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ABSTRACT
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a severe condition
with an uncertain origin and a dismal prognosis. There is presently no precise diagnostic
test for ME/CFS, and the diagnosis is determined primarily by the presence of certain
symptoms. The current study presents an explainable artificial intelligence (XAI)
integrated machine learning (ML) framework that identifies and classifies potential
metabolic biomarkers of ME/CFS. Metabolomic data from blood samples from 19
controls and 32ME/CFSpatients, all female, whowere between age andbodymass index
(BMI) frequency-matched groups, were used to develop the XAI-based model. The
dataset contained 832 metabolites, and after feature selection, the model was developed
using only 50 metabolites, meaning less medical knowledge is required, thus reducing
diagnostic costs and improving prognostic time. The computational method was
developed using six differentML algorithms before and after feature selection. The final
classificationmodel was explained using theXAI approach, SHAP. The best-performing
classification model (XGBoost) achieved an area under the receiver operating charac-
teristic curve (AUCROC) value of 98.85%. SHAP results showed that decreased levels
of alpha-CEHC sulfate, hypoxanthine, and phenylacetylglutamine, as well as increased
levels of N-delta-acetylornithine and oleoyl-linoloyl-glycerol (18:1/18:2)[2], increased
the risk ofME/CFS. Besides the robustness of themethodology used, the results showed
that the combination ofML andXAI could explain the biomarker prediction ofME/CFS
and provided a first step toward establishing prognostic models for ME/CFS.

Subjects Bioinformatics, Computational Biology, Artificial Intelligence, Computer Aided Design,
Data Mining and Machine Learning
Keywords Myalgic encephalomyelitis/chronic fatigue syndrome, Explainable artificial intelli-
gence, Machine learning, Prognostic model

INTRODUCTION
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease
of unknown cause and poor prognosis. There is currently no specific diagnostic test for
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ME/CFS, and the diagnosis is made based on the presence of characteristic symptoms, such
as severe fatigue, post-exertional malaise, cognitive impairment, and unrefreshing sleep,
that have persisted for at least six months (Deumer et al., 2021).

As a growing body of research has identified abnormalities in the gut microbiome,
immune system, neuroimaging, exercise physiology, and blood metabolites of ME/CFS
patients. However, the underlying cause of the disease remains unclear, and there is
no consensus among researchers regarding the primary pathophysiological mechanisms
involved (Missailidis, Annesley & Fisher, 2019). Some hypotheses suggest that ME/CFS
may be caused by an infectious agent, such as a virus (Rasa et al., 2018) or bacteria, or by
an autoimmune response to an infection or environmental trigger. Others propose that
the disease may be related to abnormalities in mitochondrial function, impaired cellular
metabolism, or dysregulation of the autonomic nervous system (Komaroff & Lipkin, 2021).
Despite these various theories, there is still much to be learned about the underlying
mechanisms of ME/CFS, and much more research is needed to develop effective diagnostic
and treatment strategies for this complex and debilitating disease.

Metabolomics technology has the potential to improve the diagnosis and management
of ME/CFS, as well as to enhance understanding of the underlying pathophysiology of the
disease. By identifying specific metabolites or metabolic pathways that are deregulated in
ME/CFS, may be able to develop more targeted treatments and interventions that address
the underlying biochemical imbalances. However, more research is needed to validate
the use of metabolomics biomarkers for ME/CFS and to identify specific metabolites or
pathways that are consistently deregulated across different patient populations and disease
stages (Che et al., 2022; Germain et al., 2022).

Germain et al. (2018) conducted a metabolomics investigation to discover potential
biomarkers for ME/CFS. They used plasma samples from both ME/CFS patients and
healthy individuals and utilized mass spectrometry to analyze the metabolite levels. The
outcomes revealed that there were significant discrepancies in the levels of metabolites
linked to oxidative stress and antioxidant defenses between the ME/CFS patients and the
healthy controls. The research also recognized some promising biomarkers for ME/CFS,
including metabolites associated with the pentose phosphate pathway, oxidative stress
response, and glutathione metabolism. The results imply that a redox imbalance could be a
critical element in the pathophysiology of ME/CFS. Overall, the study provides supportive
data for potential biomarkers and fundamental mechanisms of ME/CFS, which could
contribute to better diagnosis and treatment of this multifaceted and incapacitating illness
(Germain et al., 2018).

In this study, a machine learning (ML) framework combined with explainable artificial
intelligence (XAI) is proposed to extract potential metabolite biomarkers for ME/CFS
diagnosis andmonitoring. Themodel preprocesses the data and then applies ANOVAbased
on the F-value of the metabolite features to extract the significantly expressed metabolites
between the two classes (ME/CFS) and healthy control samples. The biomarkers metabolite
feed the Extreme Gradient Boosting (XGBoost) classifier to predict the class of the samples.
For most of the performance measurements, the proposed model outperformed the
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standard classifiers, including random forest, decision tree, support vector classifier
(SVMs), Naïve Bayes, and logistic regression.

MATERIAL AND METHODS
Study design, data, and compliance with ethical standards
In the open-access metabolomics dataset used in this study, the cohort consisted of
19 controls and 32 patients, all female, who were between age and body mass index
(BMI) frequency-matched groups. The blood samples were collected in Ethylene Diamine
Tetra Acetic Acid (EDTA) tubes. Then, plasma was separated from the cells through
centrifugation at 500 g for 30min and stored at a temperature of−80 ◦C for further analysis.
After that, global metabolomics was performed using four ultra-high-performance liquid
chromatography/tandem accurate mass spectrometry (UHPLC/MS/MS). This automated
service allows for the precise measurement of hundreds of metabolites in a wide range
of categories (Germain et al., 2018). A total of 42,432 data points from 51 participants
were collected using the Metabolon® technology to identify and analyze 832 different
metabolites. Amino acids (177), carbohydrates (26), cofactors and vitamins (28), energy
(10), lipids (353), nucleotides (29), peptides (33), and xenobiotics (176) are among the
kinds ofmetabolites that this study examines. Information about themetabolomics data set,
which is available as Supplemental File 1, contains information about the 83 sub-pathways
that can be further separated into the eight super-pathways thatMetabolon® has identified.

The sample size required for this study was estimated with MetSizeR based on the
PPCA model and calculated by setting the false discovery rate to 0.05. As a result, a
minimum sample size of 28 patients in total with 14 patients in each group was estimated.
Although it was challenging to find ME/CFS patients and healthy controls who satisfied the
study’s inclusion requirements, the sample size was more than that predicted by MetSizeR
(Nyamundanda et al., 2013), a technique used to estimate sample size in metabolomics
investigations. The Institutional Review Board for Non-Interventional Clinical Research at
Inonu University gave ethical permission to this study (decision no. 2023/4512).

Methods
The schematic representation of the methodology used and proposed in the research is as
in Fig. 1.
Feature selection: Feature selection helps reduce the dimensionality of a dataset, making
it easier to interpret and faster to process. It can also improve the performance of machine
learning models by removing irrelevant or redundant features that can lead to overfitting
(Chandrashekar & Sahin, 2014; Guyon & Elisseeff, 2003).

Analysis of Variance (ANOVA) feature selection is a statistical method used to identify
the most important features (or variables) that are most strongly associated with the target
variable. Themethod involves calculating the F-value for each feature, whichmeasures how
much the variation in the target variable can be explained by the variation in the feature.
The higher the F-value, the more significant the feature is thought to be in predicting the
target variable (Nasiri & Alavi, 2022).
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Figure 1 Schematic representation of the proposed method.
Full-size DOI: 10.7717/peerjcs.1857/fig-1

The F-value is calculated as the ratio of the mean square between groups (MSB) to the
mean square within groups (MSW):

F =
MSbetween
MSwithin

(1)

where:

MSB=
∑

(xk−x)2nk
dfbetween

(2)

nk denotes the number of measurements in the kth class, xk denotes the mean of samples
for each class, and x denotes the mean of entire samples.
The mean square within groups is calculated as:

MSW =
(
∑∑

(xnk−xk)2)
dfwithin

(3)

xnk represents the nth value for the kth class.
The degrees of freedom are calculated as:

dfbetween=K −1 (4)

dfwithin=N −K (5)

K and N are symbols for the number of classes and the overall sample size, respectively
(Johnson & Synovec, 2002).
Extreme gradient boosting (XGBoost): XGBoost is a popular machine learning algorithm
that belongs to the gradient boosting family of algorithms. It was developed by Chen
& Guestrin (2016) in 2016 and has since become widely used in the machine-learning
community due to its efficiency, scalability, and high level of performance on structured
data problems (Cao et al., 2022; Ghaheri et al., 2023; Homafar, Nasiri & Chelgani, 2022).

The basic equation for XGBoost can be written as follows:

ŷi=
K∑
k=1

fk(xi) (6)
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where ŷi isthe predicted value for the ith instance, K is the number of weak models, fk(xi)
isthe output of the kth weak model on the ith instance, and xi isthe feature vector for the
ith instance (Farzipour, Elmi & Nasiri, 2023; Nasiri, Homafar & Chelgani, 2021).

The weak models in XGBoost are decision trees, where each tree predicts the residual
error of the previous tree. This approach is called gradient boosting, as the subsequent
models try to minimize the gradient of the loss function concerning the predicted values
(Ayyadevara & Ayyadevara, 2018; Chelgani et al., 2023). The learning objective function
for XGBoost is a regularized version of the loss function, which helps prevent overfitting
and improves generalization (Liu et al., 2021;Maleki, Raahemi & Nasiri, 2023).

The objective function that XGBoost minimizes can be written as:

Obj(θ)=
n∑

i=1

l(ŷi,yi)+
K∑
k=1

�(fk) (7)

where θ denotes the model parameters, n is the number of instances, l is the loss function
that measures the difference between the predicted and true values, and� is the penalizing
regularization function for complicated models (Maleki, Raahemi & Nasiri, 2023) and is
computed as:

�(fk)= γT+
1
2
λ‖ω‖2 (8)

where γ and λ are variables that control the penalty related to the quantity of leaves T and
the weight of each leaf ω, respectively (Nasiri & Hasani, 2022; Nasiri, Homafar & Chelgani,
2021).
Random forest: Random forest is an ensemble learning algorithm first proposed by Leo
Breiman in 2001 (Breiman, 2001). The algorithm is based on the idea of combiningmultiple
decision trees to create a more robust and accurate model (Rodriguez-Galiano et al., 2012).

Each decision tree is trained on a random subset of the training data and a random
subset of the features at each split (Gong et al., 2018). This introduces randomness
into the training process, which helps reduce overfitting and improve the model’s
generalization performance (Alam & Vuong, 2013). At prediction time, each tree in the
forest independently predicts a class or a numerical value, and the final prediction is
obtained by combining the individual predictions, for example, by taking the majority vote
(classification) or the mean value (regression) (Breiman, 2001).

One of the critical advantages of random forest is its ability to estimate feature
importance, which can be useful for understanding the underlying patterns in the data and
selecting the most relevant features for the task (Li, Harner & Adjeroh, 2011). The feature
importance is calculated by measuring the decrease in performance (e.g., accuracy or mean
squared error) when a particular feature is randomly permuted, which provides an estimate
of how much the feature contributes to the model’s predictive power.
Support vector classifier: A support vector classifier (SVMs) is a machine learning
algorithm that is used for classification tasks. The SVMs are based on SVMs theory,
which Vapnik (1999) introduced in the 1990s.
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The idea behind the SVMs is to find the best possible hyperplane that separates two classes
of data points in a high-dimensional space (Khairnar & Kinikar, 2013). The hyperplane
is chosen to maximize the distance between the hyperplane and the closest data points
from each class (known as support vectors) (Pradhan, 2012). This distance is known as the
margin, and the SVM/SVMs is often referred to as amaximum-margin classifier (Amarappa
& Sathyanarayana, 2014).

To train SVMs with a linear kernel, the algorithm first identifies the support vectors,
which are the data points closest to the decision boundary (Alam et al., 2020). Then, the
algorithm finds the optimal hyperplane that maximizes the distance between the support
vectors of each class (Luta, Baldovino & Bugtai, 2018). During the testing phase, new data
points are classified based on which side of the hyperplane they fall on (Amarappa &
Sathyanarayana, 2014). One of the advantages of using SVMs with a linear kernel is that
it can work well even in high-dimensional spaces, where the number of features is much
greater than the number of observations. However, it may not perform well when the data
is not linearly separable. In such cases, a non-linear kernel can be used instead (Ghosh,
Dasgupta & Swetapadma, 2019).
SHapley Additive exPlainations (SHAP): SHAP is a method for explaining the output of
any machine learning model. It was introduced by Lundberg et al. (2018) and it provides
a way to calculate the contribution of each feature to the prediction made by the model
(Štrumbelj & Kononenko, 2014).

The SHAP method is based on the concept of Shapley values, which is a well-known
concept in the cooperative game theory (Ekanayake, Meddage & Rathnayake, 2022). The
idea is to calculate themarginal contribution of each feature to the prediction by considering
all possible subsets of features that could have been included in the model (Fatahi et al.,
2023; Li, 2022).

The main equation for calculating SHAP values is:

φi(x)=
∑

S⊆N\{i}

|S|!(|N |−|S|−1)!
|N |!

[fS∪{i}− fS] (9)

where:
φi(x) isthe SHAP value for feature i of instance x
N is the set of all features
S is a subset of features, excluding i
|S| isthe number of features in subset S
|N | isthe total number of features
fS∪{i} is the output of the model when features in S are present along with feature i
fS is the output of the model when only features in S are present (Lundberg & Lee, 2017).
This equation calculates the contribution of feature i by considering all possible subsets

of features that could have been included in the model. It calculates the difference between
the model’s output when feature i is present and the output when feature i is absent,
averaging over all possible combinations of features that include feature i. This results in a
measure of the marginal contribution of feature i to the prediction (Bi et al., 2020).
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In practice, SHAP values can be calculated using various methods, including tree-based
algorithms and kernel-based methods. These values can then be used to explain the output
of a model and to identify which features are most important for making predictions
(Mangalathu, Hwang & Jeon, 2020).
Performance assessment: In the presented study, individuals are classified as either having
or not having ME/CFS based on the extracted metabolic biomarkers. Predictions can
therefore be divided into four groups: True Positive (TP) signifies correctly identifying
individuals with ME/CFS, True Negative (TN) denotes the accurate identification of
individuals without ME/CFS, False Positive (FP) involves misclassifying individuals
without ME/CFS as having the condition, and False Negative (FN) involves misclassifying
individuals with ME/CFS as not having the condition. The following metrics are used to
evaluate the classification results:

Precision=
TP

TP+FP
(10)

Sensitivity =
TP

TP+FN
(11)

Specificity =
TN

TN +FP
(12)

F1− score=
2

1
Sensitivity +

1
precision

(13)

Accuracy =
TP+TN

TP+FN +FP+TN
(14)

Another performance metric utilized was the Brier score, which measures the accuracy
of the model’s probability predictions.

BS=
1
N

N∑
t=1

(
ft −ot

)2 (15)

In which ft denotes the probability that was forecast, ot represents the actual outcome
of the event, and N , and N is the number of forecasting instances.

RESULTS
In the current study, the dataset, derived from metabolomic analyses, comprised 51 cases,
of which 19 were healthy controls and the remaining 32 were patients diagnosed with
ME/CFS. Initially, a standardization process was employed to scale the features. This
step was crucial to ensure equitable contribution of each feature to the analysis and to
mitigate the undue influence of any single feature, particularly in the presence of outliers.
Subsequently, the dataset, characterized by an extensive set of 832 features, necessitated
the application of ANOVA feature selection. This methodological choice was driven by the
dual objectives of preventing model overfitting and reducing the computational burden
during training. The ANOVA F-value, employed in this context, serves as an indicator
of the correlation between individual features and the target variable. It quantifies this
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Figure 2 Classifier performance based on the number of features.
Full-size DOI: 10.7717/peerjcs.1857/fig-2

relationship by comparing the variance ratio across different feature values (inter-group
variance) against the variance within each feature group (intra-group variance). A higher
F-value is indicative of a strong correlation between the feature and the target variable,
thus signifying its potential significance in the predictive model.

In the present investigation, we conducted a comparative analysis of various classifiers’
capabilities in the context of decremental feature groups. The classifiers selected for this
assessment included SVMs, logistic regression, XGBoost, random forest, decision tree,
and naïve Bayes. The results of the comparative evaluation are succinctly presented in
Fig. 2, offering a visual representation of the differential classification efficacies of these
algorithms under the specified conditions.

Upon conducting an evaluative analysis of the model’s efficacy across varying feature
counts, it was discerned that the application of ANOVA, restricted to the top 50 features,
optimized the performance of the XGBoost classifier. This optimization is evidenced in
Fig. 3, which delineates the metabolites demonstrating the most significant correlation
with the ME/CFS status. This figure serves as an illustrative guide, pinpointing those
metabolites that hold the greatest relevance in the context of ME/CFS, thereby underlining
their potential importance in the diagnostic framework.
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Figure 3 Feature importance graph. The top 50 important metabolites are listed and ordered by
ANOVA.

Full-size DOI: 10.7717/peerjcs.1857/fig-3

In the study, strategic decision was made to set the booster parameter of the XGBoost
algorithm to ’gblinear’ during the hyperparameter tuning process. This adjustment aligns
with the demonstrated efficacy of linear models in this specific context. Details regarding
the modifications made to the XGBoost hyperparameters are comprehensively listed in
Table 1, providing a transparent overview of the parameter optimization strategy employed
in this study. In the conducted analysis, where models were trained on a dataset comprising
50 features, it was observed that the XGBoost algorithm exhibited superior performance,
achieving an accuracy rate of 98.18%. This finding is substantiated in Table 2, which reveals
that simpler, more linear models, including logistic regression and SVMs, outperformed
their more complex counterparts.

Due to the small dataset, a cross-validation (CV) scheme was used to demonstrate the
model’s utility and generate precise results that were not overfitted. In 5-fold CV, the data
is divided into five equal-sized folds. The model is trained on four folds and tested on the
remaining fold. This process is repeated five times, with each fold being used once as the
test set. The performance of the model is then averaged over all five folds. The obtained
confusion matrices after applying CV are shown in Fig. 4, an overlapped confusion matrix
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Table 1 The XGBoost hyperparameter settings.

Hyper-parameter Value

Base learner Gradient boosted linear
Tree construction learner Exact greedy
Learning rate (η) 0.19
Lagrange multiplier (γ ) 0
Maximum depth of trees 6

Table 2 A detailed comparison of before and after feature selection across different evaluationmetrics between the proposed method and other
classifiers.Values separated by ‘‘/’’ indicate ‘‘without/with’’ feature selection.

Model Sensitivity Specificity Precision F1-Score Accuracy (%) Brier score AUC score

XGBoost 0.28 / 1 0.84 / 0.95 0.80 / 0.97 0.41 / 0.98 53.27 / 98.18 0.479 / 0.023 0.74 / 0.99
Random Forest 0.74 / 0.81 0.61 / 0.75 0.81 / 0.86 0.76 / 0.82 70.72 / 78.54 0.197 / 0.146 0.73 / 0.86
Decision Tree 0.71 / 0.79 0.41 / 0.36 0.66 / 0.68 0.68 / 0.72 60.54 / 62.90 0.392 / 0.372 0.57 / 0.57
Support Vector Machine 0.81 / 1 0.73 / 0.83 0.84 / 0.92 0.81 / 0.96 78.36 / 94.36 0.155 / 0.053 0.84 / 0.97
Naïve Bayes 0.77 / 1 0.31 / 0.83 0.64 / 0.92 0.68 / 0.96 60.90 / 94.36 0.392 / 0.056 0.52 / 0.98
Logistic Regression 0.88 / 1 0.68 / 0.83 0.82 / 0.92 0.84 / 0.96 80.36 / 94.36 0.143 / 0.047 0.82 / 0.98

Notes.
Values separated by ’’/’’ indicate ‘‘without/with’’ feature selection.

Figure 4 Confusionmatrix for the proposed model (XGBoost).
Full-size DOI: 10.7717/peerjcs.1857/fig-4

to display all classifications. As can be seen, the proposed model had only one type I error.

In order to enhance the robustness and reliability of our model comparisons, we
extended our evaluation by performing CV 50 times. The mean, standard deviation,
and best results obtained for each model 50 CV times are summarized in Table 3. This
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Table 3 Comparative performance analysis through 50 times cross-validations. Bold values show the
best performance.

Performance metrics Model Mean Standard deviation Best result

F1-Score (%) XGBoost 95.70 2.1 98.82
Random Forest 82.40 4.2 91.31
Decision Tree 69.70 5.5 83.63
Support Vector 93.52 2.4 97.78
Naïve Bayes 94.46 1.9 98.18
Logistic Regression 94.75 1.8 97.50

Accuracy (%) XGBoost 94.73 2.5 98.18
Random Forest 94.73 2.5 98.18
Decision Tree 63.01 5.7 80.36
Support Vector 92.16 2.5 98.00
Naïve Bayes 93.46 2.0 98.00
Logistic Regression 93.63 1.9 96.36

AUC Score (%) XGBoost 98.78 0.8 100.00
Random Forest 84.99 4.9 93.59
Decision Tree 59.95 6.0 77.96
Naïve Bayes 97.92 1.4 99.67
Logistic Regression 98.68 0.7 99.67

extensive CV analysis not only provides a more robust assessment of model performance
but also offers insights into the variability of results. The comprehensive findings affirm
that XGBoost consistently outperformed other models, showcasing both the best and most
reliable results among the experimented models.

A calibration curve shown in Fig. 5 is a plot of predicted probabilities against the actual
fraction of positive classes in a dataset. It is a useful tool for evaluating the calibration
of a classification model, which refers to how well the predicted probabilities reflect
the actual probabilities of a positive outcome and may help us interpret how decisive a
classification model is. The calibration curves for the XGBoost model as well as baseline
methods, including logistic regression, random forest, SVC, decision tree, and naïve
Bayes. This comprehensive representation allows for a detailed comparison of calibration
performance across various models. The calibration curves collectively showcase the
superior performance of the XGBoost model in achieving optimal accuracy for the
classification of ME/CFS patients.

In this study, the receiver operating characteristic (ROC) curve was employed as a pivotal
metric to evaluate and compare the performance of the proposed model against various
alternative algorithms. The ROC curve serves as a graphical representation, illustrating
the efficacy of binary classification models by plotting the recall, or true positive rate
(TPR), against the false positive rate (FPR) across different threshold settings. This curve
is particularly instrumental in assessing model performance in scenarios where class
distribution is imbalanced. An optimal model is characterized by an ROC curve that
approximates the upper left corner of the plot, indicative of a high TPR and a low FPR.
The empirical results of this analysis are depicted in Fig. 6, which includes the area under
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Figure 5 Calibration curve for the proposed model (XGBoost).
Full-size DOI: 10.7717/peerjcs.1857/fig-5

the ROC curve (AUC-ROC) for each model. The AUC metric, a widely acknowledged
standard for model evaluation, quantifies the two-dimensional area underneath the entire
ROC curve. Higher AUC values are indicative of superior model performance, reflecting
a model’s ability to distinguish between the classes with greater accuracy. The XGBoost
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Figure 6 ROC curves of different classifiers.
Full-size DOI: 10.7717/peerjcs.1857/fig-6

algorithm emerged as the most effective model, demonstrating the highest AUC value,
followed by logistic regression. This distinction underscores the relative predictive strengths
of these models within the context of our binary classification task.

Within the scope of this study, the SHAP was applied to the model that was generated
by XGBoost. SHAP plots are an effective method for comprehending the role that
each individual feature plays in the process of predicting the output variable. Both the
SHAP summary plot (Fig. 7) and the SHAP beeswarm plot (Fig. 8) showed that ’alpha-
CEHC sulfate’ was the metabolite in the dataset that had the greatest significance for
ME/CFS prediction. Moreover, decreased levels of alpha-CEHC sulfate, hypoxanthine,
and phenylacetylglutamine, and increased levels of N-delta-acetylornithine, and oleoyl-
linolooyl-glycerol (18:1/18:2) [2] were found to increase the risk of ME/CFS. This
information can be put to use in the process of gaining a deeper comprehension of
the underlying mechanisms that are responsible for ME/CFS patients.

DISCUSSION
The current article presents an ML framework to extract potential metabolic biomarkers
and predictME/CFS based on these biomarkers inME/CFS patients. In thisML framework,
combinations of feature selection, ML models, and XAI were explored in depth to create
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Figure 7 SHAP summary plot.
Full-size DOI: 10.7717/peerjcs.1857/fig-7

Figure 8 SHAP beeswarm plot.
Full-size DOI: 10.7717/peerjcs.1857/fig-8

a metabolomics-based diagnostic model in ME/CFS patients. XGBoost, SVM, logistic
regression, random forest, decision tree, and Naïve Bayes classifiers were created based on
all standardized data features and biomarker candidate metabolite features determined
after feature selection. When all features (832 metabolomic features) were employed,
logistic regression performed best with 80.36% accuracy and a Brier score of 0.143.
However, to increase the prediction performance and to obtain a more interpretable
model, feature selection was applied to reduce the number of biomarkers, and the results
were compared. Performance improved after ANOVA-based feature selection, and of the
sixML classifiers, XGBoost showed the best performance and calibration (98.18% accuracy,
98.85% AUROC, 0.023 brier score, and 98% F1-score) with fast computation and strong
generalization ability. It was observed that the accuracy of the model increased by 18%
after feature selection, and therefore, the XGBoost model was used as the final model
for ME/CFS estimation. Furthermore, the XGBoost model obtained 100% sensitivity. A
greater sensitivity value indicates a lower false negative (FN) score. False positive and false
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negative mistakes are widespread in comparative biological studies. As a result, it is critical
to establish the likelihood that an actual effect is material (Li et al., 2020). A lower FN score
is a good sign for ME/CFS patients. This finding is critical since one of the primary aims
of this study is to reduce missing instances of ME/CFS (false negatives). Furthermore,
we extended the evaluation by performing CV 50 times to increase the robustness and
reliability of model comparisons. When the average, standard deviation, and best results
obtained for each model over 50 CV periods are examined, it is confirmed that XGBoost
consistently outperforms other models and achieves both the best and most reliable results
among the tested models. The XAI approach, SHAP, was used to explain the model’s
decisions in the prediction of ME/CFS. The SHAP results indicated that decreased levels of
alpha-CEHC sulfate, hypoxanthine, and phenylacetylglutamine, as well as increased levels
of N-delta-acetylornithine and oleoyl-linoloyl-glycerol (18:1/18:2)[2] increased the risk of
ME/CFS.

Hoel et al. (2021) analyzed ME/CFS metabolic phenotypes using global metabolomics,
lipidomics, and hormone measurements. The researchers analyzed serum samples from 83
ME/CFS patients and 35 healthy controls. They found that certain metabolic changes were
common among the patients, indicating increased energy strain and altered utilization of
fatty acids and amino acids as energy sources. The metabolites were clustered into three
groups (metabolite blocks) with different discriminating impacts on the metabotype (Hoel
et al., 2021). In this study, ME/CFS samples were classified using the identified metabolic
biomarkers, and these metabolites varied between patients and controls.

According to the results, one of the biomarker candidate metabolites for ME/CFS
patients was 1-arachidonylglycerol (20:4), which is an endocannabinoid, a type of molecule
involved in regulating cognitive and physiological processes in the body, including energy
balance, emotion, pain sensation, and neuroinflammation (Kohansal et al., 2022). The
other important metabolite was Alpha-hydroxyisovalerate (AHIV).Mukherjee et al. (2017)
reported AHIV, among several other metabolites, higher in head and neck squamous
cell carcinoma (HNSCC) compared to normal cases. Samples were obtained from cancer
patients and healthy participants (Mukherjee et al., 2017) as mouthwash. Hypoxanthine
was another important metabolite in ME/CFS. Some studies have reported increased
uric acid levels in individuals with ME/CFS compared to healthy control samples. These
findings point to potential disturbances in purine metabolism, including hypoxanthine
(Armstrong et al., 2015; Zolkipli-Cunningham et al., 2021). The findings of the study herein
complement the reported studies, particularly in identifying Alpha-CEHC sulfate and
N-delta-acetylornithine as key metabolites in ME/CFS. Alpha-CEHC sulfate, a vitamin
E metabolite, and N-delta-acetylornithine, involved in the urea cycle and amino acid
metabolism, are significant for their roles in oxidative stress regulation and metabolic
pathways, respectively. These studies collectively emphasize the role of metabolic
disturbances in ME/CFS, pointing to a multifaceted understanding of the disease that
could guide future diagnostic and therapeutic strategies.

According to the SHAP results from the current work, it was determined that the model
was important in the decision-making process for the classification of ME/CFS of alpha-
CEHC sulfate andN-delta-acetylornithinemetabolites. Alpha-CEHC sulfate, also known as
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alpha-tocopherol quinone, is a metabolite of vitamin E. It has antioxidant properties and is
involved in oxidative stress regulation (Traber & Atkinson, 2007). N-delta-acetylornithine,
also known as N-acetylornithine or NAO, is a metabolite involved in the urea cycle and
amino acid metabolism (Liu et al., 2019).

To address benchmarking against prior results, the current study indeed provides a
comprehensive comparison of the proposed method with other classifiers and presents a
detailed comparative analysis (as described in Table 3), conducted through 50 times CVs, to
demonstrate the robustness and reliability of themodel comparisons. This extensive analysis
not only assesses the performance of the proposed XGBoost model; but also compares it
with other models such as RF, DT, SVM, GNB, and LR. The findings, particularly focusing
on metrics like the F1-Score, show that XGBoost consistently outperformed these models,
providing both superior and more reliable results.

The conducted study introduces a novel methodological framework that amalgamates
ML with XAI. The merit of this approach primarily resides in its capacity to enhance the
interpretability of complex ML models, particularly through the incorporation of SHAP.
This integration is innovative as it not only facilitates the identification of key metabolic
biomarkers associated with ME/CFS; but also elucidates their respective contributions
to the predictive model. Further, the adoption of the XGBoost classifier, recognized
for its efficiency in handling structured data, underscores the robustness of the proposed
methodology. The study’s novel use of feature selection techniques significantly streamlines
the model by reducing the number of necessary biomarkers, thereby enhancing both the
model’s practicality for clinical applications and its interpretability. The methodological
rigor is exemplified by the model achieving an exceptional accuracy rate (98.18%) and
a high AUCROC value (98.85%). This combination of high predictive accuracy with
advanced interpretability, through the use of XAI, marks a significant contribution to the
field, potentially paving the way for more accurate and comprehensible diagnostic tools for
ME/CFS. The achieved high accuracy and AUCROC values substantiate the efficacy and
novelty of our methodology, reflecting a substantial contribution to the field of medical
diagnostics.

The study had some limitations. The first limitation is that the data set used is large in
terms of feature sizes but small in terms of sample size. Especially in the era of big data
healthcare, where there are extremely high dimensional features and large sample sizes, ML
andXAI can better reflect powerful learning capabilities. Therefore,more research is needed
and more data needs to be collected for a deeper study of ME/CFS. The second limitation
was not having external validation data, but an attempt was made to check for problems
caused by this limitation using cross-validation. In the study, patients’ metabolomic data
were analyzed and ME/CFS was estimated based on these data. More detailed research is
needed to integrate clinical risk factors, environmental factors, lifestyles, and other factors
related to ME/CFS to improve future predictions and examine the impact of confounding
factors. Further, while the literature indicates that biomarker and predictive research
articles in ME/CFS are limited, further research and wet lab experiments are required to
better understand the relationships between findings and disease. The public dataset in the
study provides information on age and BMI, but omits other crucial demographic details
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like stress levels and working hours. Future research incorporating a broader spectrum
of demographic and lifestyle variables may enhance the model’s ability to distinguish
ME/CFS-specific metabolite molecules as indicative of ME/CFS.

CONCLUSIONS
ME/CFS biomarkers are one of the most urgently needed developments in this field as a
means of definitive diagnosis and monitoring the effectiveness of treatments. With this
need in mind, the current study focused on the interpretable classification of XAI-based
ME/CFS. The results provided a first step toward establishing prognostic models for the
classification of ME/CFS. Future studies in which a larger and independent cohort is
analyzed and compared with other exhausting diseases can likely increase the confidence
of classification and reveal whether plasma metabolomics can serve as a reliable tool for
objective identification and monitoring of ME/CFS patients.
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