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ABSTRACT
Identification of infrastructure and human damage assessment tweets is beneficial
to disaster management organizations as well as victims during a disaster. Most
of the prior works focused on the detection of informative/situational tweets, and
infrastructure damage, only one focused on human damage. This study presents a novel
approach for detecting damage assessment tweets involving infrastructure and human
damages. We investigated the potential of the Bidirectional Encoder Representations
from Transformer (BERT) model to learn universal contextualized representations
targeting to demonstrate its effectiveness for binary and multi-class classification of
disaster damage assessment tweets. The objective is to exploit a pre-trained BERT
as a transfer learning mechanism after fine-tuning important hyper-parameters on
the CrisisMMD dataset containing seven disasters. The effectiveness of fine-tuned
BERT is compared with five benchmarks and nine comparable models by conducting
exhaustive experiments. The findings show that the fine-tuned BERT outperformed
all benchmarks and comparable models and achieved state-of-the-art performance by
demonstrating up to 95.12% macro-f1-score, and 88% macro-f1-score for binary and
multi-class classification. Specifically, the improvement in the classification of human
damage is promising.

Subjects Computational Linguistics, Data Mining and Machine Learning, Natural Language and
Speech, Text Mining, Sentiment Analysis
Keywords Human damage, Fine-tuning BERT, Damage assessment, Twitter, Language context,
Disaster

INTRODUCTION
Disasters may cause monolithic destruction and sometimes create uncontrollable and
unpredictable situations. Natural disasters are caused by natural phenomena like wildfires,
floods, etc., and their intensities affect the proportion of lives, the environment, and
the economy of an area (Koshy & Elango, 2023). During disasters, public and private
organizations rely on critical and timely information to set up required operations for
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helping affected people. The development of web technologies enables people to use social
media platforms like Twitter, etc., to exchange their views and recent happenings in their
suburbs. Twitter is one of the most popular and widely used platforms that facilitate
tweets up to 280 characters at maximum. More than 486 million users are active on
Twitter according to recent statistics and more than 1.4 trillion tweets are posted annually
(Madichetty, Muthukumarasamy & Jayadev, 2021).

For humanitarian authorities, the assessment of disaster damage is one of the critical
steps to get the real situation and seriousness of damage so that services accordingly
can be provided. It is a common practice during the disaster and in the aftermath that
people place massive messages on Twitter related to situational information (Madichetty,
2020; Madichetty & Sridevi, 2020; Rudra et al., 2018). Therefore, the identification of
damage assessment of social media posts like tweets, etc. is one of the important aspects.
Several studies (Cresci et al., 2015; Nguyen et al., 2017; Priya et al., 2018; Rudra et al., 2018)
addressed this task of damage assessment. Cresci et al. (2015) focused on the Italian
tweets by handling damage assessment of buildings and infrastructure only and did not
address human damage assessment. Likewise, Rudra et al. (2018) proposed a model for
situational tweet identification and their summarization for English and Hindi tweets
but did not address human damage assessment. Nguyen et al. (2017) also missed human
damage assessment and important information from textual data and focused only on
buildings and infrastructure damage using image data. Priya et al. (2018) developed a
query-based information retrieval method for infrastructural damage assessment but did
not address human damage. Moreover, few studies proposed approaches for informational
vs non-informational tweet identification like the majority voting approach (Krishna,
Srinivas & Prasad Reddy, 2022), and multi-model approach using image and text data
(Koshy & Elango, 2023) but did not address human damage assessment. According to our
knowledge, only one study,Madichetty & Sridevi (2021), focused on damage assessment for
infrastructural and human damages from tweets and used a lexicon and frequency-based
approach (hand-crafted) with traditional machine learning (ML) models. However, the
related studies missed the utilization of language models for infrastructure and human
damage assessment from tweets, in contrast, they mainly used hand-crafted features.
Moreover, the performance achieved by the baseline (Madichetty & Sridevi, 2021) is not
promising. To fulfill this gap, two objectives are devised in this study:
1. To design an automated damage assessment approach to identify infrastructural and

human damages from tweet data using a state-of-the-art language model.
2. To demonstrate the effectiveness and outperformance of the proposed automated

approach in comparison with benchmarks through experimental results.
To capture the actual context of the language used to describe human and infrastructural

damages in tweets, a state-of-the-art language model is required. Fine-tuning the BERT
model has demonstrated robust performance in similar natural language processing (NLP)
tasks (Malik, Cheema & Ignatov, 2023;Malik, Imran & Mamdouh, 2023). Therefore, we are
interested in utilizing the architecture of the BERT language model with fine-tuning. The
novelty of the study is threefold: First, the proposed framework is based on an automated
feature generation model in contrast to hand-crafted features. Second, the fine-tuning of
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the BERT transformermodel is performed not only for damage tweet identification but also
for human and infrastructure damage detection. Third, the proposed framework delivered
benchmark performance and outperformed the standard baselines and comparablemodels.
The proposed study contributes in the following ways:
1. According to our knowledge, the fine-tuning of BERT is used first time for the

identification of infrastructure and human damage assessment tweets.
2. The utilization of contextual semantic embeddings helped us to handle the ambiguity

and complexity issues of the seven disasters of the CrisisMMD dataset.
3. The fine-tuning of BERT for binary and multi-class classification on seven disasters

showcases substantial improvement in performance as compared to five benchmarks
and nine comparable models.

4. The optimization of hyperparameters is performed for the BERT model to handle the
overfitting and catastrophic forgetting issues and to obtain benchmark performance.

5. The improvement achieved by the proposed framework is proved to be statistically
significant and verified by the Wilcoxon signed-ranked test method.

6. An extensive set of experiments demonstrates that fine-tuned BERT achieved up to
95.12%macro f1-score for binary classification and 88%macro f1-score for multi-class
classification.
The remaining part of the article is organized as follows: related work is described in

‘RelatedWork’ followed by ‘FrameworkMethodology’, inwhich the proposedmethodology
is described with fine-tuning BERT details. ‘Experimental Results and Analysis’ presents
the dataset description, and experimental setup, and discusses results in detail. ‘Conclusion’
concludes the research work and presents future directions.

RELATED WORK
In this section, we review the literature that addresses the issue of assessment of social
media posts for various damages and disaster detection and summarization approaches.

In 2014, an automated classification approach for informative tweets was designed
(Imran et al., 2014). The authors named their model ‘‘Artificial Intelligence for Disaster
Response (AIDR)’’, tested it on the Pakistani Earthquake dataset, and achieved 90%
area under curve (AUC). Later, Cresci et al. (2015) proposed an infrastructure damage
assessment detection model for Italian tweets. Their method used SVM with a variety
of linguistic features and they claimed that their approach was the first to be tested
on non-English data. Then, Nguyen et al. (2017) utilized the VGG-16 vision model and
bags of visual words to build a multi-class classification framework. Their model was
tested on several disaster datasets and VGG-16 outperformed the bags of visual words
approach. Likewise, the study Rudra et al. (2018) proposed a two-step methodology to
extract situational information and then summarization for disaster tweets in English
and Hindi languages. The low-level lexical and syntactic features with SVM classifier are
explored. They claimed that non-English tweets are explored first time.

In 2019, the Domain-Adversarial Neural Network (DANN) model was used with
VGG-19 to identify the damages from image data (Li et al., 2019). They claimed that
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their approach demonstrated significant performance but they did not address human
damage identification. Then, several ML and deep learning (DL) models are explored
with the Term Frequency-Inverse Document Frequency (TF-IDF) model to classify
the informative microblog posts into multi-categories (Kumar, Singh & Saumya, 2019).
The authors compared the performances of ML and DL models and the best results
are reported. Another image data-based study is conducted by Imran et al. (2020). The
proposed approach classified the tweets into damage or non-damage and then categorized
the tweets based on severity like severe vs mild vs non-damage but they did not address
human damage identification. Later, an information retrieval approach is utilized to
assess infrastructure damage tweets (Priya et al., 2020). They developed topic topic-aligned
query expansion method and evaluated it on several disaster datasets. Similarly, Alam, Ofli
& Imran (2020) analyzed the situational characteristics of three hurricane disasters and
developed a multi-class classification model using random forest. Their findings revealed
that both text and image data contain important information.

In 2021, Alam et al. (2021) attempted to combine various crisis datasets to facilitate
binary and multi-class classification. The authors used the convolutional neural network
(CNN) model with FastText embeddings to explore the impacts of these approaches and
conclusions are drawn. As noted earlier, there is only one study, Madichetty & Sridevi
(2021), that addressed the issue of infrastructure and human damage collectively from
tweets. We chose this study as one of the baselines. The authors used lexicons and TF-IDF
features with six MLmodels and revealed that their framework outperformed the baselines.
Later, a majority voting-based approach is presented in Krishna, Srinivas & Prasad Reddy
(2022) to identify only informative tweets using word2vec, TF-IDF, and the Glove model.
Their model showed significant performance but they did not handle infrastructure and
human damages. A real-time damage assessment of tweets using image data is performed
by Imran et al. (2022). The authors developed a system using computer vision models and
determine the severity of damages. Later, Koshy & Elango (2023) derived an approach for
informative tweet identification using the Robustly Optimized BERT (RoBERTa) model
with bidirectional long short term memory (bi-LSTM) on textual and image data. Their
results demonstrated the importance of their binary model.

Recently, anotherDL-based approach is presented byPaul, Sahoo & Balabantaray (2023)
to classify disaster tweets into binary and multi-class categories. The authors used CNN,
GRU, and SkipCNN models, and their model showed significant improvement. Then, the
authors Alam et al. (2023) proposed a multi-task learning framework using image data.
They released a dataset and conducted binary and multi-class classification tasks using DL
models. Their model showed significant performance. Likewise, Lv, Wang & Shao (2023)
built an auto-encoder-based model for classifying crisis-related tweets. Textual and image
data are used to test the model and their model outperformed the benchmark. Then, a
disaster summarization method was proposed by Garg, Chakraborty & Dandapat (2023)
using the ontology technique and they tested their model on twelve disaster datasets. Their
model outperformed the baselines. A recent multi-class classification approach for disaster
tweets is presented Asinthara, Jayan & Jacob (2023) and they used TF-IDF and word2vec
features with SVM and Bi-LSTMmodels. Thei r results show that with the SVMmodel, the
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performance is significant. Likewise, the identification of high-priority tweets is performed
by Arathi & Sasikala (2023). Their model used Glove embeddings and metadata features
with the random forest model and achieved 91% accuracy and 94% f1-score.

More recently, Dasari, Gorla & Prasad Reddy (2023) built a classification system for
the detection of informative tweets. A stacking ensemble model is proposed and is used
with TF-IDF, word2vec, and Golve feature models. Their model demonstrated better
performance than baselines. For informative tweet categorization, the latest approach
used ontology infused DL model (Giri & Deepak, 2023). They tested their approach on the
image and textual dataset and claimed that their model presented benchmark performance.
Likewise, Madichetty & Madisetty (2023) developed a detection pipeline for multi-modal
disaster tweets. They utilized RoBERTa, and VGG-16 models for feature extraction and
combined their output using a fusion method. Their model outperformed the baselines.
Another study handled the classification of disaster tweets by exploring bag-of-words
and several ML models (Iparraguirre-Villanueva et al., 2023). The highest performance
achieved is 87% accuracy.

The summary of prior approaches related to damage assessment is presented in Table 1.
In contrast, some latest approaches focused on the issue of identification of emergency
messages relevant to first responders like the study Powers et al. (2023) proposed a
framework to identify emergency tweets and then categorized them according to relevancy
and urgency level. The authors used BERT and XLNet transformers with the CNN model
and their model showed promising performance. We found the following limitations in
the literature regarding damage assessment of disaster tweets:

• Lack of human damage assessment: To the best of our knowledge, only one study has
focused on the assessment of human damage as well as infrastructure damage.
• Effective feature engineering: Most of the studies used linguistic, syntactic, and
frequency-based features (hand-crafted), but missed language models and their fine-
tuning.

FRAMEWORK METHODOLOGY
In this section, the detail of the proposed framework is described. At the first level, the
framework performs the detection of damaged or not-damaged tweets. At the second
level, it further classifies the damage tweets into infrastructure damage or human damage.
The pipeline of the proposed framework is presented in Fig. 1. The CrisisMMD dataset
is preprocessed by applying several steps (Section ‘Data Pre-processing’), and then the
dataset is split into an 80–20 ratio (80% training and 20% testing). After that, the dataset
is transformed into a specified format so that it can be used as an input to transformer
mode. Then the fine-tuning of BERT is performed using the grid search technique for
hyper-parameters optimization. The results of the comparable models and state-of-the-art
baselines are generated and compared with the fine-tuned BERT model. In the end, the
conclusions are drawn. The pseudo-code of the proposed methodology is presented in the
Fig. 2.
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Table 1 Summary of literature for informative tweets, infrastructure, and human damage identification.

Ref Tasks Features Supervised models

IN/DM IF DM HDM

Imran et al. (2014) X Customized model AIDR model
Cresci et al. (2015) X Linguistic and ad-hoc features SVM
Nguyen et al. (2017) X X Bag of visual words, VGG-16 CNN
Rudra et al. (2018) X Bag of words, low-level lexical,

syntactic features
SVM

Kumar, Singh & Saumya (2019) X TF-IDF, Glove RF, SVM, KNN, NB, CNN,
LSTM, GRU

Li et al. (2019) X VGG-19 Domain-Adversarial
Neural Network

Priya et al. (2020) X Latent Dirichlet allocation, Part
of speech

Information retrieval

Alam, Ofli & Imran (2020) X Bag of words, sentiment, Spatial
features

RF

Imran et al. (2020) X X Image features DNN
Alam et al. (2021) X FastText CNN
Madichetty & Sridevi (2021) X X X Low-level lexical, syntactic, and

frequency features
SVM, RF, GB, AB, Bagging

Krishna, Srinivas & Prasad Reddy (2022) X TF-IDF, word2vec, Glove Majority-voting ensemble model
Imran et al. (2022) X —— Computer vision models
Koshy & Elango (2023) X Roberta, biLSTM biLSTM
Paul, Sahoo & Balabantaray (2023) X X Word embeddings, bag of words CNN, GRU, SkipCNN
Alam et al. (2023) X X ResNet18, VGG16 Deep learning models
Lv, Wang & Shao (2023) X ResNet50, Word embeddings Bi-GRU
Garg, Chakraborty & Dandapat (2023) X X —— Ontology-based approach
Asinthara, Jayan & Jacob (2023) X X TF-IDF, word2vec SVM, bi-LSTM
Arathi & Sasikala (2023) X Glove model, metadata features RF
Dasari, Gorla & Prasad Reddy (2023) X TF-IDF, word2vec, Glove Stacking ensemble model
Giri & Deepak (2023) X Image features, word embed-

dings
Ontology infused DL model

Madichetty & Madisetty (2023) X RoBERTa, VGG-16 Fusion method
Iparraguirre-Villanueva et al. (2023) X Bag-of-words LR, KNN, DT, RF, NB
*Proposed X X X Fine-tuning of BERT, TF-IDF,

word2vec
BERT classifier, RF, SVM

Notes.
IN, Informative; DM, Damage; IF, Infrastructure; H, Human; SVM, Support Vector Machine; RF, Random Forest; GB, Gradient Boosting; AB, AdaBoost; LSTM, Long
short-term Memory Network; KNN, K-nearest neighbor; NB, Naïve Bayes; CNN, Convolutional Neural Network; GRU, Gated Recurrent Unit; AIDR, Artificial Intelli-
gence for Disaster Reponses; DNN, Deep Neural Network; LR, Logistic Regression; DT, Decision Tree.

Data pre-processing
The following pre-processing steps are employed before providing data to the fine-tuning
process and extraction of TF-IDF, and word2vec features.
1. Removal of hashtags, HTML tags, mentions, punctuations, URLs, and numbers.
2. Conversion of tweets to lowercase.
3. Replacement of the emoji/emoticons with their corresponding text.
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Figure 1 Disaster damage tweets identification framework.
Full-size DOI: 10.7717/peerjcs.1859/fig-1

4. Fixing the issue of misspelled words.
5. Decoding of abbreviations (thnx, thx, btw, pls, plz etc.).
6. Removal of stop words (Only for TF-IDF and word2vec).

Fine-tunning BERT
The BERT model was introduced by Devlin et al. (2018) at Google Lab and it has proven
its significance for a variety of text-mining tasks in several application domains (Malik,
Imran & Mamdouh, 2023). The benefits of BERT include faster development, automated
feature generation, reduced data requirements, and improved performance. It has two
architectures and we are interested in fine-tuning the pre-trained BERT model for damage
assessment tweet identification task for binary as well as multi-class classification. The
BERT model is pre-trained on a large corpus of English data in a self-supervised fashion
and uses the context of language in both directions. Furthermore, BERT was pre-trained
on next-sentence prediction and masked language modeling objectives.

To fine-tune the BERT base uncased model (https://huggingface.co/bert-base-uncased),
some important steps are required. After applying the above-mentioned pre-processing
steps, data transformation and training classifier steps are executed.
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Algorithm 1: : Disaster Damage Tweets Identification (Dataset D) 

// The dataset D = {Diaster1, Diaster2, ……………Diaster 7}, the dataset consists of seven diasters 

1:  procedure  Disaster Damage Tweets Identification (Dataset D) 

2:       D-P ← Pre-Processing (D);                                   // dataset pre-processing  

3:       for i = 1 to 7                                                           // for loop to consider each disaster data one by one 

4:              Disasteri ← Select (D-P)                                // select each disaster and proceed further 

5:              Proposed-Method (Disasteri);                        // classification of damage tweets using fine-tunning 

6:       end for  

7:  end procedure                               

1:  procedure Pre-Processing (D) 

2:           D1  ← Cleaning (D);                                        // Perform cleaning (remove noise) 

3:           D2  ← Lower-Case (D1);                                 // Lower-case conversion  

4:           D3  ← Replace-Emoji (D2);                            // Replace emojis with the corresponding text 

5:           D4  ← Decode-Abbreviation (D3);                 // Decode abbreviations  

6:           return D4; 

5:  end procedure 

1:  procedure Proposed-Method (Disaster Da)              // classification using fine-tuning of BERT 

2:        Da ← BERT-Tokenizer (Da);                            // Apply BERT Tokenizer    

3:        Model ←  fine-tunning (Da, BERT, 80-20)       // Fine-tuning of BERT by applying 80-20 data split 

4:        confusion-matrix ← generate-results (Model); 

5:        accuracy ← compute-accuracy (confusion-matrix); 

6:        precision ← compute-precision (confusion-matrix); 

7:        recall ← compute-recall (confusion-matrix); 

8:        f1-score ← compute-f1(confusion-matrix); 

9:  end procedure 

Figure 2 Pseudo-code of the proposed tweets identification framework (Algorithm 1).
Full-size DOI: 10.7717/peerjcs.1859/fig-2

Data transformation: To transform data into a predefined format, we tokenized each
tweet text into N tokens by the uncased BERT tokenizer. The list of N tokens is modified
by adding the [CLS] token at the beginning and the [SEP] token at the end. Then an input
representation based on pre-trained BERT vocabulary is generated for each token. The
[CLS] token generates word embeddings that derive the input data for classification.

We have chosen 64 and 128 sequence lengths because a maximum of 280 characters are
allowed in a tweet and 128 sequence length is enough to handle the most lengthy tweets.
Therefore, all tweets are padded up to the length of 64 and 128. After that, attention masks
are added to locate real and padded tokens. The vector output of attention masks is then
fed to the BERT model and fine-tuning step is performed.

BERT classifier training: There are seven disasters in the CrisisMMD dataset. For
training and validation of BERT classifiers, we split each disaster into 80-20 ratios using
the stratified sampling approach. After that, we took 80% data from each disaster and
combined them to make the training dataset. The remaining 20% of data from each
disaster is used for testing the BERT classifier on that specific disaster data. Furthermore,
the combined 80% data is further divided into a 90-10 split, in which 90% is used for
training and 10% is used for validation. We utilize the BERT base model which contains
12 transfer layers, 12 attention heads, and 768 hidden layers. All entities (class labels, token
ids, and attention masks) are combined into one set.

For the classification of damage tweets, we attach the outputs of BERT (after fine-
tunning) with an additional layer consisting of Softmax classifier as shown in Fig. 3. We
denote Ti as the final hidden vector for ith token and h as a final hidden vector of [CLS]
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Figure 3 Architecture of proposed fine-tuned BERT for damage classification.
Full-size DOI: 10.7717/peerjcs.1859/fig-3

token. This h and all Ti vectors are fed to the feed-forward layer containing the Softmax
classifier to get the predicted labels. For fine-tuning, the hyperparameters are chosen by
using the guidelines of prior studies Devlin et al. (2018). The batch sizes of 8, 16, and 32
are explored with sequence lengths of 64 and 128 but we added the best results (Section
‘Fine-tunning of BERT and comparison with baselines (damage vs non-damage)’) which
are obtained by using 32 batch size. For each epoch, we use the optimizer method to update
the parameters, and the output of the trained model is evaluated on the validation set by
calculating validation loss, validation accuracy, and validation f1-score. Overall, six BERT
classifiers are fine-tuned and we use the Google Colab platform for experimental setup.
The detail of hyperparameters is presented in Table 2.

Catastrophic forgetting: The literature demonstrates that while fine-tuning a language
model to learn new knowledge, previously learned knowledge may be lost because we
unfreeze weights. Researchers Sun et al. (2019) call it catastrophic forgetting in transfer
learning and every transformer model is prone to this effect. A range of learning rates is
explored to get insights and examine the effects of learning rate on catastrophic forgetting
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Table 2 Hyperparameters for fine-tuning BERT for the CrisisMMD dataset.

Sequence length Epochs Batch size Learning rate Epsilon

64 4 8, 16, 32 2e−5 1e−8
128 4 8, 16, 32 2e−5 1e−8

while fine-tuning BERT. The learning rates are 1e−4, 1e−5, 2e−5, 3e−4, 3e−5, 5e−5
respectively. In the training process, all layers of BERT are unlocked so that weights can
be updated in all layers during the fine-tuning cycle. After repeating the training process
several times and careful monitoring, it allows us to select our starting learning rate. We
concluded that fine-tuning with higher learning rates (3e−4, 3e−5, and 5e−5) could lead
to convergence failure. The best performance was observed with a learning rate of 2e−5
and this lessens the risk of catastrophic forgetting in fine-tuning.

Overfitting: How to choose the appropriate number of epochs for fine-tuning? It is
a common issue for fine-tuning the transformers and deep learning models. So many
epochs result in overfitting problems whereas very few may cause under-fitting. There are
several methods for selecting an appropriate number of epochs, one can start with a large
number of epochs and can stop the training process when no improvement is observed
on the selected metric. In this research, we use validation loss as a measure to monitor the
performance of the BERT classifier. We concluded that four epochs are an appropriate
number to avoid overfitting issues.

Word2vec
Word2vec is an algorithm that is used to generate ‘‘distributed word representations’’
inside a dataset (Ali, 2019). In addition, it can generate a vector of a specific length for each
word by taking a sentence as input. Word2vec has demonstrated significant performance
in similar NLP tasks (Ali & Malik, 2023; Hussain, Malik & Masood, 2022; Younas, Malik
& Ignatov, 2023). The skip-gram and continuous bag of words (CBOW) are the two
algorithms supported by the word2vec model to generate word embeddings. We are
interested in using the skip-gram model to generate embedding features. The skip-gram
model tries to predict relevant contextual words for an input word. Window size is another
parameter used to confine the number of context words in a frame and we use a window
size of 100 dimensions.

TF-IDF
TF-IDF is a statistical approach to evaluate the significance of a particular word in a large
context of the document. This technique is commonly used in NLP and information
retrieval (IR) tasks (Malik, Imran & Mamdouh, 2023). It is a weighting technique and the
weight of a word in a document is proportional to its frequency of occurrence whereas it
is also inversely proportional to its frequency in all documents.

Malik et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1859 10/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1859


Table 3 Detail of CrisisMMD dataset.

Disaster Infrastructure Human Non-damage Total

Hurricane Irma 440 168 3,896 4,504
Hurricane Harvey 402 238 3,794 4,434
Sri Lanka Floods 46 44 932 1,022
California Wildfires 168 200 1,222 1,590
Iraq–Iran Earthquake 30 139 428 597
Hurricane Maria 298 132 4,126 4,556
Mexico Earthquake 105 171 1,104 1,381

EXPERIMENTAL RESULTS AND ANALYSIS
In this section, a description of the dataset and details of the experimental setup are
presented. Then results are conducted and analyzed to evaluate the effectiveness of the
proposed framework.

Dataset
This study used a benchmark publicly available dataset, i.e., CrisisMMD (Alam, Ofli &
Imran, 2018), to test the effectiveness of the proposed framework. The dataset consists of
information about seven natural disasters like floods, earthquakes, wildfires, hurricanes,
etc. There are seven disaster files in the CrisisMMD dataset. Each disaster contains tweets
related to a specific type of event/disaster that occurred at particular/different locations.
The tweet text describes human and infrastructure damages. Originally, the tweets of the
dataset had several types of class labels like displaced people, affected individuals, etc. As
described earlier, we address damage assessment tweet identification at two levels: binary
(damage vs non-damage) and multi-class (infrastructure damage vs human damage vs
non-damage) classification. The final labels of tweets are derived as follows:

• Infrastructure damage class: In this class ‘‘infrastructure damage, utility damage,
vehicle damage & restoration, and casualties’’ are combined.
• Human damage class: In this class ‘‘affected individuals, injured or dead people,
missing, trapped or found people, displaced people, and evacuations’’ are combined.
• Damage class: In this class ‘‘infrastructure and human damage classes’’ are combined.
• Non-damage class: Tweets that describe no damage.

After the compilation of the above-mentioned categorization on seven disaster files, the
final form of the dataset is described in Table 3.

Experimental setup
We used Python language to calculate the results. Four evaluation metrics are chosen to
evaluate the performance of the fine-tuned BERT, comparable models, and five baselines.
The metrics are precision, recall, accuracy, and f1-score. In addition, the Wilcoxon signed
rank statistical test (Woolson, 2007) is used to determine whether the improvements are
statistically significant or not. Six state-of-the-art classifiers are chosen and comparable
models are designed to compare the performance of the fined-tuned BERT model. The
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classifiers are random forest (RF), logistic regression (LR), support vector machine (SVM),
CNN, LSTM, and Bi-LSTM. The reason why we chose these ML and DL models is that
they presented a significant performance in similar NLP and text mining tasks (Malik et
al., 2023; Rehan, Malik & Jamjoom, 2023). The following comparable models are designed:
1. Word2vec+RF
2. Word2vec+LR
3. Word2vec+SVM
4. TF-IDF+RF
5. TF-IDF+LR
6. TF-IDF+SVM
7. TF-IDF+LSTM
8. TF-IDF+Bi-LSTM
9. TF-IDF+CNN
Furthermore, to compare the performance of the proposed framework with benchmark

studies, we have chosen the following studies from the literature.
1. Rudra et al. (2018) used syntactic and low-level lexical features with an SVMmodel for

binary and multi-class classification of damage tweets and evaluated their methodology
on the CrisisMMD dataset. This is one of the baselines for comparing fine-tuned BERT
performance in binary and multi-class classification tasks.

2. The authors in Madichetty & Sridevi (2021) used syntactic, low-level lexical, and top-
frequency features with a weighted SVM classifier. Binary and multi-class classification
frameworks are designed for the identification of damaged tweets.

3. Alam, Ofli & Imran (2020) proposed a system for damage assessment tweets
identification and we chose it to compare for binary classification. They used bag-
of-words features with the RF model.

4. Kumar, Singh & Saumya (2019) explored the impact of TF-IDF with several ML and
DL models for the identification of damage assessment tweets as a binary classification.
The best results are chosen for the comparison.

5. Lastly, Alam et al. (2021) used CNN and FastText embeddings to design a binary
classification system for damage tweet identification. We compared this study with the
proposed framework for binary classification.

Fine-tunning of BERT and comparison with baselines (damage vs
non-damage)
In this section, we performed fine-tuning of BERT for the binary classification task
(damage vs non-damage) and then compared its performance with baselines. The results of
experiments by applying sequence lengths of 64 and 128 and batch size of 32 are presented
in Table 4. Although we tried eight and 16 batch sizes for these experiments, we obtained
the best results with a 32 batch size so we only reported results with 32 batch size. The
experiments are conducted using a learning rate of 2e−5, Epsilon of 1e−8, and four epochs.
For each sequence length and epoch; training loss, validation loss, validation accuracy,
validation f1-score, and training & validation times are reported.
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Table 4 Results of training and validation for several BERT classifiers (damage vs non-damage).

Sequence
length

Batch
size

Epochs Learning
rate

Epsilon Training
loss

Validation
loss

Validity
accuracy

Validating
F1-score

Training
time

Validation
time

1 2e−5 1e−8 0.07 0.12 0.9094 0.8244 0:02:11 0:00:05
2 2e−5 1e−8 0.09 0.24 0.9120 0.8928 0:01:58 0:00:04
3 2e−5 1e−8 0.07 0.37 0.9120 0.8928 0:01:58 0:00:04

BERT-64 32

4 2e−5 1e−8 0.03 0.39 0.9055 0.8262 0:01:58 0:00:04
1 2e−5 1e−8 0.29 0.23 0.9245 0.8479 0:03:57 0:00:09
2 2e−5 1e−8 0.19 0.25 0.9333 0.8633 0:03:56 0:00:09
3 2e−5 1e−8 0.12 0.29 0.9245 0.8479 0:03:56 0:00:09

BERT-128 32

4 2e−5 1e−8 0.08 0.33 0.9245 0.8479 0:03:55 0:00:09
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Figure 4 Training loss and validation loss (damage vs non-damage) (for sequence length of 64 and
batch size of 32 (left), (for sequence length of 128 and batch size of 32 (right)).

Full-size DOI: 10.7717/peerjcs.1859/fig-4

In the first step, the BERT base model was trained and validated to classify the tweets
into damage or non-damage using 64 sequence length and 32 batch size for four epochs.
The training and validation loss is presented in Fig. 4 (left side). The training and validation
outcomes in the form of training and validation loss, validation accuracy, and validation
f1-score are presented in the upper part of Table 4. The training loss increases up to
epoch 2 but then starts decreasing continuously up to epoch 4. In contrast, validation loss
continuously increases from epochs 1 to epoch 4, indicating that further training could
overfit the BERT model. The best values for validation accuracy and f1-score are obtained
on epoch 2, i.e., 91.20% and 89.28%.

In the second step, BERT was again trained and validated for four epochs using 128
sequence length and 32 batch size and results are reported in the lower part of Table 4. The
training and validation loss is presented in Fig. 4 (right side) . The validation accuracy of
BERT classifiers is higher than with 64 sequence length but validation f1-score is decreased.
On epoch 2, the best accuracy is achieved, i.e., 93.33%, and the best f1-score is 86.33%.
The training loss decreases steadily and converges to 0.08 value. In contrast, validation loss
increases continuously from epoch 1 to 4, indicating that further training is not useful.
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Table 5 Results of best BERT classifiers on the test part of the seven disasters (damage vs non-damage).

Disasters Sequence
length

TP FN TN FP Accuracy Macro-precision Macro-recall Macro-f1-score

64 67 2 27 3 0.9495 0.9441 0.9355 0.9396
Iraq–Iran earthquake

128 68 1 27 3 0.9596 0.9610 0.9428 0.9512
64 140 11 14 0 0.9333 0.7800 0.9636 0.8401

Sri Lanka floods
128 141 10 14 0 0.9394 0.7917 0.9669 0.8513
64 180 9 39 8 0.9280 0.8850 0.8911 0.8880

Mexico earthquake
128 179 10 38 9 0.9195 0.8719 0.8778 0.8748
64 243 31 52 16 0.8626 0.7824 0.8258 0.8003

California wildfires
128 242 32 49 19 0.8509 0.7661 0.8019 0.7812
64 631 52 77 34 0.8917 0.7729 0.8088 0.7889

Hurricane Harvey
128 636 47 74 37 0.8942 0.7783 0.7989 0.7880
64 679 43 55 19 0.9221 0.7670 0.8418 0.7979

Hurricane Maria
128 670 52 55 19 0.9108 0.7432 0.8356 0.7787
64 658 31 76 35 0.9175 0.8299 0.8198 0.8247

Hurricane Irma
128 658 31 75 36 0.9163 0.8278 0.8153 0.8214

Hence, validation loss has demonstrated a symmetrical pattern (increasing) for both
sequence lengths, and training loss is continuously decreasing.

In the third step, we tested the BERT classifiers (previously trained and validated) on the
test parts of the seven disasters. For each configuration (64 and 128 sequence lengths), the
BERT classifiers are tested for each epoch, but we only reported the best results against each
sequence length for each disaster. The results are shown in Table 5 and each entry includes a
confusion matrix and four metric values (accuracy, precision, recall, and f1-score). For the
Iraq-Iran earthquake disaster, the sequence length of 128 presented the best performance
(95.96% accuracy and 95.12% f1-score). Likewise, for Sri Lanka floods, 93.94% accuracy
and 85.13% f1-score are the best values with a sequence length of 128. The best results are
obtained on the Iraq-Iran earthquake disaster and the lowest results are achieved on the
Hurricane Harvey disaster. Moreover, the sequence length of 128 presented the best results
for the first two disasters, and for the remaining five disasters, the sequence length of 64
produced the best results.

In the fourth step, we compared the effectiveness of the fine-tuned BERT with state-of-
the-art benchmarks (Alam, Ofli & Imran, 2020; Alam et al., 2021; Kumar, Singh & Saumya,
2019; Madichetty & Sridevi, 2021; Rudra et al., 2018) for damage vs non-damage tweets
classification. Five benchmarks are compared with a fine-tuned BERT model for each
disaster and results are added in Table 6. The fine-tuned BERT outperformed the five
benchmarks in all seven disasters. For the Iraq-Iran earthquake, the highest f1-score
achieved by the benchmark is 78.48% and the proposed framework demonstrated a
95.12% f1-score. Thus 16.64% improvement is observed in the f1-score. Moreover,
fine-tuned BERT demonstrated significant improvement in accuracy, precision, recall,
and f1-score in comparison to five benchmarks for seven disasters. Specifically following
percentage of improvements are observed in the f1-score; for Hurricane Irma, 5.37%; for
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Table 6 Comparison of fine-tuned BERT classifier with benchmarks (damage vs non-damage).

Disasters Model Accuracy Macro-precision Macro-recall Macro-f1-score

Rudra et al. (2018) 56.67 28.33 50.00 36.00
Alam, Ofli & Imran (2020) – 70.04 63.40 64.8
Kumar, Singh & Saumya (2019) – 55.60 63.40 57.80
Alam et al. (2021) – 67.10 68.29 67.60
Madichetty & Sridevi (2021) 79.58 78.73 78.86 78.48

Iraq–Iran
Earth-
quake

Proposed 95.96 96.10 94.28 95.12
Rudra et al. (2018) 50 35 50 40
Alam, Ofli & Imran (2020) – 70.04 63.4 64.8
Kumar, Singh & Saumya (2019) – 76.5 68 67
Alam et al. (2021) – 67.1 68.29 67.6
Madichetty & Sridevi (2021) 86.92 87.26 86.92 86.89

Sri Lanka
Floods

Proposed 93.94 79.17 96.69 85.13
Rudra et al. (2018) 55.83 41.67 52.5 43.33
Alam, Ofli & Imran (2020) – 70.04 63.4 64.8
Kumar, Singh & Saumya (2019) – 55.6 63.4 57.8
Alam et al. (2021) – 67.1 68.29 67.6
Madichetty & Sridevi (2021) 79.37 79.9 79.37 79.26

Mexico
Earth-
quake

Proposed 92.80 88.50 89.11 88.80
Rudra et al. (2018) 55.17 52.5 55.83 50.02
Kumar, Singh & Saumya (2019) – 44.4 46.2 44.8
Alam et al. (2021) – 67.1 68.29 67.6
Madichetty & Sridevi (2021) 73.31 73.78 73.45 73.24

California
Wildfires

Proposed 86.26 78.24 82.58 80.03
Rudra et al. (2018) 45.18 29.03 43.75 33.69
Alam, Ofli & Imran (2020) – 70.04 63.4 64.8
Kumar, Singh & Saumya (2019) – 66 63.4 57.8
Alam et al. (2021) – 67.1 68.29 67.6
Madichetty & Sridevi (2021) 77.32 76.14 76.72 76.28

Hurricane
Harvey

Proposed 89.17 77.29 80.88 78.89
Rudra et al. (2018) 65 62.17 63.33 61.13
Alam, Ofli & Imran (2020) – 70.04 63.4 64.8
Kumar, Singh & Saumya (2019) – 66 63.4 57.8
Alam et al. (2021) – 67.1 68.29 67.6
Madichetty & Sridevi (2021) 79.14 79.41 79.14 79.1

Hurricane
Maria

Proposed 92.21 76.70 84.18 79.79
Rudra et al. (2018) 48.51 36.73 48.33 40.07
Alam, Ofli & Imran (2020) – 70.04 63.4 64.8
Kumar, Singh & Saumya (2019) – 66 63.4 57.8
Alam et al. (2021) – 67.1 68.29 67.6
Madichetty & Sridevi (2021) 77.13 77.27 77.13 77.1

Hurricane
Irma

Proposed 91.75 82.99 81.98 82.47

Notes.
The bold values are the highest performances achieved by the proposed model for each disaster.
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Table 7 Comparison of fine-tuned BERT with baseline usingWilcoxon’s signed-rank test (damage vs
non-damage).

Disasters Binary classification

Fine-tuned BERT Second best Diff Rank

Iraq–Iran earthquake 95.12 78.48 16.64 7
Sri Lanka floods 85.13 86.89 −1.76 1
Mexico earthquake 88.80 79.26 9.54 6
California wildfires 80.03 73.24 6.79 5
Hurricane Harvey 78.89 76.28 2.61 3
Hurricane Maria 79.79 79.1 0.69 2
Hurricane Irma 82.47 77.1 5.37 4

Hurricane Maria, 0.69%; for Hurricane Harvey, 2.61%; for California wildfires, 6.79%;
and for Mexico earthquake, 9.54%; This proved the effectiveness of fine-tuned BERT for
binary classification of damage assessment tweets and demonstrated better performance
than five benchmarks on seven disasters. Among the baselines, the study Madichetty &
Sridevi (2021) presented better performance than the other four baselines.

In the fifth step, a statistical test is conducted to determine whether the improvements
are statistically significant or not. For this, the performance of the fine-tuned BERT model
is compared with the best-performing baseline usingWilcoxon’s signed-rank test (Woolson,
2007) to check the statistical significance of improvements. This test is non-parametric
and the null hypothesis can be rejected at the α level. The null hypothesis is that the both
models have the same performance. The results of the Wilcoxon signed-rank test are
added in Table 7. We compared both models using the macro f1-score for each disaster.
The fine-tuned BERT outperforms the baseline for six disasters. The null hypothesis can
be rejected on the α= 0.05 confidence level. At first, the difference in f1-scores for both
models is calculated and the rank is assigned based on absolute difference values. Then, the
sum of ranks is calculated following the criteria of adding all positive ranks at one point
and adding all negative ranks at another point. We got R+ = 7+6+5+3+2+4= 27,
and R− = 1, where Vα = 6. As the minimum sum (i.e., 1) is less than 6, we reject the null
hypothesis that both models perform equally. Thus, improvement of fine-tuned BERT is
statistically significant for binary classification.

Fine-tunning of BERT and comparison with baselines (infrastructure
vs human vs non-damage)
In this section, the BERTmodel is fine-tuned to performmulti-class classification of tweets
into infrastructure damage, or human damage, or non-damage categories. After that, the
performance of the fine-tuned BERTmodel is compared with two benchmarks (Madichetty
& Sridevi, 2021; Rudra et al., 2018), and five comparable models.

At first, fine-tuning of BERT is performed using the same parameters described in
section ‘Fine-tunning of BERT and comparison with baselines (damage vs non-damage)’,
but here objective is multi-class classification. The 64 and 128 sequence lengths are used
with 32 batch size and a learning rate of 2e−5 is used. The outcomes are measured in the
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Table 8 Results of training and validation for several BERT classifiers (multi-class).

Sequence
length

Batch
size

Epochs Learning
rate

Epsilon Training
loss

Validation
loss

Validity
accuracy

Validating
F1-score

Training
time

Validation
time

1 2e−5 1e−8 0.35 0.29 0.8948 0.8422 0:02:03 0:00:05
2 2e−5 1e−8 0.21 0.25 0.9083 0.8578 0:01:59 0:00:04
3 2e−5 1e−8 0.13 0.35 0.9083 0.8578 0:01:59 0:00:05

BERT -64 32

4 2e−5 1e−8 0.09 0.39 0.9083 0.8578 0:01:59 0:00:05
1 2e−5 1e−8 0.35 0.27 0.8948 0.8291 0:03:42 0:00:08
2 2e−5 1e−8 0.21 0.25 0.9083 0.8844 0:03:40 0:00:08
3 2e−5 1e−8 0.14 0.36 0.8948 0.8291 0:03:39 0:00:08

BERT -128 32

4 2e−5 1e−8 0.09 0.38 0.8948 0.8291 0:03:38 0:00:08
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Figure 5 Training loss and Validation loss (infrastructure vs human vs non-damage) (for sequence
length of 64 and batch size of 32 (left)), (for sequence length of 128 and batch size of 32 (right)).

Full-size DOI: 10.7717/peerjcs.1859/fig-5

form of training and validation loss, validation accuracy, and validation f1-score. 80% of all
seven disaster data is used for training purposes and the remaining 20% is used for testing
purposes. Of 80%, 90% is actually used for training and 10% is used for validation. The
training and validation results of fine-tuning BERT are presented in Table 8. For a sequence
length of 64, the best validation accuracy is 90.83% achieved on epoch 2. Likewise, the
best validation f1-score is obtained on epoch 2, i.e., 85.78%. The response of training loss
is continuously decreasing indicating that the model is learning steadily during training
as shown in Fig. 5 (left side). The validation loss decreases from epochs 1 to 2 and then
starts increasing up to epoch 4, representing that further training may lead to overfitting.
The lower part of Table 8 shows the results generated using a sequence length of 128. The
response of training loss is again decreasing from epoch 1-4, in contrast, validation loss
decreases on epoch 2 but then starts increasing up to epoch 4 as shown in Fig. 5 (right
side). The highest values obtained for validation accuracy and f1-score are 90.83% and
88.44% on epoch 2. The four BERT classifiers are then tested on the test parts of seven
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disasters. This completes the training and validation of fine-tuning of BERT classifiers for
multi-class classification.

After that, we tested the BERT classifiers on the test part of each disaster and the best
results are reported in Tables 9 and 10. In addition, the performance of the fine-tuned
BERT model is compared with two benchmarks (Madichetty & Sridevi, 2021; Rudra et al.,
2018), and five comparable models. There are nine comparable models but we added
results of the top five comparable models. The models are trained on 80% data and then
tested on the remaining 20% of the disaster datasets. Table 9 shows the accuracy and
per class (infrastructure vs human vs non-damage) f1-score values with macro-average.
For the Iraq-Iran earthquake disaster, the fine-tuned BERT outperformed and obtained
accuracy (93.88%), precision (85.40%), recall (80.66%), andmacro-f1-score (82.63%). The
improvement of 6.13% in macro-f1 is obtained by the proposed framework as compared
to the benchmark (Madichetty & Sridevi, 2021). Moreover, we can notice the improvement
in human damage and non-damage classification presented by the proposed framework
as compared to benchmarks and five comparable models. An improvement of 16.20% in
human damage and 19.37% in non-damage category classification is observed. Likewise,
for macro-precision and macro-recall metrics, it is evident from Table 10 that 4.5% and
5.79% improvement is achieved by the proposed framework compared to the benchmark
(Madichetty & Sridevi, 2021).

For the Sri Lanka flood disaster, the proposed framework outperformed the two
benchmarks, and five comparable models by demonstrating a 10.33% improvement in
macro f1-score, 12.28% in accuracy, 0.53% in macro-precision, and 17.89% in macro-
recall measures. Moreover, improvement of 1.25% in infrastructure damage, 17.2% in
human damage, and 12.53% in non-damage are observed in the f1-score. For the Mexico
earthquake disaster, the proposed framework outperformed all models. An improvement of
6.64% in macro f1-score, 9.2% in macro-precision, and 4.87% in macro-recall are detected
compared to benchmarks. Considering the California wildfire disaster, the fine-tuned
BERT model delivered the highest performance. We observe an improvement in macro
f1-score (12.95%), macro-precision (1.25%), and macro-recall (14.74%). Furthermore, an
improvement of 13.16% in human damage, and 26.98% in non-damage classification is
obtained by the fine-tuned BERT model.

For the Hurricane Harvey disaster, the proposed framework presented much better
performance than state-of-the-art benchmarks and five comparable models. Considering
the f1-score, the proposed framework obtained 8.54%, 19.17%, and 6.94% improvements
in human damage, non-damage and macro f1-score. Furthermore, 2.33% and 10.89%
improvements are observed in macro precision and macro recall. For the Hurricane
Maria and Hurricane Irma disasters, the proposed framework performed better than
benchmarks and comparable models in accuracy as shown in Table 9. Regarding the
f1-score, non-damage classification is improved by 17.7% and 21.07% for Hurricane
Maria and Hurricane Irma but did not perform better in the macro f1-score. This shows
that fine-tuned BERT is not trained well on these two disaster datasets. This completes
the evaluation of the proposed framework on seven disasters for binary classification and
multi-class classification.
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Table 9 Comparison of fine-tuned BERT with benchmarks for multi-class classification (accuracy and f1-score).

Disasters Model Accuracy F1-score

Infrastructure Human Non Macro

Rudra et al. (2018) – 0 69.36 65.13 44.83
Word2vec+RF 74.00 45.71 84.06 59.26 63.01
TF-IDF+SVM 86.87 28.57 76.19 92.62 65.79
TF-IDF+LSTM 87.79 48.89 84.55 92.65 75.36
TF-IDF+Bi-LSTM 88.27 50.19 85.34 92.70 76.07
TF-IDF+CNN 89.29 53.10 86.28 92.78 77.38
Madichetty & Sridevi (2021) – 74.33 80.00 75.18 76.50

Iraq–Iran
Earthquake

Proposed 93.88 57.14 96.20 94.55 82.63
Rudra et al. (2018) – 41.72 64.56 39.52 48.60
Word2vec+RF 74.00 45.71 84.06 59.26 63.01
TF-IDF+RF 81.55 33.33 68.29 88.89 63.50
TF-IDF+LSTM 82.32 47.64 84.18 89.71 73.84
TF-IDF+Bi-LSTM 83.53 49.71 84.47 90.32 74.83
TF-IDF+CNN 84.10 51.43 84.90 91.54 75.95
Madichetty & Sridevi (2021) – 74.61 74.69 83.59 77.63

Sri Lanka
Floods

Proposed 93.83 75.86 91.89 96.12 87.96
Rudra et al. (2018) – 0 63.33 63.31 42.21
Word2vec+RF 74.00 45.71 84.06 59.26 63.01
TF-IDF+SVM 91.43 53.85 78.43 95.40 75.89
TF-IDF+LSTM 91.20 54.18 79.10 86.39 73.22
TF-IDF+Bi-LSTM 91.30 54.58 79.40 87.10 73.69
TF-IDF+CNN 91.33 55.38 79.90 87.37 74.21
Madichetty & Sridevi (2021) – 61.15 71.21 70.65 67.67

Mexico
Earthquake

Proposed 91.39 57.14 70.27 95.51 74.31
Rudra et al. (2018) – 39.81 51.35 53.18 48.11
Word2vec+RF 74.00 45.71 84.06 59.26 63.01
TF-IDF+SVM 85.42 26.32 73.33 91.46 63.70
TF-IDF+LSTM 83.01 45.82 83.27 88.10 72.39
TF-IDF+Bi-LSTM 83.12 46.29 83.43 88.21 72.64
TF-IDF+CNN 83.27 46.76 83.64 88.38 72.92
Madichetty & Sridevi (2021) – 55.02 68.98 61.53 61.84

California
Wildfires

Proposed 83.33 53.73 82.14 88.51 74.79
Rudra et al. (2018) – 53.59 13.01 43.97 36.86
Word2vec+RF 74.00 45.71 84.06 59.26 63.01
TF-IDF+SVM 87.88 39.58 23.53 93.39 52.17
TF-IDF+LSTM 85.58 55.37 64.29 91.87 70.51
TF-IDF+Bi-LSTM 85.67 56.48 64.59 92.12 71.06
TF-IDF+CNN 85.87 57.84 64.7 92.43 71.65
Madichetty & Sridevi (2021) – 68.52 58.69 72.54 66.58

Hurricane
Harvey

Proposed 86.11 61.62 67.23 91.71 73.52
(continued on next page)
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Table 9 (continued)

Disasters Model Accuracy F1-score

Infrastructure Human Non Macro

Rudra et al. (2018) – 0 77.36 77.87 51.74
TF-IDF+SVM 91.70 23.73 22.22 95.61 47.19
Word2vec+RF 73.79 48.65 84.29 55.17 62.70
TF-IDF+LSTM 91.79 49.58 43.32 95.87 62.92
TF-IDF+Bi-LSTM 91.87 49.86 44.13 96.09 63.36
TF-IDF+CNN 92.10 50.38 46.67 96.35 64.46
Madichetty & Sridevi (2021) – 75.92 57.13 79.14 70.73

Hurricane
Maria

Proposed 93.84 50.7 52.94 96.84 66.83
Rudra et al. (2018) – 59.5 0 54.08 37.86
TF-IDF+SVM 87.42 23.91 19.05 93.41 45.46
Word2vec+RF 71.43 47.37 82.27 51.61 60.42
TF-IDF+LSTM 88.58 29.7 40.58 93.59 54.62
TF-IDF+Bi-LSTM 88.87 30.49 40.78 93.7 54.99
TF-IDF+CNN 89.29 31.89 41.28 93.8 55.65
Madichetty & Sridevi (2021) – 75.26 49.89 74.34 66.50

Hurricane
Irma

Proposed 91.24 56.6 18.75 95.41 56.92

Notes.
The bold values are the highest performances achieved by the proposed model for each disaster.

In the end, the statistical test is performed using the Wilcoxon signed-ranked test to
check whether the improvements of the proposed model are statistically significant or not
for multi-class classification. As the Wilcoxon sined-ranked test applies to two classifiers,
therefore fine-tuned BERT model is compared with the second-best performing model,
and the results are reported in Table 11. For justifying the improvements to be statistically
significant, our analysis should reject the null hypothesis. The performance is compared in
macro f1-score for each disaster and fine-tuned BERT outperformed the second-best for
five disasters. After calculating the difference in performance, the ranks are assigned using
absolute values. Then the sum of ranks is calculated and we got R+ = 25 and R− = 3,
where Vα = 5. By comparing R− and Vα, the former is less than the latter and we reject the
null hypothesis. Hence, the improvements of the fine-tuned BERT model are statistically
significant for multi-class classification.

DISCUSSION AND LIMITATIONS
Assessment of damages and proper coordination of rescue efforts are in high demand for
in-time response to disasters. Recently, the emergence of state-of-the-art deep learning
technologies attracted the researchers’ attention, and robust damage identification models
can be developed using these DL techniques and taking benefits of available big datasets.
However, the lack of comprehension of the strengths and limitations of these technologies,
especially in comparison with traditional ML techniques and deployment issues, requires
further investigation. In this research, we propose a tool for damage assessment from
textual data, based upon a benchmark BERT transformer model with fine-tuning. This
tool supports two levels of identification of damages from tweets: binary and multi-class
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Table 10 Comparison of fine-tuned BERT with benchmarks for multi-class classification (precision and recall).

Disasters Model Precision Recall

Infra Human Non Macro Infra Human Non Macro

Rudra et al. (2018) 0 74.53 56.99 43.84 0 66.92 77.73 48.22
Word2vec+RF 57.14 76.32 80.00 71.15 38.10 93.55 47.06 59.57
TF-IDF+SVM 99.0 88.89 86.25 91.71 16.67 66.67 99.0 60.78
TF-IDF+LSTM 79.12 78.69 87.64 81.81 40.89 84.79 92.55 72.74
TF-IDF+Bi-LSTM 82.38 81.21 88.24 83.94 43.19 85.58 92.60 73.79
TF-IDF+CNN 83.15 82.76 89.74 85.21 45.10 86.83 92.68 74.86
Madichetty & Sridevi (2021) 88.33 79.88 74.50 80.90 66.67 80.66 77.27 74.87

Iraq–Iran
Earthquake

Proposed 66.67 95.00 94.55 85.40 50.00 97.44 94.55 80.66
Rudra et al. (2018) 42.08 63.33 64.94 56.78 44.50 70.50 37.50 50.83
Word2vec+RF 57.14 76.32 80.00 71.15 38.10 93.55 47.06 59.57
TF-IDF+RF 50.00 87.50 81.93 73.14 25.00 56.00 97.14 59.38
TF-IDF+LSTM 58.45 87.90 82.69 76.34 41.49 84.10 88.34 71.31
TF-IDF+Bi-LSTM 59.78 88.24 83.87 77.29 43.58 84.58 89.46 72.54
TF-IDF+CNN 60.42 88.69 84.79 77.96 45.69 85.69 90.67 74.01
Madichetty & Sridevi (2021) 85.33 84.83 78.02 82.73 70.50 70.50 93.00 78.0

Sri Lanka
Floods

Proposed 61.11 89.47 99.20 83.26 100.00 94.44 93.23 95.89
Rudra et al. (2018) 50.59 69.00 50.32 39.77 0 59.61 85.98 48.53
TF-IDF+SVM 87.50 90.91 91.63 90.01 38.89 68.97 99.49 69.12
Word2vec+RF 57.14 76.32 80.00 71.15 38.10 93.55 47.06 59.57
TF-IDF+LSTM 59.38 77.71 81.49 72.86 39.56 93.78 47.43 60.25
TF-IDF+Bi-LSTM 59.85 78.32 82.38 73.51 40.32 93.97 49.39 61.22
TF-IDF+CNN 60.12 79.78 83.58 74.49 41.58 94.12 51.78 62.49
Madichetty & Sridevi (2021) 66.02 73.05 67.71 68.93 58.27 70.16 74.25 67.56

Mexico
Earthquake

Proposed 53.33 86.67 94.39 78.13 61.54 59.09 96.65 72.43
Rudra et al. (2018) 33.15 54.16 72.78 53.36 51.00 50.32 43.76 48.36
TF-IDF+SVM 71.43 100.0 84.59 85.34 16.13 57.89 99.56 57.86
Word2vec+RF 57.14 76.32 80.00 71.15 38.10 93.55 47.06 59.57
TF-IDF+LSTM 72.59 99.10 85.19 85.62 51.29 70.45 82.87 68.20
TF-IDF+Bi-LSTM 73.39 99.31 86.49 86.39 51.78 73.59 83.29 69.55
TF-IDF+CNN 74.19 99.43 87.69 87.10 52.10 75.98 85.48 71.18
Madichetty & Sridevi (2021) 59.98 72.14 57.67 63.26 51.69 66.87 66.95 61.84

California
Wildfires

Proposed 54.55 75.41 90.50 73.49 52.94 90.20 86.60 76.58
Rudra et al. (2018) 42.42 46.22 49.98 46.21 73.23 7.92 40.06 40.40
TF-IDF+SVM 65.52 85.71 88.76 80.00 28.36 13.64 98.53 46.84
Word2vec+RF 57.14 76.32 80.00 71.15 38.10 93.55 47.06 59.57
TF-IDF+LSTM 66.59 76.57 81.23 74.79 39.49 93.71 48.39 60.53
TF-IDF+Bi-LSTM 66.74 76.75 81.46 74.98 40.36 93.85 50.25 61.48
TF-IDF+CNN 67.21 77.04 81.76 75.33 41.59 94.10 51.59 62.42
Madichetty & Sridevi (2021) 73.34 64.31 67.17 68.27 64.97 55.25 79.55 66.59

Hurricane
Harvey

Proposed 53.98 63.49 94.32 70.60 71.76 71.43 89.25 77.48
Rudra et al. (2018) 45.15 0 53.63 32.97 76.90 0 40.34 39.08
Word2vec+RF 60.00 76.62 72.73 69.78 40.91 93.65 44.44 59.67

(continued on next page)
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Table 10 (continued)

Disasters Model Precision Recall

Infra Human Non Macro Infra Human Non Macro

TF-IDF+SVM 77.78 100.0 91.83 89.87 14.00 12.50 99.72 42.07
TF-IDF+LSTM 78.10 98.21 91.95 89.42 18.45 20.38 90.10 42.97
TF-IDF+Bi-LSTM 78.48 98.43 92.13 89.68 20.27 22.87 90.56 44.56
TF-IDF+CNN 78.69 98.65 92.37 89.90 32.78 25.76 92.18 50.24
Madichetty & Sridevi (2021) 77.16 71.17 74.73 74.35 75.52 48.63 85.52 69.89

Hurricane
Maria

Proposed 47.37 42.86 97.69 62.64 54.55 69.23 95.99 73.26
Rudra et al. (2018) 50.17 0 57.10 35.76 73.95 0 52.47 42.14
TF-IDF+SVM 61.11 57.14 88.31 68.86 14.86 11.43 99.13 41.81
Word2vec+RF 56.25 76.32 61.54 64.70 40.91 89.23 44.44 58.19
TF-IDF+LSTM 61.49 77.38 88.53 75.80 42.41 88.49 44.78 58.56
TF-IDF+Bi-LSTM 62.21 77.79 89.11 76.37 43.89 89.34 45.29 59.50
TF-IDF+CNN 62.54 78.10 89.34 76.66 44.11 89.67 45.54 59.77
Madichetty & Sridevi (2021) 75.24 59.81 71.79 68.95 76.19 43.42 77.92 65.84

Hurricane
Irma

Proposed 48.39 20.00 96.48 54.96 68.18 17.65 94.36 60.06

Notes.
The bold values are the highest performances achieved by the proposed model for each disaster.

Table 11 Verification of improvements usingWilcoxon’s signed-rank test (Multi-class).

Dataset Multi-class Classification

Fine-tuned BERT Second Best Diff Rank

Iraq–Iran Earthquake 82.63 77.38 5.25 6
Sri Lanka Floods 87.96 77.63 10.33 7
Mexico Earthquake 74.31 74.21 0.1 3
California Wildfires 74.78 72.92 1.86 4
Hurricane Harvey 73.52 71.65 1.87 5
Hurricane Maria 66.83 70.73 −3.9 2
Hurricane Irma 56.92 66.50 −9.58 1

classification. One effective application of this tool in rehabilitation and rescue stages would
be the utilization of quantitative statistics of damages with some qualitative approaches, to
verify how much damages are and how these influence individuals and societies.

This study made significant contributions in the domain of damage tweet identification
and crisismanagement in real-time disasters. The fine-tuning of BERT transformermodel is
studied first time for binary as well as multi-class classification according to our knowledge.
Themost important contribution is the identification of human and infrastructure damages
at the second level. The utilization of contextual semantic embeddings enables us to
handle the ambiguity and complexity issues of language used to describe damages. The
optimization of hyper-parameters for the fine-tuning process helped us to handle the
issues of overfitting and catastrophic forgetting. For binary classification, it outperformed
the five benchmarks for all disaster datasets and demonstrated significant improvement
in detecting damage assessment tweets. For multi-class classification, it outperformed the
two benchmarks, and all comparable models for five disaster datasets and presented the
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comparable performance for the remaining two disasters. This proves the effectiveness of
fine-tuned BERT for damage assessment tweet identification both for binary andmulti-class
classification.

In the end, the advantages of the proposed framework are summarized as follows:
First, the baselines are developed using hand-crafted features but the proposed framework
utilized an automated feature generation model to address the issue of damage assessment
tweets identification. Second, the language model has the ability to capture the actual
context of the language being used (to describe the infrastructure and human damages)
in the tweets instead of semantic, syntactic, and frequency-based approaches. Third, on
top of everything, the performance improvement achieved by the proposed framework on
seven disaster datasets compared to benchmarks is promising.

There are some limitations of this study. Our dataset that contains seven disasters is
limited to 18,084 tweets and this dataset (CrisisMMD) covers only seven real-time disasters.
The size and comprehensiveness of the dataset can be addressed as a potential avenue for
improvement. As our methodology is based on a deep learning paradigm, therefore
more larger and comprehensive dataset would definitely improve the performance of
identification. Another limitation is that although the proposed model addresses multi-
class categorization of tweets, it is still not able to assess the number of damages related to
the human and infrastructure categories. Such kind of assessments will be very helpful for
rehabilitation organizations to estimate the losses and damages before arrival at disaster
locations. Future work can extend the findings of this study to propose a solution for the
assessment of the quantity of damages.

CONCLUSION
This research investigated the issue of damage assessment tweet identification as a
binary and multi-class classification mechanism. We proposed a ‘‘contextual semantic
embeddings’’ based model for improving damage assessment tweet identification. To
handle the issues of complexity and ambiguity and to support the generalization of the
framework, a state-of-the-art languagemodel (BERT) is utilizedwith fine-tuning important
hyper-parameters without relying on basic and hand-crafted features. Moreover, nine
comparable models are designed to compare the performance of the proposed framework.
Several BERT classifiers are trained, validated, and tested by fine-tuning important hyper-
parameters. To evaluate the effectiveness of the proposed framework, the CrisisMMD
dataset containing seven disasters is considered. The results demonstrated that the fine-
tuned BERT model outperformed all benchmarks and comparable models for binary
classification as well as for multi-class classification. Specifically, the proposed framework
demonstrated state-of-the-art results by obtaining a macro f1-score of 95.12% for binary
classification and a macro f1-score of 88% for multi-class classification. The findings of our
study would help disaster management and humanitarian organizations to better manage
their rescue activities on time.

In the future, we are interested in exploring fine-tuning language models with adapter
mechanisms for similar NLP tasks to reduce the training parameter complexities. The
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accuracy of results for damage assessment tweet identification could be improved by
utilizing some state-of-the-art hybrid methodologies. Furthermore, the explainability
of damage assessment tweet identification will be very helpful for rescue and disaster
management organizations to manage their services on time.

ACKNOWLEDGEMENTS
This article is an output of a research project implemented as part of the Basic Research
Program at the National Research University Higher School of Economics (HSE
University). This research made use of computational resources of HPC facilities at
HSE University.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This study was supported by Princess Nourah bint Abdulrahman University Researchers
Supporting Project number (PNURSP2024R104), Princess Nourah bint Abdulrahman
University, Riyadh, Saudi Arabia. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia: PNURSP2024R104.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Muhammad Shahid Iqbal Malik conceived and designed the experiments, performed
the experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.
• Muhammad Zeeshan Younas conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, and approved the final draft.
• Mona Mamdouh Jamjoom performed the experiments, authored or reviewed drafts of
the article, and approved the final draft.
• Dmitry I. Ignatov performed the experiments, authored or reviewed drafts of the article,
and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The data is available at CrisisNLP: https://crisisnlp.qcri.org/crisismmd.
The code is available in the Supplemental Files.

Malik et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1859 24/27

https://peerj.com
https://crisisnlp.qcri.org/crisismmd
http://dx.doi.org/10.7717/peerj-cs.1859#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1859


Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1859#supplemental-information.

REFERENCES
Alam F, Alam T, HasanMA, Hasnat A, ImranM, Ofli F. 2023.MEDIC: a multi-task

learning dataset for disaster image classification. Neural Computing and Applications
35:2609–2632 DOI 10.1007/s00521-022-07717-0.

Alam F, Ofli F, ImranM. 2018. Crisismmd: multimodal twitter datasets from natural
disasters. In: Proceedings of the international AAAI conference on web and social media.

Alam F, Ofli F, ImranM. 2020. Descriptive and visual summaries of disaster
events using artificial intelligence techniques: case studies of Hurricanes
Harvey, Irma, and Maria. Behaviour & Information Technology 39:288–318
DOI 10.1080/0144929X.2019.1610908.

Alam F, Sajjad H, ImranM, Ofli F. 2021. CrisisBench: benchmarking crisis-related
social media datasets for humanitarian information processing. In: Proceedings of
the International AAAI conference on web and social media. 923–932.

Ali G, Malik MSI. 2023. Rumour identification on Twitter as a function of novel textual
and language-context features.Multimedia Tools and Applications 82:7017–7038
DOI 10.1007/s11042-022-13595-4.

Ali Z. 2019. A simple Word2vec tutorial. Available at https://medium.com/@zafaralibagh6/
a-simple-word2vec-tutorial-61e64e38a6a1.

Arathi E, Sasikala S. 2023. Classification of high-priority tweets for effective rescue oper-
ations during natural disaster combining twitter’s textual and non-textual features.
In: Intelligent data engineering and analytics: proceedings of the 10th international
conference on frontiers in intelligent computing: theory and applications (FICTA 2022).
Springer, 293–308.

Asinthara K, JayanM, Jacob L. 2023. Categorizing disaster tweets using learning based
models for emergency crisis management. In: 2023 9th International conference
on advanced computing and communication systems (ICACCS). Piscatway: IEEE,
1133–1138.

Cresci S, Tesconi M, Cimino A, Dell’Orletta F. 2015. A linguistically-driven approach to
cross-event damage assessment of natural disasters from social media messages. In:
Proceedings of the 24th international conference on world wide web. 1195–1200.

Dasari SK, Gorla S, Prasad Reddy PVGD. 2023. A stacking ensemble approach for iden-
tification of informative tweets on twitter data. International Journal of Information
Technology 15:2651–2662.

Devlin J, ChangM-W, Lee K, Toutanova K. 2018. Bert: pre-training of deep bidirec-
tional transformers for language understanding. ArXiv arXiv:1810.04805.

Garg PK, Chakraborty R, Dandapat SK. 2023. OntoDSumm: ontology-based tweet
summarization for disaster events. IEEE Transactions on Computational Social
Systems.

Malik et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1859 25/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1859#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1859#supplemental-information
http://dx.doi.org/10.1007/s00521-022-07717-0
http://dx.doi.org/10.1080/0144929X.2019.1610908
http://dx.doi.org/10.1007/s11042-022-13595-4
https://medium.com/@zafaralibagh6/a-simple-word2vec-tutorial-61e64e38a6a1
https://medium.com/@zafaralibagh6/a-simple-word2vec-tutorial-61e64e38a6a1
http://arXiv.org/abs/1810.04805
http://dx.doi.org/10.7717/peerj-cs.1859


Giri KSV, Deepak G. 2023. A semantic ontology infused deep learning model for disaster
tweet classification.Multimedia Tools and Applications 35(7):101606.

Hussain S, Malik MSI, Masood N. 2022. Identification of offensive language in
Urdu using semantic and embedding models. PeerJ Computer Science 8:e1169
DOI 10.7717/peerj-cs.1169.

ImranM, Alam F, Qazi U, Peterson S, Ofli F. 2020. Rapid damage assessment using
social media images by combining human and machine intelligence. ArXiv
arXiv:2004.06675.

ImranM, Castillo C, Lucas J, Meier P, Vieweg S. 2014. AIDR: artificial intelligence for
disaster response. In: Proceedings of the 23rd international conference on world wide
web. 159–162.

ImranM, Qazi U, Ofli F, Peterson S, Alam F. 2022. Ai for disaster rapid damage
assessment from microblogs. In: Proceedings of the AAAI conference on artificial
intelligence. 12517–12523.

Iparraguirre-Villanueva O, Melgarejo-GracianoM, Castro-Leon G, Olaya-Cotera S,
Ruiz-Alvarado J, Epifanía-Huerta A, Cabanillas-Carbonell M, Zapata-Paulini J.
2023. Classification of tweets related to natural disasters using machine learning
algorithms. International Journal of Interactive Mobile Technologies 17:144–162.

Koshy R, Elango S. 2023.Multimodal tweet classification in disaster response systems
using transformer-based bidirectional attention model. Neural Computing and
Applications 35:1607–1627 DOI 10.1007/s00521-022-07790-5.

Krishna DS, Srinivas G, Prasad Reddy P. 2022. Disaster tweet classification: a majority
voting approach using machine learning algorithms. Intelligent Decision Technologies
1–13.

Kumar A, Singh JP, Saumya S. 2019. A comparative analysis of machine learning
techniques for disaster-related tweet classification. In: IEEE R10 Humanitarian
technology conference (R10-HTC)(47129). Piscataway: IEEE, 222–227.

Li X, Caragea D, Caragea C, ImranM, Ofli F. 2019. Identifying disaster damage images
using a domain adaptation approach. In: Proceedings of the 16th International
conference on information systems for crisis response and management.

Lv J, Wang X, Shao C. 2023. AMAE: adversarial multimodal auto-encoder for crisis-
related tweet analysis. Computing 105:13–28 DOI 10.1007/s00607-022-01098-x.

Madichetty S. 2020. Classifying informative and non-informative tweets from the twitter
by adapting image features during disaster.Multimedia Tools and Applications
79:28901–28923 DOI 10.1007/s11042-020-09343-1.

Madichetty S, Madisetty S. 2023. A RoBERTa based model for identifying the multi-
modal informative tweets during disaster.Multimedia Tools and Applications 1–19.

Madichetty S, Muthukumarasamy S, Jayadev P. 2021.Multi-modal classification of
Twitter data during disasters for humanitarian response. Journal of Ambient Intelli-
gence and Humanized Computing 12:10223–10237 DOI 10.1007/s12652-020-02791-5.

Madichetty S, Sridevi M. 2020. Improved classification of crisis-related data on Twit-
ter using contextual representations. Procedia Computer Science 167:962–968
DOI 10.1016/j.procs.2020.03.395.

Malik et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1859 26/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1169
http://arXiv.org/abs/2004.06675
http://dx.doi.org/10.1007/s00521-022-07790-5
http://dx.doi.org/10.1007/s00607-022-01098-x
http://dx.doi.org/10.1007/s11042-020-09343-1
http://dx.doi.org/10.1007/s12652-020-02791-5
http://dx.doi.org/10.1016/j.procs.2020.03.395
http://dx.doi.org/10.7717/peerj-cs.1859


Madichetty S, Sridevi M. 2021. A novel method for identifying the damage assess-
ment tweets during disaster. Future Generation Computer Systems 116:440–454
DOI 10.1016/j.future.2020.10.037.

Malik MSI, Cheema U, Ignatov DI. 2023. Contextual embeddings based on fine-tuned
Urdu-BERT for Urdu threatening content and target identification. Journal of King
Saud University-Computer and Information Sciences 35(7):101606.

Malik MSI, Imran T, Mamdouh JM. 2023.How to detect propaganda from social media?
Exploitation of semantic and fine-tuned language models. PeerJ Computer Science
9:e1248 DOI 10.7717/peerj-cs.1248.

Malik MSI, Nazarova A, JamjoomMM, Ignatov DI. 2023.Multilingual hope speech de-
tection: a Robust framework using transfer learning of fine-tuning RoBERTa model.
Journal of King Saud University-Computer and Information Sciences 35:101736
DOI 10.1016/j.jksuci.2023.101736.

Nguyen DT, Ofli F, ImranM,Mitra P. 2017. Damage assessment from social media
imagery data during disasters. In: Proceedings of the 2017 IEEE/ACM international
conference on advances in social networks analysis and mining 2017. 569–576.

Paul NR, Sahoo D, Balabantaray RC. 2023. Classification of crisis-related data on
Twitter using a deep learning-based framework.Multimedia Tools and Applications
82:8921–8941 DOI 10.1007/s11042-022-12183-w.

Powers CJ, Devaraj A, Ashqeen K, Dontula A, Joshi A, Shenoy J, Murthy D. 2023. Using
artificial intelligence to identify emergency messages on social media during a natural
disaster: a deep learning approach. International Journal of Information Management
Data Insights 3:100164.

Priya S, BhanuM, Dandapat SK, Ghosh K, Chandra J. 2018. Characterizing in-
frastructure damage after earthquake: a split-query based ir approach. In: 2018
IEEE/ACM International conference on advances in social networks analysis and mining
(ASONAM). Piscataway: IEEE, 202–209.

Priya S, BhanuM, Dandapat SK, Ghosh K, Chandra J. 2020. TAQE: tweet retrieval-
based infrastructure damage assessment during disasters. IEEE Transactions on
Computational Social Systems 7:389–403 DOI 10.1109/TCSS.2019.2957208.

RehanM,Malik MSI, JamjoomMM. 2023. Fine-tuning transformer models using
transfer learning for multilingual threatening text identification. IEEE Access
11:106503–106515.

Rudra K, Ganguly N, Goyal P, Ghosh S. 2018. Extracting and summarizing situational
information from the twitter social media during disasters. ACM Transactions on the
Web (TWEB) 12:1–35.

Sun C, Qiu X, Xu Y, Huang X. 2019.How to fine-tune bert for text classification?
In: Chinese computational linguistics: 18th China national conference, CCL 2019,
Kunming, China, October (2019) 18–20, Proceedings 18. Cham: Springer, 194–206.

Woolson RF. 2007.Wilcoxon signed-rank test.Wiley Encyclopedia of Clinical Trials 1–3.
Younas MZ, Malik MSI, Ignatov DI. 2023. Automated defect identification for cell

phones using language context, linguistic and smoke-word models. Expert Systems
with Applications 227:120236.

Malik et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1859 27/27

https://peerj.com
http://dx.doi.org/10.1016/j.future.2020.10.037
http://dx.doi.org/10.7717/peerj-cs.1248
http://dx.doi.org/10.1016/j.jksuci.2023.101736
http://dx.doi.org/10.1007/s11042-022-12183-w
http://dx.doi.org/10.1109/TCSS.2019.2957208
http://dx.doi.org/10.7717/peerj-cs.1859

