) are given by Dighe, Mallik & Jamuar (2003)

wt=
H†

rzr
‖H†

rzr‖

and

zr=P{HrH†
r }

respectively, and the resultant SNR is

γr,TR= γ̄rLmax{HrH†
r } (4)

where γ̄r = P
σ 2
r
is the average SNR at the receiver. The subscript TR refers to the

transmit-receive diversity system, and is sometimes used to avoid confusion between
this system and the spatial multiplexing system. Let λ=Lmax{HrH

†
r }, L=min(Mt,Mr),

and K =max(Mt,Mr). The cumulative distribution function (CDF) of λ is given by Dighe,
Mallik & Jamuar (2003)

Fλ(x)=
det(S(x))[∏L

p=1(K −p)!(L−p)!
] (5)

where S(x) is the L×L Hankel matrix with

[S(x)]ij =ϒ(|Mt−Mr|+ i+ j−1,x).

By careful inspection of the entries of S(x), this CDF can be rewritten as

Fλ(x)=
L∑

m=1

(Mt+Mr−2m)m∑
n=|Mt−Mr|

am,n
n!
ϒ(n+1,mx) (6)

where am,n =
cm,nn!

mn+1
[∏L

p=1(K−p)!(L−p)!
] and cm,n is the coefficient computed by using curve

fitting on the plot of d
dx det(S(x)) (Dighe, Mallik & Jamuar, 2003). Using Eq. (6) and

(Papoulis & Pillai, 2002, Example 5-1), the CDF of γr,TR in Eq. (4) is given by

Fγr,TR(x)=
L∑

m=1

(Mt+Mr−2m)m∑
n=|Mt−Mr|

am,n
n!
ϒ

(
n+1,

mx
γ̄r

)
. (7)

Similarly, the eavesdropper can estimate the symbol s as

z†eye= z†eHewts+z†ene

where the receive weight vector

ze=
Hewt

‖Hewt‖

is chosen to maximize the SNR of the estimate, yielding

γe,TR= γ̄e‖Hewt‖
2 (8)
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where γ̄e= P
σ 2
e
is the average SNR at the eavesdropper. The probability density function

(PDF) of γe,TR in Eq. (8) is given byMaichalernnukul (2018)

fγe,TR(x)=
xMe−1e−

x
γ̄e

(Me−1)!γ̄
Me
e
. (9)

Spatial multiplexing system
Unlike the transmit-receive diversity system, the spatial multiplexing system allows the
simultaneous transmission of different symbols, i.e., the ith antenna (i= 1,2,...,Mt) at the
transmitter is used to transmit the symbol si ∈C (withE[|si|2] = P) . Let s= [s1,s2,...,sMt]

T.
The received signal vectors at the legitimate receiver and the passive eavesdropper are given,
respectively, by

yr=Hrs+nr

where Hr and nr are defined in Eq. (2), and

ye=Hes+ne

where He and ne are defined in Eq. (3). We assume that the receiver and the eavesdropper
know Hr and He, respectively, and the numbers of antennas at these two terminals (Mr

andMe) are no less than the number of antennas at the transmitter (Mt). The assumption
onMt,Mr, and Me is necessary for the theoretical analysis hereafter.

In order for the receiver to estimate s, the ZF or MMSE receive weight (equalizing)
matrix is applied to yr. These matrices are given by Tse & Viswanath (2005)

Wr,ZF=
(
H†

rHr

)−1
H†

r

and

Wr,MMSE=

(
H†

rHr+
1
γ̄r
IMt

)−1
H†

r .

It is noteworthy that as the average SNR at the receiver grows very large, i.e., γ̄r→∞,
Wr,MMSE approaches Wr,ZF. Left multiplying yr by Wr,ZF and Wr,MMSE, we obtain the ith
symbol estimate (i= 1,2,...,Mt), the SNRs of which are, respectively, (Jiang, Varanasi &
Li, 2011)

γr,ZF,i=
γ̄r[(

H†
rHr

)−1]
ii

(10)

and

γr,MMSE,i=
γ̄r[(

H†
rHr+

1
γ̄r
IMt

)−1]
ii

−1. (11)

The CDFs of γr,ZF,i and γr,MMSE,i are given, respectively, by Chen & Wang (2007)

Fγr,ZF(x)= 1−e−
x
γ̄r

Mr−Mt∑
m=0

xm

m!γ̄m
r

(12)
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and Smith (2007)

Fγr,MMSE(x)= 1−
e−

x
γ̄r

(x+1)Mt−1

Mr−1∑
m=0

dmxm (13)

where dm=
∑m

n=max(0,m−Mt+1)
(Mt−1
m−n

) 1
n!γ̄ n

r
. The symbol index i is omitted from Eqs. (12) and

(13) because all the elements ofHr are statistically independent and identically distributed.
Similarly, the eavesdropper performs ZF or MMSE equalization, and the resulting SNRs

of the ith symbol estimate (i.e., γe,ZF,i and γe,MMSE,i) can be expressed, respectively, as Eqs.
(10) and (11) with the subscript r being replaced by the subscript e. Replacing the subscript
r with the subscript e in Eqs. (12) and (13), and taking the derivative of these equations
with respect to x , we obtain the PDFs for γe,ZF,i and γe,MMSE,i, respectively, as

fγe,ZF(x)=
xMe−Mte−

x
γ̄e

(Me−Mt)!γ̄
Me−Mt+1
e

(14)

and

fγe,MMSE(x)=
e−

x
γ̄e

(x+1)Mt

Me−1∑
m=0

gm

[
xm+1

γ̄e
+

(
Mt+

1
γ̄e
−m−1

)
xm−mxm−1

]
(15)

where gm is similar to dm, except that the subscript r is replaced by the subscript e.

EXACT SECRECY OUTAGE PROBABILITY
The secrecy outage probability is defined as the probability that the instantaneous secrecy
capacity is less than a target secrecy rate R> 0 (Bloch et al., 2008). From Eq. (1), this
performance metric can be expressed as

Pout(R)= Pr{Cs<R}

= Pr
{
γr< 2Rγe+2R−1

}
=

∫
∞

0
fγe(v)Fγr

(
2Rv+2R−1

)
dv. (16)

Transmit-receive diversity system
From Eqs. (7), (9) and (16), we can derive the exact secrecy outage probability for the
transmit-receive diversity system as follows:

Pout,TR(R)=
1

(Me−1)!γ̄
Me
e

L∑
m=1

(Mt+Mr−2m)m∑
n=|Mt−Mr|

am,n
n!

∫
∞

0
vMe−1e−

v
γ̄e

×ϒ

(
n+1,

(2Rv+2R−1)m
γ̄r

)
dv

=
1

(Me−1)!γ̄
Me
e

L∑
m=1

(Mt+Mr−2m)m∑
n=|Mt−Mr|

am,n

[∫
∞

0
vMe−1e−

v
γ̄e dv

−e−
(2R−1)m

γ̄r

n∑
k=0

(
m
γ̄r

)k k∑
l=0

2lR(2R−1)k−l

l!(k− l)!

∫
∞

0
v l+Me−1e−

(
2Rm
γ̄r
+

1
γ̄e

)
vdv

]
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= 1−
1

(Me−1)!γ̄
Me
e

L∑
m=1

(Mt+Mr−2m)m∑
n=|Mt−Mr|

am,ne
−

(2R−1)m
γ̄r

n∑
k=0

(
m
γ̄r

)k

×

k∑
l=0

(l+Me−1)!2lR(2R−1)k−l

l!(k− l)!
(
2Rm
γ̄r
+

1
γ̄e

)l+Me
(17)

where the second equality is obtained by using (Gradshteyn & Ryzhik, 2000, Equations
(1.111) and (8.352.1)), and the last equality is obtained by using (Gradshteyn & Ryzhik,
2000, Equation (3.351.3)) and (Maaref & Aïssa, 2005, Equation (11)). For the special case
ofMt=Mr=Me= 1, the secrecy outage probability expression in Eq. (17) reduces to

Pout,TR(R)= 1−
γ̄re
−

2R−1
γ̄r

γ̄r+2Rγ̄e
(18)

which agrees exactly with a result given in (Bloch et al., 2008, Equation (9)).

Spatial multiplexing system
From Eqs. (12), (14) and (16), we can derive the exact secrecy outage probability for the
spatial multiplexing system with ZF equalization as follows:

Pout,ZF(R)=
∫
∞

0
fγe,ZF(v)dv−

e−
2R−1
γ̄r

(Me−Mt)!γ̄
Me−Mt+1
e

Mr−Mt∑
m=0

1
m!γ̄m

r

×

∫
∞

0
(2Rv+2R−1)mvMe−Mte−

(
2R
γ̄r
+

1
γ̄e

)
vdv

= 1−
e−

2R−1
γ̄r

(Me−Mt)!γ̄
Me−Mt+1
e

Mr−Mt∑
m=0

1
γ̄m
r

m∑
n=0

2nR(2R−1)m−n

n!(m−n)!

×

∫
∞

0
vn+Me−Mte−

(
2R
γ̄r
+

1
γ̄e

)
vdv

= 1−
e−

2R−1
γ̄r

(Me−Mt)!
(
2Rγ̄e
γ̄r
+1
)Me−Mt+1

×

Mr−Mt∑
m=0

1
γ̄m
r

m∑
n=0

2nR(2R−1)m−n(n+Me−Mt)!

n!(m−n)!
(
2R
γ̄r
+

1
γ̄e

)n (19)

where the second equality is obtained by using (Gradshteyn & Ryzhik, 2000, Equation
(1.111)) and (Papoulis & Pillai, 2002, Equation (4-18)), and the last equality is obtained
by using (Gradshteyn & Ryzhik, 2000, Equation (3.351.3)). For the special case of
Mt=Mr=Me= 1, Eq. (19) simplifies to Eq. (18).

Meanwhile, the secrecy outage probability for the spatial multiplexing system with
MMSE equalization can be derived from Eqs. (13), (15) and (16) as follows:
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Pout,MMSE(R)=
∫
∞

0
fγe,MMSE(v)dv−

e−
2R−1
γ̄r

2(Mt−1)R

Me−1∑
m=0

gm
Mr−1∑
n=0

dn

×

[∫
∞

0

(2Rv+2R−1)ne−
(
2R
γ̄r
+

1
γ̄e

)
v

(v+1)2Mt−1

×

[vm+1
γ̄e
+

(
Mt+

1
γ̄e
−m−1

)
vm−mvm−1

]
dv
]

= 1−
e

1
γ̄r
+

1
γ̄e

2(Mt−1)R

Me−1∑
m=0

gm
Mr−1∑
n=0

dn
n∑

k=0

(
n
k

)
(−1)k2(n−k)R

×

[
1
γ̄e

m+1∑
l1=0

(
m+1
l1

)
(−1)l1

∫
∞

1
vm+n−k−l1−2Mt+2e−

(
2R
γ̄r
+

1
γ̄e

)
vdv

+

(
Mt+

1
γ̄e
−m−1

) m∑
l2=0

(
m
l2

)
(−1)l2

∫
∞

1
vm+n−k−l2−2Mt+1e−

(
2R
γ̄r
+

1
γ̄e

)
vdv

+m
m−1∑
l3=0

(
m−1
l3

)
(−1)l3

∫
∞

1
vm+n−k−l3−2Mte−

(
2R
γ̄r
+

1
γ̄e

)
vdv

]

= 1−
e

1
γ̄r
+

1
γ̄e

2(Mt−1)R

Me−1∑
m=0

gm
Mr−1∑
n=0

dn
n∑

k=0

(
n
k

)
(−1)k2(n−k)R

×

[
1
γ̄e

m+1∑
l1=0

(
m+1
l1

)(−1)l10(m+n−k− l1−2Mt+3, 2
R

γ̄r
+

1
γ̄e

)
(
2R
γ̄r
+

1
γ̄e

)m+n−k−l1−2Mt+3

+

(
Mt+

1
γ̄e
−m−1

) m∑
l2=0

(
m
l2

)(−1)l20(m+n−k− l2−2Mt+2, 2
R

γ̄r
+

1
γ̄e

)
(
2R
γ̄r
+

1
γ̄e

)m+n−k−l2−2Mt+2

+m
m−1∑
l3=0

(
m−1
l3

)(−1)l30(m+n−k− l3−2Mt+1, 2
R

γ̄r
+

1
γ̄e

)
(
2R
γ̄r
+

1
γ̄e

)m+n−k−l3−2Mt+1

]
(20)

where the second equality is obtained by changing the limits of integration and using
(Gradshteyn & Ryzhik, 2000, Equation (1.111)) and (Papoulis & Pillai, 2002, Equation
(4-18)), and the last equality is obtained by using (Gradshteyn & Ryzhik, 2000, Equation
(3.381.3)). For the special case ofMt=Mr=Me= 1, Eq. (20) reduces to Eq. (18).

ASYMPTOTIC SECRECY OUTAGE PROBABILITY
In this section, we focus on deriving the asymptotic secrecy outage probability of the
aforementioned systems as γ̄r→∞. This expression enables one to analyze the secrecy
performance in the high-SNR regime through two performance indicators: secrecy diversity
order and secrecy array gain (Yang et al., 2013). The secrecy diversity order indicates the
slope of the secrecy outage probability versus γ̄r curve at high SNR in a log–log scale, whereas
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the secrecy array gain indicates the shift of the curve with respect to the benchmark secrecy
outage curve.

Transmit-receive diversity system
First, we look for a first-order expansion of Eq. (5), which will be immediate from a
first-order expansion of det(S(x)). Following the approach outlined in (McKay, 2006,
Appendix B.7) and using (Kalman, 1984, Equations (1) and (2)), it is straightforward to
show that the first-order Taylor expansion of det(S(x)) around x = 0 is

det(S(x))=
[ L∏
p=1

(K −p)![(L−p)!]2

(Mt+Mr−p)!

]
xMtMr+o

(
xMtMr

)
. (21)

Substituting Eq. (21) into Eq. (5) yields

Fλ(x)=
[ L∏
p=1

(L−p)!
(Mt+Mr−p)!

]
xMtMr+o

(
xMtMr

)
. (22)

Using Eq. (22) and (Papoulis & Pillai, 2002, Example 5-1), the first-order expansion of the
CDF of γr,TR is given by

Fγr,TR(x)=
[ L∏
p=1

(L−p)!
(Mt+Mr−p)!

](
x
γ̄r

)MtMr

+o

((
x
γ̄r

)MtMr
)
. (23)

Using Eqs. (9), (16) and (23), and following the same procedure as used in Eq. (17), an
asymptotic expression for Pout,TR(R) with γ̄r→∞ is obtained as

P∞out,TR(R)= (ATRγ̄r)
−DTR+o

(
γ̄−DTR
r

)
(24)

where the secrecy diversity gain is

DTR=MtMr (25)

and the secrecy array gain is

ATR =

[
1

(Me−1)!

[ L∏
p=1

(L−p)!
(Mt+Mr−p)!

]MtMr∑
n=0

(
MtMr

n

)

×(n+Me−1)!2nR(2R−1)MtMr−nγ̄ n
e

]− 1
MtMr

. (26)

It is clear from Eq. (25) that the secrecy diversity order is dependent on Mt and Mr,
and independent of Me. It can also be seen from Eq. (26) that the eavesdropper channel
has an adverse impact on the secrecy array gain. Accordingly, increasing the number of
antennas at the eavesdropper lessens the secrecy array gain, thereby rising the secrecy
outage probability.

Spatial multiplexing system
Applying (Gradshteyn & Ryzhik, 2000, Equation (1.211.1)) to the exponential function in
Eq. (12) and performing some algebraic manipulations, the first-order expansion of the
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CDF of γr,ZF,i can be derived as

Fγr,ZF(x)=
xMr−Mt+1

(Mr−Mt+1)!γ̄
Mr−Mt+1
r

+o

((
x
γ̄r

)Mr−Mt+1
)
. (27)

Using Eqs. (14), (16) and (27), and following the same procedure as used in Eq. (19), an
asymptotic expression for Pout,ZF(R) with γ̄r→∞ is obtained as

P∞out,ZF(R)= (AZFγ̄r)−DZF+o
(
γ̄−DZF
r

)
(28)

where

DZF=Mr−Mt+1 (29)

and

AZF=

[∑Mr−Mt+1
n=0

(Mr−Mt+1
n

)
2nR(2R−1)Mr−Mt+1−n(n+Me−Mt)!γ̄ n

e

(Mr−Mt+1)!(Me−Mt)!

]− 1
Mr−Mt+1

. (30)

Adopting the same steps as for deriving the first-order expansion of Fγr,ZF(x), we obtain

Fγr,MMSE(x)=
xMr

(Mr−Mt+1)!γ̄
Mr−Mt+1
r (x+1)Mt−1

+ o

((
x
γ̄r

)Mr−Mt+1
)
. (31)

Using Eqs. (15), (16) and (31), and following the same procedure as used in Eq. (20), an
asymptotic expression for Pout,MMSE(R) with γ̄r→∞ is obtained as

P∞out,MMSE(R)= (AMMSEγ̄r)−DMMSE+o
(
γ̄−DMMSE
r

)
(32)

where

DMMSE=Mr−Mt+1 (33)

and

AMMSE =

[
e

1
γ̄e 2(Mr−Mt+1)R

(Mr−Mt+1)!

Me−1∑
m=0

gm
Mr∑
n=0

(
Mr

n

)
(−1)nγ̄m−n+Mr−2Mt+1

e

2nR

×

[
γ̄e

m+1∑
k1=0

(
m+1
k1

)(
−

1
γ̄e

)k1
0

(
m−n−k1+Mr−2Mt+3,

1
γ̄e

)

+γ̄e

(
Mt+

1
γ̄e
−m−1

) m∑
k2=0

(
m
k2

)(
−

1
γ̄e

)k2
0

(
m−n−k2+Mr−2Mt+2,

1
γ̄e

)

−m
m−1∑
k3=0

(
m−1
k3

)(
−

1
γ̄e

)k3
0

(
m−n−k3+Mr−2Mt+1,

1
γ̄e

)]]− 1
Mr−Mt+1

. (34)

It is obvious from Eqs. (29) and (33) that the secrecy diversity orders of the spatial
multiplexing systems with ZF equalization and MMSE equalization are dependent on Mt

and Mr, and independent of Me. It can also be observed from Eqs. (30) and (34) that
increasing Me decreases the corresponding secrecy array gains.
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Figure 1 Secrecy outage probability of transmit-receive diversity system (Pout,TR) as a function of γ̄r.
This figure shows the theoretical and simulated secrecy outage curves for the transmit-receive diversity
system with different numbers of antennas at the transmitter (Mt), the legitimate receiver (Mr), and the
eavesdropper (Me). The simulation results are labeled with ‘‘simu.’’.

Full-size DOI: 10.7717/peerjcs.186/fig-1

NUMERICAL RESULTS
In this section, we validate the preceding theoretical analysis and investigate the effect
of the various system parameters. For these purposes, theoretical and simulation results
are obtained by using MATLAB. Specifically, we use the closed-form expressions derived
above to generate the theoretical results, and adopt the Monte Carlo method to generate
the simulation results. Remember that γ̄r and γ̄e are the average SNRs at the legitimate
receiver and the passive eavesdropper, respectively. Unless otherwise indicated, the SNR
γ̄e is set to 10 dB, and the target secrecy rate R is set to 1 bit/s/Hz. Figure 1 shows the
theoretical secrecy outage probability of the transmit-receive diversity system (computed
with Eq. (17)) and its simulation counterpart (labeled with ‘‘simu.’’) against γ̄r. As seen
in the figure, the theoretical and simulation results match perfectly. For a given γ̄r, when
Mt+Mr= 4 and Me= 2, the secrecy outage probability with Mt= 2 and Mr= 2 is lower
than that with Mt = 3 and Mr = 1. This is consistent with the fact that for a fixed total
number of antennas at the transmitter and legitimate receiver (Mt+Mr), a more-balanced
antenna configuration provides a larger diversity gain (Dighe, Mallik & Jamuar, 2003;
Maaref & Aïssa, 2005). Specifically, from Eq. (25), we have DTR= 4 forMt= 2 andMr= 2,
and DTR= 3 for Mt= 3 and Mr= 1. However, when MtMr= 12 and Me= 3, the secrecy
outage probability with Mt= 4 and Mr= 3 is higher than that with Mt= 6 and Mr= 2.
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Figure 2 Pout,TR for different combinations ofMt,Mr, andMe. This figure shows the theoretical secrecy
outage curves for the transmit-receive diversity system, comparing different numbers of antennas at the
transmitter (Mt), the legitimate receiver (Mr), and the eavesdropper (Me).

Full-size DOI: 10.7717/peerjcs.186/fig-2

The reason is that for the same product of Mt and Mr, an increase in Mt+Mr yields a
performance enhancement (Dighe, Mallik & Jamuar, 2003).

Figure 2 depicts the theoretical secrecy outage probability of the aforementioned
system for different combinations of Mt, Mr, and Me. We observe that when (Mt,Mr) is
kept fixed (i.e., at (2,1), (4,2), or (6,3)), the larger Me is, the smaller the array gain (as
discussed in Eq. (26)), which worsens the secrecy outage performance. Furthermore, it can
be seen that for a given γ̄r, the secrecy outage probability with (Mt,Mr,Me)= (2,1,1) is
higher than that with (Mt,Mr,Me)= (4,2,2). Meanwhile, the secrecy outage probability
with (Mt,Mr,Me)= (4,2,2) is higher than that with (Mt,Mr,Me)= (6,3,3). The same
performance trend occurs when (Mt,Mr,Me) increases from (2,1,2) to (6,3,6) or from
(2,1,3) to (6,3,9). These results reveal that adding Mt and Mr proportionally to Me is
advantageous.

Figure 3 verifies the asymptotic secrecy outage probability of the transmit-receive
diversity system derived in Eqs. (24)–(26) at a fixed γ̄e (i.e., γ̄e= 10 dB). The exact and
asymptotic secrecy outage curves are labeled with ‘‘exact’’ and ‘‘asym.’’, respectively. As γ̄r
grows, the asymptotic curves approach the exact ones for different values of Mt, Mr, and
Me. It can also be observed that the secrecy diversity gain isMtMr, as predicted by Eq. (25),
and the secrecy array gain diminishes with increasingMe, as predicted by Eq. (26).

Figure 4 compares the theoretical secrecy outage results for the spatial multiplexing
systemswith ZF equalization (computedwith Eq. (19)) andMMSE equalization (computed
with Eq. (20)), and their simulation counterparts. The theoretical and simulation results
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Figure 3 Comparison of exact and asymptotic secrecy outage probability of transmit-receive diversity
system. This figure shows the exact and asymptotic secrecy outage curves for the transmit-receive diversity
system with different numbers of antennas at the transmitter (Mt), the legitimate receiver (Mr), and the
eavesdropper (Me). The exact and asymptotic results are labeled with ‘‘exact’’ and ‘‘asym.’’, respectively.
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Figure 4 Secrecy outage probability of spatial multiplexing systems with ZF equalization (Pout,ZF) and
MMSE equalization (Pout,MMSE). This figure shows the theoretical and simulated secrecy outage curves for
the ZF equalization-based and MMSE equalization-based spatial multiplexing systems with different num-
bers of antennas at the legitimate receiver (Mr) and fixed numbers of antennas at the transmitter (Mt) and
the eavesdropper (Me). The simulation results are labeled with ‘‘simu.’’.
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5For a detailed analysis of the number
of flops required for matrix–vector
operations such as associated summations
and multiplications, readers are referred to
Hunger (2007).
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Figure 5 Pout,ZF versus Pout,MMSE for variousMe at fixedMt andMr (Mt =Mr = 4). This figure shows the
theoretical secrecy outage curves for the ZF equalization-based and MMSE equalization-based spatial mul-
tiplexing systems with different numbers of antennas and average SNRs at the eavesdropper (Me and γ̄e),
and fixed numbers of antennas at the transmitter (Mt) and the legitimate receiver (Mr).

Full-size DOI: 10.7717/peerjcs.186/fig-5

agree well, and both kinds of systems exhibit similar secrecy outage performance. Indeed,
the spatial multiplexing system with MMSE equalization achieves lower secrecy outage
probability when the number of antennas at the eavesdropper is more than that at the
receiver, as illustrated in Fig. 5. In addition, most noteworthy in Eq. (19) is the fact that,
when the values of (Mr−Mt) and (Me−Mt) are fixed, the secrecy outage probability of the
spatial multiplexing system with ZF equalization remains the same regardless of the value
of Mt that is used. This fact is confirmed by Fig. 6, where we plot the simulated secrecy
outage curves in the case ofMr−Mt= 0,Me−Mt= 0 and that ofMr−Mt= 2,Me−Mt= 4.

Figures 7 and 8 verify the asymptotic secrecy outage probability of the spatial
multiplexing system with ZF equalization derived in Eqs. (28)–(30) and that of the spatial
multiplexing system with MMSE equalization derived in Eqs. (32)–(34), respectively,
at a fixed γ̄e (i.e., γ̄e = 10 dB). As γ̄r increases, the asymptotic curves tend towards the
exact ones for different values of Mt, Mr, and Me. It can also be noticed that the secrecy
diversity gains of the two systems are Mr−Mt+1, as predicted by Eqs. (29) and (33), and
the corresponding secrecy array gains lessen with growing Me, as predicted by Eqs. (30)
and (34).

Finally, it is interesting to compare the computational complexity of all three systems.
To this end, we express such complexity in terms of the number of floating-point operations
(flops), and the relevant calculations are summarized as follows:5 (1) the number of flops
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Figure 6 Examples of Pout,ZF withMt =Mr =Me and that withMr =Mt+2 andMe =Mt+4. This figure
shows the simulated secrecy outage curves for the ZF equalization-based spatial multiplexing system in the
case that the numbers of antennas at the transmitter (Mt), the legitimate receiver (Mr), and the eavesdrop-
per (Me) are the same, and the case ofMr=Mt+2,Me=Mt+4.
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Figure 7 Comparison of exact and asymptotic secrecy outage probability of spatial multiplexing sys-
tem with ZF equalization. This figure shows the exact and asymptotic secrecy outage curves for the ZF
equalization-based spatial multiplexing system with different numbers of antennas at the legitimate re-
ceiver (Mr) and the eavesdropper (Me), and a fixed number of antennas at the transmitter (Mt). The exact
and asymptotic results are labeled with ‘‘exact’’ and ‘‘asym.’’, respectively.
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6In practice, the choice of N depends on the
ratio between the magnitude of the second
largest eigenvalue ofHrH

†
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the corresponding largest eigenvalue as it
dictates the rate of convergence (see Golub
& Van Loan (2013), Section 7.3) for more
details).
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Figure 8 Comparison of exact and asymptotic secrecy outage probability of spatial multiplexing sys-
tem withMMSE equalization. This figure shows the exact and asymptotic secrecy outage curves for the
MMSE equalization-based spatial multiplexing system with different numbers of antennas at the legiti-
mate receiver (Mr) and the eavesdropper (Me), and a fixed number of antennas at the transmitter (Mt).
The exact and asymptotic results are labeled with ‘‘exact’’ and ‘‘asym.’’, respectively.

Full-size DOI: 10.7717/peerjcs.186/fig-8

required to compute zr (via power iteration (Golub & Van Loan, 2013, Section 7.3)), wt,
and ze for the transmit-receive diversity system; (2) the number of flops required to
computeWr,ZF andWe,ZF for the spatial multiplexing system with ZF equalization; and (3)
the number of flops required to computeWr,MMSE andWe,MMSE for the spatial multiplexing
system with MMSE equalization. The results are given in Table 1, where N is the number
of iterations used in the power iteration method.6 Figure 9 shows the system complexity
as a function of Mt for Mt=Mr=Me and for Mr=Me= 2Mt. From this figure, we see
that the computational complexity of the spatial multiplexing system with ZF equalization
is comparable to that of the spatial multiplexing system with MMSE equalization, while
the transmit-receive diversity system has the highest computational complexity, even with
N = 1.

CONCLUSION
We have presented exact and asymptotic analysis of the secrecy outage probability of the
transmit-receive diversity system and spatial multiplexing systems with ZF equalization and
MMSE equalization in a Rayleigh-fading MIMO wiretap channel. This asymptotic analysis
has shown that the transmit-receive diversity system achieves a secrecy diversity order
of MtMr, whereas the two spatial multiplexing systems offer the same secrecy diversity
order of Mr−Mt+1. Interestingly, all of these secrecy diversity orders do not rely on Me.
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Table 1 System complexity in terms of floating-point operations. This table shows the computational
complexity of the transmit-receive diversity system and the spatial multiplexing systems with ZF equaliza-
tion and MMSE equalization.

System Number of Flops

Transmit-Receive Diversity 2MtM 2
r +2MtMr+2MtMe+2Mt

+ (2N −1)M 2
r +2NMr+2Me

Spatial Multiplexing with ZF 2M 2
t +4MtMr+4MtMe−Mr−Me+2

Spatial Multiplexing with MMSE 2M 2
t +4MtMr+4MtMe−Mr−Me+4
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Figure 9 Comparison of system complexity forMt = Mr = Me and forMr = Me = 2Mt. This figure
shows the system complexity for the case that the numbers of antennas at the transmitter (Mt), the legiti-
mate receiver (Mr), and the eavesdropper (Me) are the same, and the case ofMr=Me= 2Mt.

Full-size DOI: 10.7717/peerjcs.186/fig-9

Numerical results based on both theoretical analysis and simulations have demonstrated
howMt, Mr, andMe affect the secrecy performance of such MIMO systems.
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