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ABSTRACT
Named Data Networking (NDN) has emerged as a promising network architecture
for content delivery in edge infrastructures, primarily due to its name-based routing
and integrated in-network caching. Despite these advantages, sub-optimal
performance often results from the decentralized decision-making processes of
caching devices. This article introduces a paradigm shift by implementing a Software
Defined Networking (SDN) controller to optimize the placement of highly popular
content in NDN nodes. The optimization process considers critical networking
factors, including network congestion, security, topology modification, and flowrules
alterations, which are essential for shaping content caching strategies. The article
presents a novel content caching framework, Popularity-aware Caching in Popular
Programmable NDN nodes (PaCPn). Employing a multi-variant vector
autoregression (VAR) model driven by an SDN controller, PaCPn periodically
updates content popularity based on time-series data, including ‘request rates’ and
‘past popularity’. It also introduces a controller-driven heuristic algorithm that
evaluates the proximity of caching points to consumers, considering factors such as
‘distance cost,’ ‘delivery time,’ and the specific ‘status of the requested content’.
PaCPn utilizes customized DATA named packets to ensure the source stores content
with a valid residual freshness period while preventing intermediate nodes from
caching it. The experimental results demonstrate significant improvements achieved
by the proposed technique PaCPn compared to existing schemes. Specifically, the
technique enhances cache hit rates by 20% across various metrics, including cache
size, Zipf parameter, and exchanged traffic within edge infrastructure. Moreover, it
reduces content retrieval delays by 28%, considering metrics such as cache capacity,
the number of consumers, and network throughput. This research advances NDN
content caching and offers potential optimizations for edge infrastructures.
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INTRODUCTION
The Internet’s architecture has revolved around Internet Protocol (IP)-based
communication for several decades. Based on a host-centric model, IP-based networks face
challenges in efficiently distributing content across numerous autonomous systems. This
distribution process introduces various overheads, including content acquisition, content
management, and security, making IP networks less suitable for content-based
applications such as video sharing, e-commerce, and social media networking (Xylomenos
et al., 2013). This shift has led to the dominant use of the Internet as a content distribution
network.

Two prominent technologies have been proposed for efficiently disseminating content
across networks: peer-to-peer (P2P) and content delivery network (CDN). In P2P
networks, all participating peers can act as clients and servers, with the added functionality
of caching shared content throughout the network infrastructure (Magharei et al., 2013).
Unfortunately, P2P systems have encountered challenges related to inter-ISP traffic,
leading to suboptimal performance in terms of content availability. In contrast, CDN
networks utilize central servers to replicate content across geographically distributed
servers, ensuring rapid retrieval. However, CDNs have also faced performance challenges
due to the traffic engineering practices of Internet Service Providers (ISPs).

To address these shortcomings and facilitate content distribution, the research
community has introduced a novel and clean-slate architecture known as information
centric network (ICN). Information-centric networking (ICN) is a communication
paradigm that prioritizes content over physical location, enabling in-network caching
where information objects are named independently of their locations (Zhang, Luo &
Zhang, 2015). Instead of relying on IP addresses, users access information objects through
their names, and various segments of these objects are cached across network devices like
switches and routers. This fine-grained caching optimally utilizes network buffers, creating
multiple pathways for on-demand content delivery by caching individual chunks or
packets within an information object.

ICN offers simplified content access, improved distribution, enhanced security, and
efficient in-network caching, exemplified by caching architectures such as Data-Oriented
Networks (DONA) and Named Data Networking (NDN). In DONA, domains form
provider/customer/peer relationships using resolution handlers (RH) for managing
content registration tables (Vasilakos et al., 2015). In contrast, the NDN architecture
establishes consumer/provider/producer relationships, enabling all NDN nodes, including
switches, routers, and gateways, to cache substantial content aligned with user interests
(Tavasoli, Saidi & Ghiasian, 2022). NDN communication involves INTEREST packets
initiated by users to request content and DATA packets delivered by the network in
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response. These DATA packets use a hierarchical, human-readable naming scheme for
uniqueness and security (Liu et al., 2017a).

The NDN delivery network comprises three fundamental components: consumers,
providers, and producers (Kalghoum, Gammar & Saidane, 2018).

(i) Consumers: Users who send an INTEREST packet into the network to acquire the
desired data.

(ii) Providers: NDN nodes that cache incoming DATA packets in the path between the
content requestor and creator, containing three functional components: content store,
pending interest table, and forwarding information base.

� Content store (CS): The node’s cache memory stores actual content from DATA
packets, temporarily maintaining information in a table with headings such as
‘Content names’ and ‘Actual data.’

� Pending interest table (PIT): Records entries for all incoming INTEREST packets
along with their requested interfaces, providing details about the interface from which
incoming packets arrived. Information such as ‘Content prefix-name’ and ‘Incoming
interface’ is recorded in the PIT table.

� Forwarding information base (FIB): Maintains forwarding rules to determine the
next route for packet forwarding. It provides information about which NDN nodes in
the network cache the requested packet, recording ‘Content prefix-name’ with their
provider, referred to as ‘Next-hop,’ in the FIB table.

(iii) Producers: Content creators who maintain records of all DATA packets, documenting
all content-related information.

Software defined networking and information-centric networking
Software-defined networking (SDN) is an emerging network architecture that separates
the control plane from the data-forwarding plane, enabling flexible control over network
infrastructure (Mughees et al., 2023). Two main components play crucial roles in SDN-
based content delivery networks, such as information-centric networking (ICN). The
central entity, known as the SDN controller, manages and maintains the network topology
to ensure the availability of various named contents received by participating CR routers.
The second component involves a straightforward forwarding approach, with caching
devices responsible for routing the requested packet along the path directed by the SDN
controller (Ahad et al., 2017).

The integration of ICN into the SDN framework yields numerous advantages (Zhang
et al., 2019; Mahmood et al., 2018). SDN’s intrinsic flexibility facilitates real-time dynamic
routing adjustments, optimizing content delivery paths. It, coupled with centralized
control, enhances content placement, effectively reducing latency and improving the
overall user experience. Rigorous security measures, encompassing robust access control,
encryption, and threat detection, are systematically implemented, ensuring a
comprehensive and steadfast security stance.
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Moreover, scalability enhancements have been introduced to cater to the growing
demands on the network. Integrating emerging protocols and technologies ensures
ongoing compatibility with evolving standards and innovative communication methods,
highlighting the adaptability of the NDN framework. A pivotal benefit is evident in SDN-
controller-aware caching within the NDN delivery system, leading to improved network
routing and caching strategies (Mateen et al., 2023).

(i) Routing: In SDN-based NDN delivery systems, rules, and routing decisions are vital for
efficient data delivery. Centralized control is achieved by centralizing network
management. When a user sends an INTEREST packet, the SDN controller programs
the forwarding information base (FIB) table with routing rules derived from content
names (Kalafatidis et al., 2022). These rules are strategically placed in the FIB table to
map each content name to a specific route or set of routes. When an INTEREST packet
is sent, content routers (CR) consult the FIB table to determine the best route for
fulfilling the request.

(ii) Caching: Caching in SDN-based NDN systems enhances data retrieval efficiency by
strategically placing caches at network points like routers and switches. These caches
store frequently accessed data, enabling swift data delivery upon request. Unlike
traditional IP-based networks, SDN-based content-delivery networks cache data based
on its unique name (Aldaoud et al., 2023). Its distributed caching approach reduces
data duplication, minimizes network congestion, and fosters faster content delivery,
ultimately enhancing overall network performance and user experience.

This article delves into popularity-based content placement in programmable NDN
devices, employing a predictive time-series VAR model to anticipate content popularity
trends. Concurrently, a heuristic algorithm, driven by an SDN controller and based on
topological features, is proposed to identify popular placements for NDN devices.
Additionally, this article aims to reduce miss rates by evaluating the local cache freshness
of each received DATA packet, thereby avoiding the prefetching of frequently accessed
content from external sources. Furthermore, to address data redundancy, a system of
custom-named packets is implemented to prevent intermediate nodes from caching
forwarded packets.

LITERATURE REVIEW
In recent years, several caching schemes have been introduced to enhance the performance
of content delivery networks (CDNs). These schemes can be broadly categorized into two
primary classes: decentralized and centralized caching schemes.

De-centralized caching schemes
Decentralized caching schemes have become prominent. Cache Everything Everywhere
(CEE), which involves caching content at each router, increases redundancy while
decreasing cache diversity (Chai et al., 2012). CacheFilter addresses redundancy, using a
FlagBit to decide whether to cache or forward content (Feng et al., 2015). WAVE, a chunk-
based caching scheme based on the content frequency and inter-chunk distance, was
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introduced by Cho et al. (2012). Probability Caching (PopCache) is a probability-driven
scheme that caches content near consumers with high probability values and at a distance
from low probability ones (Suksomboon et al., 2013). Furthermore, Random Caching (RC)
utilizes 0 to 1 probability values for caching (Tarnoi et al., 2014).

Recent research has highlighted popularity-driven caching strategies. The push-down
push-up (PDPU) policy dynamically moves content closer to users as its popularity
increases, selecting cached content based on popularity (Nour et al., 2020). Another
approach coordinates and shares popularity information among network routers, forming
a popularity-aware caching system (Li et al., 2012). As presented in a different study, Most
Popular Content (MPC) allows routers to cache content once it reaches a locally preset
popularity threshold, with each router individually setting its threshold (Bernardini,
Silverston & Festor, 2013). In popular content caching, Dynamic Fine-Grained Popularity-
Based Computing (D-FGPC) is introduced as an extension of MPC. D-FGPC employs a
flexible popularity threshold based on Interest frequency and cache capacity (Ong et al.,
2014). Another strategy in the context of popularity-driven placement entails the
implementation of a time-series autoregressive (AR) model (Liu et al., 2019). This
approach enriches our understanding of content popularity dynamics by deliberately
considering lagged orders associated with relevant variables.

As exemplified by CRCache and BEACON, Centrality router-based optimal placement
schemes strategically leverage content popularity and key routers to optimize content
placement for efficient delivery (Wang et al., 2014; Xiaoqiang, Min & Muqing, 2016). As
demonstrated in Zheng et al. (2019), collaborative caching schemes consider content
popularity and router betweenness centrality. It involves storing popular content on highly
central routers and less popular content on routers with lower centrality. Another
placement scheme is introduced, making popularity and placement decisions based on the
exponential weighted moving average (EWMA) and the mathematical derivation of node
centrality (Liu et al., 2021). Despite its effectiveness, the method encounters delays
associated with the cache’s high proximity to users.

To address the challenge, Popularity-Aware Caching (PaCC) enhances content
proximity to consumers by incorporating hop-distance awareness in placement decisions
(Amadeo et al., 2022). However, hop-distance-based placement entails inefficiencies for
large networks. Another method presented in Dutta et al. (2022) makes caching decisions
based on node distance cost and congestion cost to optimize content placement decisions.
Nevertheless, it suffers from suboptimal performance in retrieval delays due to its high
computational cost. Subsequently, the Caching Popular Fresh Content (CPFC) strategy is
introduced to reduce miss rates and retrieval delays, dynamically assessing both popularity
and content freshness for cache suitability (Amadeo et al., 2020). In the context of caching
policies for edge and core routers, as discussed in Amadeo et al. (2021), the approach
prioritizes placing the most popular content at the edge and popular, long-lasting content
on core routers.

The existing research on decentralized-based cache placement schemes has made
valuable contributions, but has certain limitations and gaps. Some schemes utilize
probabilistic caching based on content request rates, potentially resulting in suboptimal
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cache hit rates due to fixed probability thresholds. Others rely on popularity-driven
metrics, often leading to reduced cache hit rates by focusing on a single factor, such as
frequency rate. Some schemes incorporate betweenness centrality for cache placement, but
it may cause delays in content retrieval, especially when the content provider is distant
from consumers. Additionally, specific caching criteria consider popularity and non-
transient freshness. However, no mechanism exists to evaluate each cached content’s local
residual freshness period, leading to cache miss rates. Table 1 summarizes the objectives
and limitations of the different cache placement schemes.

Centralized caching schemes
Researchers propose a central-entity-based caching approach within Information-Centric
Networks (ICN) to optimize resource management. An autoencoder-based model predicts
content popularity by analyzing spatial-temporal data collected by the SDN controller.
This model empowers routers to employ a softmax classifier, selecting crucial nodes based
on betweenness centrality to strategically place popular content (Liu et al., 2017b;

Table 1 Summary of existing cache placement schemes.

Ref Cache placement method Objectives Limitations

Chai et al. (2012) All the intermediate nodes cache
content

Align demanded content with requesting
users

Data duplication, limited content diversity

Cho et al. (2012) Cache chunks by frequency Stored chunks by related distance Single-factor popularity prediction reduces
cache hit ratio

Suksomboon et al.
(2013)

Cache by probability metric Assign [0,1] probability to all named
packets

Static threshold caused lower hit rate

Nour et al. (2020) Place content by request count Get popular content closer to users Greater distance results in more hops

Bernardini,
Silverston &
Festor (2013)

Cache data with popularity metric Establish and maintain local popularity
tables within nodes

Single-factor estimates achieved
suboptimal cache performance

Ong et al. (2014) Cache popular content with flexible
threshold

Identify popular placements through
topology features

Delays due to router’s low user proximity

Wang et al. (2014) Cache content based on popularity-
routers correlation

Identify important routers based on their
distribution power

Placement in centrality nodes increases
hop-count

Xiaoqiang, Min &
Muqing (2016)

Central nodes caching based on
discrete request rates

Select contents based on their discrete
arrival rates

Ignoring historical data led to low cache hit
rate

Amadeo et al.
(2022)

Caching on closeness-aware nodes Create hop-count based closeness metric
for content providers and consumers

Computationally expensive due to updates
at forwarding nodes

Amadeo et al.
(2020)

Cache content by popularity and
freshness

Base caching decisions on a combination
of popularity and freshness

High cache miss rate due to fixed freshness
threshold

Liu et al. (2017b) Popularity prediction in SDN delivery
network using auto-encoders

Forecast popular content from request
arrivals

No method defined to select optimal
placements

Asmat et al. (2020) Cache frequently accessed content with
in-band communication

Nodes keep local and network popularity
tables

The computational overhead increases due
to dual popularity table functionality.

Zha et al. (2022) Dynamic threshold for popular
content caching

Select content using exponential weighted
average

Limited history-based selection led to low
cache hit

Liu et al. (2019) Autoregressive model-driven popular
content placement in NDN devices

Maintained the lagged values of relevant
popularity variables

High retrieval delays due to absence of
strategical placement scheme.
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Mughees et al., 2021). In the article (Narayanan et al., 2018), the authors employed the
Long Short-Term Memory (LSTM) model for popularity prediction, but the lack of a
strategically implemented placement approach results in heightened retrieval latency.

In recent work (Dudeja et al., 2022; Liu et al., 2022), an SDN-based secure content
caching and forwarding approach was introduced. Routers maintain an index table in their
cache memory with unique signatures for data. However, it is noteworthy that the
implemented placement strategy for content caching is based on frequency count, which
may not be sufficient to capture the changing trends over time, resulting in heightened
delays in content retrieval.

While centralized-based caching in networks has utilized topological characteristics like
betweenness centrality for content placement, this can result in longer content delivery
times due to central nodes being distant from consumers. Recent research introduced
closeness-aware metrics based on hop counts, which may increase computational and
delivery costs without accounting for variable link capacities and latency. Some studies
implement popularity-aware caching across multiple autonomous systems, basing caching
decisions on request counts rather than consumer historical requests, potentially leading to
suboptimal cache hit rates.

The limitations identified in the current body of research underscore the necessity for
our study, aiming to bridge these gaps and present a comprehensive solution by
introducing a novel caching policy. This research advocates for centralized popularity-
aware placement in popular NDN nodes (PaCPn), where content popularity is calculated
not solely based on request counts, as seen in existing studies, but also considers previous
lag values for each requested packet to predict future popular content. Consequently, a
multi-variant Vector Autoregression (VAR) popularity model is proposed, anticipating
future popular content based on historical values of the frequency count and previous
popularity scores.

To improve the efficiency of content delivery and minimize delivery times, we introduce
a closeness-aware heuristic algorithm for caching popular content. This algorithm assesses
node proximity through a metric divided into distance cost to consumers and content
delivery time. Diverging from studies that rely on hop distance-based closeness, we
leverage a content frequency rate to ascertain a node’s proximity to specific content. The
preferred caching location is identified as a node with a high closeness metric for a given
content.

PROBLEM STATEMENT
Caching in named data networking (NDN) enhances content delivery efficiency. NDN
replaces traditional IP-based networks with a data-centric approach, where content is
named and cached at intermediate nodes. Popularity-based caching placement strategies
gain importance in NDN to optimize content access. By prioritizing frequently requested
content for caching, these strategies use the intrinsic data-centric nature of NDN, ensuring
that popular content is readily available at closer network locations. It minimizes retrieval
delays while enhancing the cache hit rate.

Qaiser et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1854 7/39

http://dx.doi.org/10.7717/peerj-cs.1854
https://peerj.com/computer-science/


In network environments, content popularity optimization is crucial for efficient
caching strategies, significantly impacting both performance and resource utilization.
“Performance” encompasses the overall efficiency, speed, and responsiveness of the
caching system, achieved through strategically identifying and caching frequently
requested content. It minimizes content retrieval latency, ensuring the swift delivery of
popular data from closer network locations and contributing to a seamless user experience.

Moreover, content popularity optimization is crucial for optimizing “resource
utilization.” By focusing on caching frequently requested content, redundant data retrieval
requests are minimized, conserving bandwidth and reducing server load. This efficient
resource allocation ensures that network resources are used effectively, fostering a cost-
effective and sustainable caching infrastructure. In essence, content popularity
optimization enhances both content delivery performance and the judicious utilization of
network resources.

NDN, inherently distributed, introduces complexities in caching and forwarding
decisions due to its decentralized nature, resulting in inefficiencies such as suboptimal
content retrieval and resource allocation. The inefficiency arises from the lack of
centralized control, making coordinating caching strategies effectively across the network
challenging. Recognizing these challenges, adopting a centralized Software-defined
networking (SDN) environment becomes imperative. The deployment of content
popularity placement schemes within a centralized SDN proves pivotal in addressing these
inefficiencies. The SDN controller strategically caches frequently requested content,
effectively mitigating content retrieval latency and optimizing resource allocation,
enhancing overall network performance and significantly improving data availability.
With a higher percentage of cached content, SDN ensures a more efficient and responsive
network, providing a comprehensive solution to improve efficient content delivery and
data availability within the network.

The accompanying Fig. 1 illustrates a network diagram of the default Cache Everything
Everywhere (CEE) placement scheme, where NDN nodes cache the packets passing
through them. In this figure, the nodes cache the prefixes referred to as ‘/prefix/content1’
and ‘/prefix/content5’. All the content routers (CRs) on the left cache the ‘/prefix/content1’
name prefix, while nodes on the right store the ‘/prefix/content5’ name prefix. This caching
behavior occurs during communication between CR2 and the content producer and
between CR3 and the content producer. By default, the NDN network implements the CEE
caching scheme with least recently used (LRU)–based replacement, leaving copies of data
at each NDN node. This content replication at every NDN node can lead to data
redundancy problems. Nevertheless, previous caching schemes, such as Leave Copy Down
(LCD) and Move Copy Down (MCD), have been introduced to mitigate data duplication.

Specific caching policies ground their decisions on content popularity to improve cache
diversity. However, the rigidity of fixed popularity threshold values may lead to an
escalation in inter-exchange traffic (Suksomboon et al., 2013; Bernardini, Silverston &
Festor, 2013; Nguyen et al., 2019). Subsequently, specific popularity-aware caching
approaches incorporate popularity and freshness metrics as decision factors
(Ong et al., 2014; Dudeja et al., 2022; Liu et al., 2022; Gupta et al., 2023). Unfortunately,
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they achieve suboptimal performance in maximizing cache hit rates because their caching
decisions are primarily based on request rates, regardless of the network’s topological
characteristics. In contrast, existing work employs betweenness centrality-based cache
placement schemes to optimize the cache hit rate (Wang et al., 2014; Xiaoqiang, Min &
Muqing, 2016; Zheng et al., 2019). These schemes base their caching decisions on the
popularity metric and a set of central nodes. However, there is a possibility that central
nodes may be distant from consumers, which cannot guarantee a reduction in content
retrieval delay.

Additionally, some work employs caching based on a popularity-driven closeness
metric (Amadeo et al., 2022) to improve content delays. This approach utilizes a placement
selection primarily based on hop distance, resulting in inefficiencies in large network
scenarios. In conclusion, as illustrated in Fig. 2, the NDN content delivery network visually
represents in-network caching based on existing popularity and freshness metric-driven
decision factors.

Problems in existing cache placement strategies

� Suboptimal cache placement: Decentralized caching control has led to less-than-
optimal cache placement decisions.

� One-factor-driven content popularity: Depending on frequency-based content,
popularity may not fully capture the nuanced aspects of consumers’ behavior when
requesting content.

� Popularity and freshness thresholds: Fixed thresholds for content popularity and
freshness in caching decisions have resulted in suboptimal cache hit ratios.

Figure 1 NDN network with default CEE caching scheme.
Full-size DOI: 10.7717/peerj-cs.1854/fig-1
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� Weighted average-based popularity prediction: Inefficient cache miss rates are
observed because past popularity records for specific content items are not considered in
the weighted moving average used for popularity prediction across different time
intervals.

� Centrality-metric-based placement selection: Choosing popular caching devices based
on betweenness centrality can lead to high delays in content retrieval due to the distance
between the source and content consumers.

� Hop-distance-based cache placement: Making cache placement decisions based on
limited topological characteristics, including hop distance, has resulted in suboptimal
content retrieval delays.

� Increased packet exchange in NDN: The exchange of traffic within caching devices has
increased due to adding a “Flag_bit” in the DATA packet field, caching content near the
producer but far from the consumers.

Objectives of the study
In summary, the objectives of this work aim to improve caching placement strategies:

� Programmable caching devices: Transform caching devices into storage units by
implementing a centralized controller-driven caching system to manage caching within
network devices.

� Multi-factor content popularity: Develop a caching approach that considers factors
beyond content frequency, including historical popularity records and request counts, to
predict content popularity more accurately.

Figure 2 Existing popularity-aware caching placement. Full-size DOI: 10.7717/peerj-cs.1854/fig-2
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� Time-series model for popularity prediction: Utilize satistical regression-based time
series models to predict content popularity within discrete time intervals, thereby
reducing cache miss rates by analyzing historical popularity trends.

� Topological-features-driven placement:Optimize the placement of popular content by
considering topological characteristics like ‘Distance cost,’ ‘Delivery time,’ and ‘Content
status.’

� Controlled traffic for NDN packets: Implement controlled traffic management using a
customized DATA packet with a ‘Cacher’ field, allowing authorized sources to cache the
packet while preventing intermediate nodes from caching it.

� Evaluating content freshness or validity: Calculate local freshness periods to reduce
cache miss rates by piggybacking content onto requested sources.

Research contributions
This research article introduces a framework called ‘PaCPn,’ which utilizes an SDN
controller to make informed caching decisions for NDN caching devices. This centralized
caching system enhances network efficiency by dynamically managing caching resources
and improving the transmission of NDN packets. Unlike complex decentralized caching
decision strategies used in previous studies, this centralized approach offers a
comprehensive solution that allows the network to quickly adapt to the requested content,
optimizing resource utilization and reducing data redundancy. The research article
addresses the following research questions:

1) How can the SDN controller be equipped with intelligence to periodically identify a
set of popular contents for a content delivery network?

� Highly popular content is cached on edge devices using a multi-variant time series
model (VAR) embedded within the SDN controller.

� The VAR model predicts popular content based on historical data, including
‘Frequency rates’ and ‘Popularity rates.’

2) What mechanisms does the SDN-controller employ to determine the set of popular
nodes for caching the popular contents?

� PaCPn employs a closeness-aware heuristic algorithm guided by the SDN controller
to place popular content strategically.

� Placement decisions consider factors like ‘distance cost’ (cache node proximity to
consumers) and ‘delivery cost’ (time required to deliver content to designated
consumers).

3) What strategy does the SDN caching network use to store packets with a valid
residual freshness period when the DATA packet is piggybacked to the requested
source?
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� PaCPn improves traffic management by adding fields like ‘Cacher name’ to prevent
data duplication and control traffic within caching devices during piggybacked
content delivery.

4) What mechanism does the SDN system use to prevent intermediate nodes from
caching a copy of content when communication occurs between the requested source
and content producer?

� Caching devices utilize ‘Generation time’ and ‘Expected time’ fields to calculate each
DATA packet’s local residual freshness period, ensuring content validity and
freshness.

5) What replacement strategy is employed in this article?

� In cases of full caching space, less popular content is replaced with higher-priority
content based on popularity values.

� This optimization improves cache hit ratios and reduces content delivery delays.

PROPOSED SOLUTION
The proposed solution, PaCPn, implements on-path caching. When consumers send
INTEREST packets, they include a forwarding hint field to determine the optimal path for
retrieving the corresponding DATA packet, following the same route for delivery to the
requesting consumer. This approach, known as ‘on-path’ caching, is a central focus of this
research. It aims to predict the future popularity of incoming INTEREST packets at various
time intervals, considering the dynamic evolution of content popularity. To achieve this, a
multi-variant vector autoregression (VAR) model estimates the popularity of incoming
INTEREST packets at different temporal intervals. Additionally, a heuristic algorithm
identifies popular caching nodes for storing the predicted popular content. The network
architecture, illustrated in Fig. 3, clearly separates the control and network components.
The network architecture is structured into two key layers: a data layer comprising
multiple NDN programmable nodes responsible for content caching based on popularity
values and a control layer managed by HyperFlow, an SDN controller. Both caching
devices and content producers establish out-of-band communication with the HyperFlow
controller. This separation enables centralized control and intelligent caching decisions.
The HyperFlow controller plays a pivotal role in the network by recording incoming
‘Name-prefix’ at discrete time intervals. It tracks historical values of ‘Request rate’ and
‘Popularity value’ for each requested name component. A VAR popularity model then
utilizes these values to enhance content popularity predictions.

Minimizing delays is crucial to optimizing content placement within the NDN network
and enhancing user experience. This optimization involves considering delivery times
between caching points and consumers. A strategic placement approach is developed,
factoring in the distance of caching points from consumers, delivery cost, and the status of
requested content at evaluating caching points. This strategy establishes a closeness metric
guiding the optimal placement of popular content. The SDN controller communicates
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forwarding signals to content producers, ensuring that popular contents, as predicted by
the VAR popularity model, are directed to their closest optimal caching points. This
process lies at the core of the proposed framework ‘PaCPn,’ designed for enhanced content
delivery. Here are the key points explaining the proposed framework (PaCPn):

� Data layer: It comprises hierarchical edge nodes that cache popular content, including
Ingress nodes for incoming requests, Egress nodes for forwarding requests to producers,
and External nodes to fetch producer data. These nodes maintain tables like the ‘CS
table,’ ‘PIT table,’ and ‘FIB table.’

� Control layer: The controller systematically records content requests in a ‘Content
Information Base’ (CIB) table, updating the ‘Request Count’ in real-time and
monitoring incoming requests. Additionally, it manages a ‘Historical Table’ (HT),
documenting past values of ‘Request count’ and ‘Popularity’ for each content. With its
dual functionality, the controller efficiently manages current requests while also
analyzing and comprehending historical trends and popularity dynamics associated
with various content across the network.

� Application layer: Network applications on this layer monitor changes in network
topology. The controller employs Link-State routing protocols and the Dijkstra
algorithm to create routing tables containing the best paths, which are subsequently
installed in the FIB of programmable nodes.

� Producer: The content producer caches DATA packets, maintaining a Content
Table (CT) with attributes such as ‘Generation_time,’ ‘Version,’ and
‘Intervention_time.’ ‘Generation_time’ signifies the timestamp of DATA packet
creation, ‘Version’ indicates the count of updates to the content, and ‘Intervention_time’

Figure 3 Popularity-aware caching in popular programmable NDN nodes (PaCPn).
Full-size DOI: 10.7717/peerj-cs.1854/fig-3
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represents the duration of data freshness during which a copy remains valid for caching
in content routers.

Decision parameters for content caching
The consumer’s requested content is strategically cached on edge devices based on specific
decision parameters.

Content popularity

Popularity is one of the most important decision factors to optimize retrieval delays and
reduce inter-exchange traffic. However, a time series-based multivariate VAR regression
model is considered to predict the popularity of the content delivery network driven by the
SDN controller.

(i) Vector autoregression model (VAR): The VAR model-based content popularity
prediction has transformed content distribution and network management. VAR
models, adept at analyzing historical usage patterns, user preferences, and network
conditions, optimize content delivery, resource allocation, and placement (Hyndman
& Athanasopoulos, 2018). Proficient in handling time-series multivariable data, VAR
models offer valuable insights into content demand patterns over time. They are
interpretable, providing insights into relationships between requested contents and
historical popularity trends and addressing uncertainty in predicting fluctuating
content popularity in NDN environments. As a multivariate time series model
extending univariate autoregressive models, VAR predicts requested content
popularity based on lagged popularity and recent count variables (Prabhakaran,
2019).
The VAR model stands out for predicting popularity based on multiple variables and
their lagged orders for several reasons. In contrast to autoregressive models focusing
on singular variables, VAR excels by considering intricate relationships among
multiple factors simultaneously. ARIMA, suitable for univariate data, may struggle in
complex multivariable scenarios, while LSTM, which demands non-linear
relationships, can be computationally intensive and data-demanding. VAR strikes a
balance, offering interpretability, scalability, and a nuanced understanding of dynamic
relationships influencing content popularity over time.
The VAR model is trained on data collected from edge routers, including distinct
consumer requests. The time series data of content popularity and frequency count
regarding the requested contents are the independent variables to predict future
popularity. Below is a brief explanation of the steps in demonstrating a VAR model
(Haslbeck, Bringmann & Waldorp, 2021).

(a) Data preparation: The article utilized real data collected from edge caching nodes,
detailing the request count against each content transmitted over the edge NDN
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nodes within discrete time intervals. The popularity variable is constructed
discretely for each piece of content using an exponential weighted moving average
(EWMA) statistical distribution. To prepare the dataset for VAR modeling, we carry
out the following data preprocessing steps:

� Timestamp alignment: In the first step of data preparation, each request count is
accurately aligned with its corresponding data and period.

� Missing data handling: In the second step, missing values are carefully examined.
This step is crucial to ensure the completeness of the dataset, excluding any
potential bias in the model training process that could arise from incomplete
information. Addressing missing values is imperative for maintaining the integrity
and reliability of the VAR model, as any gaps in the data could adversely affect its
accuracy and predictive capabilities.

� Data formatting: In the third step, the data is organized into a structured layout.
Each timestamp is assigned to a row, and each variable used in the analysis is placed
into individual columns. This organized format simplifies data handling and
facilitates subsequent modeling.

� Data normalization: In the fourth step, normalization is performed. It involves
converting content-name strings to numerical integers in the dataset. The
normalization process ensures that all variables are adjusted to a consistent scale, a
crucial aspect of VAR modeling where each variable is treated equally. Common
normalization methods, such as min-max scaling, are employed in this step.

(b) Lag order selection: Selecting the appropriate lag order is a critical step in VAR
modeling, influencing the model’s ability to capture temporal data dependencies.
This study employed common information criteria, such as Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC) to quantitatively
determine the optimal lag order, balancing model complexity and explanatory
power. Lower AIC and BIC values signify better model fit. The selection process
entails fitting VAR models with various lag orders and comparing these criteria to
identify the one that best represents the data structure. This approach enhances the
VAR model’s ability to capture relevant temporal dynamics, ultimately improving
the accuracy of content popularity predictions in the NDN caching system, as
discussed in Liu et al. (2019).

� Akaike information criterion (AIC): is a measure of the model’s quality that
considers the number of parameters used in the model. VAR modeling aims to
minimize the AIC value by selecting a lag order with an appropriate balance
between model fit and complexity. The AIC is calculated as: AIC ¼ 2k� 2lnðLÞ
– K is the number of estimated parameters in the model.
– Ln(L) is the natural logarithm of the likelihood function, a measure of how well
the model fits the data.
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� Bayesian Information Criterion (BIC): is another model fit measure for model
complexity. Like AIC, VAR modeling aims to minimize the BIC value to find a lag
order that balances model fit and complexity. The BIC is calculated as:
BIC ¼ k � lnðnÞ � 2lnðLÞ
– K is the number of estimated parameters.
– In(n) is the natural logarithm of the number of observations.
– In(L) is the natural logarithm of the likelihood function.

(c) Estimation: in VAR modeling is vital in determining the model’s coefficient. The
ordinary Least Squares (OLS) technique is selected as the estimation technique
(ERIC, 2021) due to its simplicity and the specific nature of VAR modeling. OLS is a
widely used technique that minimizes the sum of squared differences between the
observed values and the values predicted by the model. In the context of VAR
modeling, the coefficients are estimated in a way that best fits the historical data and
minimizes the overall prediction error.

� Ordinary least squares (OLS):We have two independent variables, such as Y1 and
Y2: Y1, which represents the popularity value, and Y2, which represents request-
count, with the lag order of 1 to predict the popularity for next interval, and the
OLS estimation can be described as follows:
Y1ðtÞ ¼ c1 þ a11 � Y1ðt � 1Þ þ a12 � Y2ðt � 1Þ þ e1ðtÞ
– Y1(t–1) and Y2(t–1) are the values of independent variables with their respective
timestamp.
– Y1(t) is an estimated value of variable.
– a11, a12, and c1 are the co-efficient metrics that are needed to be estimated.
– e1(t) is a difference between the observed and predicted values at time t.

The OLS estimation involves finding the values of a11, a12, and c1 that minimize the
sum of squared differences between the observed values and the values predicted by
the model for each equation in the system.

(d) Model diagnostic: Model diagnostic in VAR modeling for content popularity
prediction in NDN content delivery networks primarily focuses on assessing the
stationarity of the time series data. Stationarity is a critical assumption that ensures
that the statistical properties of the data remain consistent over time. Augmented
Dickey-Fuller (ADF) is applied toconfirm stationarity. If the data is found to be
non-stationary, transformation is required to make it suitable for VAR modeling.
Detecting and addressing non-stationary is fundamental in building a reliable VAR
model for content popularity prediction in NDN environments.

(e) Model evaluation: Model evaluation is crucial in VAR modeling for content
popularity prediction in NDN content delivery networks. Evaluation metrics are
essential to ensure the model’s effectiveness. Root Mean Square Error (RMSE) as a
metric is suitable for this specific problem as it accurately assesses the model’s ability
to capture variations in content popularity over time. RMSE is particularly sensitive
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to prediction errors, ensuring that prediction errors, whether large or small, are
penalized, providing a robust evaluation of the model’s performance.

(ii) Popular node selection: Strategically caching popular content at specific points
provides various advantages, such as enhanced network throughput, reduced
latency, and increased cache hit rates. The proposed heuristic algorithm selects a list of
popular caching points for all requested packets using two metrics: closeness towards
the consumer and status of the requested content.

(a) Node closeness from the consumers: In the context of edge caching and network
optimization, the closeness of edge caching devices to network consumers is crucial
for delivering popular content quickly and efficiently. This proximity is typically
measured using topological metrics: Delivery time and Distance cost. These metrics
are:

� Delivery time: It represents the time taken for a DATA packet to be transmitted
from the caching point, the ‘Name Data Networking caching device,’ to the set of
ingress nodes, which serve as the entry points for all incoming request packets. The
packet is then piggybacked from the ingress points to the source cache. (1) Ingress
nodes: These are the points where INTEREST packets enter the network, directly
connected with the network consumer. (2) Source cache: All the participating
caching points in the NDN network store highly requested contents close to the
network consumers. (3) Piggybacked: Forwarding the DATA packet along the
same route the requested INTEREST packet used for transmission.

deliveryTimeðj;ckÞ ¼ link cost to deliver ck
2

(1)

� Distance cost: The incorporation of the distance cost metric in cache placement
strategies offers several advantages. Firstly, it helps optimize content delivery by
considering the actual physical or logical distance, leading to more efficient and
faster data packet transmission within the content delivery network. Secondly,
factoring in the hop count between the ingress and caching points enables a more
granular and location-aware approach to caching, improving overall content
retrieval. Lastly, this metric considers the participating ingress nodes, enhancing
the adaptability of the caching strategy to the network’s specific structure and
demands.

distanceCostðj;iÞ ¼ Hop distance from j to i
number of ingress nodes

(2)

The closeness C of the node j for content ck at time T is denoted as a ratio between
Eqs. (1) and (2).

C½T�ðj;ckÞ ¼
deliveryTimeðj; ckÞ
distanceCostðj; iÞ (3)
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(b) Status of content: This study prioritizes caching popular content at their respective
popular nodes by considering the node’s closeness metric and the request count for a
specific content. The combination of request count and closeness metric allows us to
make more informed decisions by considering the content’s overall popularity and
proximity to consumers. This combined approach helps ensure the selected popular
nodes are frequently requested and strategically located for efficient content
delivery. When both the closeness metric and request count for content ck are high
at node j, it is more likely to select node j as the popular node for ck. The content’s
status at node j depends on the number of times content ck appears. The content ‘ck’
cache status at node j within the time window T is represented as:

C½T�ðj;ckÞ ¼
delivery timeðj; ckÞ
distance costðj; iÞ � OccurrencejðckÞ (4)

(iii) Content freshness: When a fresh copy of content arrives at the server or producer, it
updates the content’s information. This process involves setting the generation_ time
gðtÞ to the current time, incrementing the version TðvÞ to indicate it is an updated
version, and calculating the intervention_time TðviÞ as the difference between the new
and previous generation_times (Feng et al., 2022). The generation time reflects the
current creation time, the version is incremented, and intervention time quantifies the
time difference between the new and previous versions. Additionally, the producer
calculates the expected residual time of the content upon the arrival of the updated
copy, denoted as E[TðresÞ]. This calculation considers the difference between the
content’s generation_time gðtÞ and the current time cðtÞ, as well as the ratio of
intervention_time TðviÞ to content version TðvÞ. E½TðresÞ� ¼ TgðtÞ � TðviÞ

TðvÞ
� TcðtÞ: When

an INTEREST packet arrives at the content producer, the producer attaches the
expected residual_time eðtÞ and generation_time gðtÞ to the corresponding fields of the
DATA packet. Upon the arrival of the DATA packet at on-path nodes, the node first
calculates the residual local caching time presented as LðckÞ½TðresÞ�; the local residual
time of content ck.

LðckÞ½TðresÞ� ¼ TgðtÞ � TeðtÞ � TcðtÞ (5)

Proposed algorithms
The training process of the VAR popularity model, as outlined in Algorithm 1, follows a set
of steps. In the first step (STEP-1), the algorithm initializes the coefficient matrix,
representing the weights associated with the timestamp values of each variable. Iterative
loops set the initial weights for the VAR coefficients, preparing the model for subsequent
estimation.

In (STEP-2), the algorithm utilizes the ordinary least squares (OLS) technique to
estimate the coefficients. It constructs lag matrices and employs OLS to update the
coefficient matrix iteratively. This process educates the model about the relationships
between past observations and future values.
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In (STEP-3), the algorithm forecasts future content popularity using the trained VAR
model. It employs the estimated coefficient matrix to predict popularity for the upcoming
time steps. Iterative loops traverse forecast steps, leveraging the model’s understanding of
temporal dependencies.

Finally, in (STEP-4), the algorithm evaluates the model’s efficiency by computing each
variable’s root mean squared error (RMSE). RMSE assesses the alignment of predicted
popularity values with actual values for the forecasted time steps, providing insights into
the model’s accuracy and predictive capabilities.

Once the VAR model is trained, it is deployed for real-time predictions in a
programmable content delivery network environment. Real-time predictions are generated

Algorithm 1 Training the VAR model.

1: Input Parameters:

2: Data: a matrix where each column represents a time series variable.

3: Lag: define the Lag order.

4: num: represents the number of variables.

5: obs: represents the number of observations. STEP-1

6: for i to num do

7: for j to Lag do

8: Coefficient-matrix[i][j] = initial-weights

9: end for

10: end for

STEP-2

11: for i to num do

12: for j to Lag do

13: X = construct Lag_matrix(data[i], Lag)

14: Y = data[i][Lag+1 : obs]

15: end for

16: Coefficient-matrix[i][j] = solve-coefficient (X, Y)

17: end for

STEP-3

18: for i to num do

19: for t = obs+1 to obs+Forcaststep do

20: Popularity[i][t] = PredictPopularity (Coefficient-matrix[i],data[i][t-lag : t-1]

21: end for

22: end for

STEP-4

23: for i to num do

24: Calculate RMSE for data[i][obs+1:obs +Forcaststep] and Popularity[i]

25: end for
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by loading a pre-trained VAR model with coefficients and hyper-parameters. Data for the
current timestamp, including relevant variables and past observations from the HT, is
collected. Subsequently, predictions are made using the loaded coefficients matrix to
estimate content popularity for the future timestamp.

Algorithm 2 Closeness_aware heuristic algorithm.

1: Set of requested content Cr

2: Set of network cachers Nc

3: Nn  CountðNcÞ
4: Nr  CountðCrÞ
5: for all j to Nr do

6: for all i to Nn do

7: Compute CT ½Nc½i�;Cr½j�� � � � ���Eq. (4)
8: insert (Nc½i�;C½Nc½i�;C r½j�� ) into the closeness metric named as List[j].

9: end for

10: end for

11: for all j to Nr do

12: for all i to Nn do

13: sort List[i] in ascending order using the insertion sort algorithm.

14: end for

15: end for

16: for all j to Nr do

17: for all i to Nn do

18: if First item in List[j] = =Nn[i] then

19: insert [Nc½i�;Cr½j�;CT ½Nn½i�;Cr½j�� into the Popular cacher List (PL)

20: end if

21: end for

22: end for

23: Repeat

24: for all j to Nn do

25: if First item in PL[j] == Nc[j] then

26: insert Nc[j] into (CIB) table cacher field.

27: remove content Cr[j] from PL List

28: end if

29: end for

30: until PL[j] =! 0

31: Repeat

32: sending name-prefix with their corresponding cacher name to the content producer.

33: until (Nr!==0)
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The closeness-aware heuristic algorithm (Algorithm 2) optimizes content caching in a
NDN environment. This algorithm takes as input the set of requested content Cr and the
set of network cachers Nc. It iterates through each requested content and computes a
closeness metric CT ½Nc½I�;Cr½j�� for each caching device in the network. The closeness
metric is calculated based on Eq. (4), resulting in a list for each requested content.

The algorithm then sorts these lists in ascending order using the insertion sort
algorithm, effectively arranging caching devices regarding closeness to the requested
content. Following this, the algorithm identifies the caching device with the highest
closeness value (first item in the list) for each requested content. The chosen caching device
and the associated content are inserted into the Popular Cacher List (PL).

In the subsequent iterations, the algorithm updates the Content Information Base (CIB)
table by associating each caching device with its corresponding content, effectively
populating the estimated popular nodes or NDN caching devices. This process continues
until the Popular Cacher List is empty.

The repeated steps involve sending name prefixes with their corresponding caching
device names to the content producer, ensuring that the requested contents are directed to
their estimated popular caching devices. This iterative process continues until all requested
contents are processed.

In summary, the closeness-aware heuristic algorithm efficiently selects the most suitable
caching device for each requested content, optimizing the distribution of content across
the NDN caching network. The algorithm’s reliance on closeness metrics enhances the
effectiveness of content placement, contributing to improved cache hit rates and reduced
content retrieval delays.

Processing of INTEREST packet at programmable NDN node
The INTEREST packet processing algorithm (Algorithm 3) in NDN involves crucial steps
for handling incoming requests. When an INTEREST packet arrives, the algorithm
conducts a lookup in the content store (CS) table. If a match occurs (CS hit), indicating
that the requested data is cached, the algorithm searches for the corresponding DATA
packet and promptly returns it to the intended interface.

In scenarios with no match in the CS, the algorithm checks the pending interest
table (PIT) to determine if an entry already exists for the requested content (PIT hit). Upon
a PIT hit, the algorithm updates the existing PIT entry by adding the incoming interface
and awaits the corresponding DATA packet. Notably, the packet is not forwarded in this
scenario, optimizing resource utilization.

Subsequently, if there is neither a match in the CS nor a PIT hit, the algorithm examines
the forwarding information base (FIB) table. If a match is found in the FIB, the algorithm
creates a new PIT entry for the requested INTEREST packet. Following this, the packet is
forwarded based on the flow rule specified in the FIB.

When none of the CS, PIT, and FIB conditions are met, indicating a miss, the algorithm
triggers an OF_Packet_IN message to the controller. The controller responds by installing
a flow rule into the FIB using OF_FLOW_MOD, enabling the algorithm to forward the
packet to the next station according to the FIB.
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The proposed solution ensures effective request handling through CS, PIT, and FIB
tables to enhance the efficiency of INTEREST packet management. It minimizes network
latency by dynamically adapting to the current state. Integrating flow rules optimizes
content retrieval or packet forwarding based on real-time conditions.

Figure 4 presents efficient INTEREST packet management utilizing CS, PIT, and FIB
tables. It ensures effective request handling by retrieving cached content or forwarding
packets based on the network’s current state and established flow rules, thereby
contributing to a responsive and agile content delivery system.

Processing of DATA packet at programmable NDN node
Algorithm 4 outlines the processing of data packets in a NDN environment. Upon the
arrival of a DATA packet, the algorithm performs a Pending Interest Table (PIT) lookup to
determine the caching and forwarding decisions. If a PIT hit occurs, indicating an existing
entry for the content in the PIT, the algorithm calculates the content’s freshness using
Eq. (5).

The subsequent steps of the algorithm involve evaluating conditions based on the
caching node’s name (cn) and the potential cacher name (pcn), along with the local
freshness period LðckÞ½Tres� within the NDN environment.

When the names of the caching node and the potential cacher match, and the freshness
period is non-transient (indicating an extended period), the algorithm opts to cache the
received DATA packet. This decision signifies that the content is fresh and can be stored

Algorithm 3 INTEREST packet processing.

1: Whenever the INTEREST packet arrived

2: Lookup into CS table

3: if (CS hit) then

4: search the DATA

5: return to the intended interface

6: else if (PIT hit) then

7: adds the incoming interface (from which requests have arrived) in PIT

8: wait for DATA packet

// do not forward the packet

9: else if (FIB hit) then

10: create PIT entry for requested INTEREST packet

11: forward packet according to Flow rule

12: else

13: send OF_Packet_IN message to controller

14: install flow rule into FIB by the controller through OF_FLOW_MOD

15: forwards the packet to the next station according to FIB

16: end if
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within the cache for future requests. It indicates recognition by the caching node that it
already possesses a valid copy of the content, which is expected to remain valid for an
extended period.

In scenarios where the names match, but the freshness period is transient (indicating a
short period), the algorithm takes a different course of action. Instead of caching the

Algorithm 4 DATA packet processing.

1: Whenever the DATA packet arrived for the PIT Lookup

2: if (PIT hit) then

3: calculate Freshness LðckÞ½Tres� – – – – – Eq. (5)

4: end if

5: if (cn=pcn and LðckÞ½Tres� is non-transient then
6: cache DATA packet

7: else if (cn=pcn and LðckÞ½Tres� is transient) then
8: fetch the new updated copy of content ck from producer

9: forward to intended interface

10: else if (cn!=pcn and LðckÞ½Tres� is transient or non-transient) then
11: forward the DATA packet to the next station

12: else

13: drop the Data Packet

14: end if

Figure 4 WorkFlow of INTEREST packet in PaCPn framework.
Full-size DOI: 10.7717/peerj-cs.1854/fig-4
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existing content, it fetches the new updated copy of content ck directly from the producer.
Subsequently, it forwards this updated content to the intended interface.

When the names of the caching node and the potential cacher do not match, and the
freshness period is either transient or non-transient, the algorithm decides to forward the
DATA packet to the next station. This circumstance suggests that the content is not
intended for the current caching node but is designated for another destination within the
network.

If none of these specific conditions are met, the algorithm concludes by dropping the
DATA packet. It implies that the DATA packet does not align with the criteria for caching
or forwarding and is not considered further within the processing pipeline. These nuanced
decisions are fundamental in managing the storage and dissemination of content within
the context of named data networking.

In summary, Fig. 5 effectively manages the caching and forwarding of DATA packets
based on specific conditions related to content freshness, producer-consumer
relationships, and the local residual time, ensuring optimal utilization of network
resources.

RESULTS AND DISCUSSION
This section comprehensively evaluates the performance of the proposed caching scheme
named PaCPn. The caching scheme designed in this article is compared and analyzed
against benchmark schemes using various performance metrics. Our research work has
been implemented in the ‘ndnSIM 2.8’ simulation software, presented in Mastorakis,
Afanasyev & Zhang (2017). This article follows the experimental topology illustrated in
Amadeo et al. (2022) to represent our edge domain, which simulates the flat three-level-
based tree topology commonly used in today’s networks. This topology consists of a set of

Figure 5 WorkFlow of DATA packet in PaCPn framework.
Full-size DOI: 10.7717/peerj-cs.1854/fig-5
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ingress nodes, intermediate nodes, and the egress node that connects the edge domain to
the content producer, known as the server. The edge domain establishes out-of-band
communication with the SDN-controller, referred to as the ‘HyperFlow controller’
(Hussain et al., 2022), through implementing a C++ programming technique. The
controller is integrated into the caching devices by transforming the NDN switches into
OpenFlow switches, achieved by enabling the software package known as ‘OFSwitch
version 1.3’ (Unicamp, 2023). This transformation makes the caching devices fully
programmable.

As presented in Table 2, 1,000 data packets, each comprising 1,024 bytes, are under
consideration. The edge domain’s caching capacity is uniformly distributed among nodes,
ranging from 0.2% to 0.5% of the total capacity in kilobytes (KB). Requested content
follows the Zipf distribution with a skewness parameter ðaÞ set to 0.9. Notably, the
simulation encompasses a variable number of consumers, ranging from 200 to 1,200.

The following literature studies are compared to our proposed solution based on various
performance metrics.

� Popularity-aware closeness caching (PaCC): The caching placement scheme in Amadeo
et al. (2022) performed the caching decision based on the popularity and closeness-
aware metrics.

� Dynamically popular content placement (DPCP): The caching placement scheme in
Zha et al. (2022) dynamically calculates the popularity threshold for caching the most-
requested content in the centralized nodes.

The following performance metrics are considered:

� Cache hit ratio: The cache hit ratio, a pivotal performance metric in content-centric
networks, measures the proportion of requests fulfilled by edge nodes rather than the
content producer. This metric is instrumental in assessing the efficiency of caching
strategies, considering factors such as cache size, Zipf ðaÞ distribution, and traffic
exchanged within edge infrastructure. Experimental results shed light on the intricate
relationship between these variables and their impact on the cache hit ratio, providing
valuable insights into the effectiveness of the caching infrastructure.

� Content retrieval delay: Content retrieval delay, another critical aspect of network
performance, gauges the average time consumers experience when retrieving requested

Table 2 Simulation parameters.

Parameters Values

Content size 1,000 data packets

Data packet size 1,024 bytes

Cache size varying from 0.2% to 0.5%

No of consumers varying from 200 to 1,200

Content popularity Zipf distribution a = 0.9
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content from providers. Various factors influence this metric, including cache size, the
number of consumers, and network throughput. Experimental results intricately capture
the complex interplay of these variables and their collective impact on content retrieval
delays, offering a comprehensive understanding of the temporal dynamics in content
delivery within the network.

Cache hit ratio
Emphasizing the cache hit ratio as the primary metric for evaluating popularity placement
optimization is essential because it is a key indicator of system efficiency. A heightened
cache hit rate reflects efficient cache utilization, indicating that a significant portion of
requested content is readily accessible within the network. This optimization aligns
seamlessly with the overarching objective of improving system performance and
enhancing user experience. By strategically siting popular content closer to users, the cache
hit rate is maximized, resulting in minimized retrieval delays and reduced network
congestion. The article employs Eq. (6) to evaluate the cache hit ratio, offering a
comprehensive and quantitative measure of the efficacy of cache placement strategies. This
performance metric facilitates a thorough assessment, considering factors such as content
availability, network responsiveness, and the overall optimization of content delivery in
content-centric networks.

CHr ¼
PN

i¼1 ðnumiÞ
Requested content

(6)

V ¼ Set of nodes in the network topology:
Numi ¼ Number of hits at node i:

Impact of hit ratio based on cache capacity
The cache size significantly influences the cache hit rate. Generally, as the size of the cache
increases, the likelihood of storing frequently accessed or popular items also rises. This, in
turn, results in an increased cache hit rate. A larger cache enables a more extensive
retention of frequently requested content, diminishing the necessity to fetch data from the
underlying storage or network. Consequently, this improvement enhances the overall
efficiency of the caching system.

According to Fig. 6, performance metrics vary as the cache size of the edge domain
ranges from 0.2% to 0.5%. As anticipated, increased cache size enhances performance
across all considered schemes. Larger storage capacity enables more content storage,
thereby reducing delivery time and hop count, leading to advantages in NDN traffic
exchange.

Figure 6 illustrates that the DPCP solution exhibits the lowest hit ratio compared to
other schemes. It is attributed to the DPCP solution’s focus on calculating content
popularity using the request count, which may not effectively improve the hit rate given
dynamically changing popularity trends for specific content items. On the other hand, the
PaCC caching scheme performs slightly better than DPCP. When distributing popular

Qaiser et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1854 26/39

http://dx.doi.org/10.7717/peerj-cs.1854
https://peerj.com/computer-science/


content among edge node caches, it considers the requested count and popularity at the
previous interval. Nevertheless, it fails to capture the history of requesting content items,
increasing the cache miss ratio.

In contrast, PaCPn determines the content popularity based on lagged ‘Popularity-
score’ and ‘Request-count’ values. The proposed controller-aware VAR popularity model
is trained concerning these factors to anticipate future popularity.

Additionally, when the requested content is not cached in the network, it first calculates
its local-residual freshness period when receiving it from the producer to limit the miss
ratio while contributing to an improved cache-hit ratio. In Fig. 6, ‘DPCP’ achieves a cache
hit rate of 63%, while ‘PaCC’ reaches 75% with an expanding edge domain cache. ‘PaCPn’
stands out by achieving a 90% hit rate through dynamic updates of content popularity
using a VAR model on an SDN controller.

Impact of hit ratio based on Zipf distribution
We observe the impact of the Zipf distribution parameter a on the cache hit ratio. As a
increases, user requests tend to concentrate on the most popular content. This skewed
distribution, associated with higher a values, indicates that a small subset of items is
frequently requested, creating a long tail’ distribution. Consequently, during a sudden
surge in requests for popular content, the cache hit rate tends to rise. This behavior aligns
with the Zipf distribution’s representation of skewed popularity, emphasizing the

Figure 6 Impact of hit ratio by varying cache size. Full-size DOI: 10.7717/peerj-cs.1854/fig-6
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significance of comprehending and adjusting a when optimizing caching strategies to
capture and serve the most requested content efficiently.

In Fig. 7, the ‘DPCP’ solution shows the lowest hit rate compared to the others. In
contrast, the ‘PaCC’ solution performs slightly better than ’DPCP,’ thanks to the dual-
factor-based content popularity prediction used in calculating content popularity.
Conversely, the proposed solution, ‘PaCPn,’ achieves the highest hit ratio compared to the
others. It accomplishes this by selecting popular content based on its historical record,
effectively capturing user attraction towards them. Under the considered settings in Fig. 7,
‘DPCP’ achieves a hit rate of 54%, ‘PaCC’ reaches 68% when the Zipf parameter a
increases, but ‘PaCPn’ excels at 80% by considering changing consumer behavior for
improved predictions.

Impact of hit ratio based on exchanged CR traffic

Network traffic plays a pivotal role in shaping cache hit rates in an NDN environment,
where content retrieval is based on names rather than locations. Efficient and streamlined
data transfer in optimal traffic conditions increases cache hit rates. When network traffic is
well-managed, the popular selection of content (driven by the multivariate VAR model) is
readily available in local caches, minimizing latency associated with fetching data from
distant sources while enhancing the cache hitting rate.

Figure 7 Impact of hit ratio by varying Zip(a) distribution. Full-size DOI: 10.7717/peerj-cs.1854/fig-7

Qaiser et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1854 28/39

http://dx.doi.org/10.7717/peerj-cs.1854/fig-7
http://dx.doi.org/10.7717/peerj-cs.1854
https://peerj.com/computer-science/


In the event of suboptimal traffic conditions, such as congestion or inefficient data
transfer, there is the potential for a decrease in cache hit rates. It underscores the need for
the programmable nature of the NDN environment, which becomes particularly crucial in
addressing challenges associated with suboptimal traffic conditions. The proposed solution
leverages programmable mechanisms, effectively mitigating congestion and optimizing
data transfer. It, in turn, ensures a more robust and responsive caching system even under
less-than-ideal traffic conditions.

As a result, it is evident that ‘PaCPn’ excels in comparison to ‘DPCP’ and ‘PaCC’ by
considering ‘Request-count’ and ‘Popularity score’ over pre-intervals to populate cache
nodes with popular content, increasing the hit ratio and reducing server load. This
approach significantly boosts the cache hit ratio, substantially reducing the amount of
NDN traffic within the network. As more user requests are efficiently served from the
cache due to the higher hit ratio, there is less dependency on external sources, resulting in a
reduced exchange of traffic within the NDN network. Figure 8 shows DPCP achieving a
55% hit rate, PaCC at 65%, and PaCPn surpassing both with an 80% hit ratio. This superior
performance is attributed to considering previous lag values and enhancing new content
popularity prediction.

Figure 8 Impact of hit ratio by varying CR traffic. Full-size DOI: 10.7717/peerj-cs.1854/fig-8
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Content retrieval delay
Content retrieval delays are critical for evaluating optimal placement in the programmable
NDN caching environment. Based on the time taken to retrieve requested content from the
cache, these delays significantly impact the efficiency of cache placement. The strategy
involves storing frequently requested content in proximity-aware caches, reducing the
need for extensive data transmission. It not only enhances the user experience but also
optimizes network resource utilization. In the programmable NDN caching landscape,
focusing on reducing retrieval delays is key to overall performance, ensuring optimal
content delivery responsiveness. The retrieval delays can be computed using the formula
defined in Eq. (7).

RD ¼
P

i¼1 ðRDiÞ
jreqcj

jconsumersj
(7)

RDi ¼ Retrieval delay of a single content i:
reqc ¼ Total amount of requested packets:
sub ¼ Total number of content consumers:

Impact on retrieval delays based on cache capacity
The influence of cache size on content retrieval delays is a significant factor in shaping the
efficiency of a content delivery system. In essence, the size of the cache directly impacts the
system’s ability to store and quickly retrieve frequently requested content. A larger cache
facilitates the storage of popular items, reducing the need to fetch data from underlying
storage or network sources. Consequently, with a generous cache size, the content retrieval
process becomes faster and more responsive as the likelihood of finding requested data in
the cache increases. On the contrary, a smaller cache may lead to more frequent instances
of content not being readily available, resulting in longer retrieval delays as the system
resorts to fetching data from external sources. It underscores the critical role of optimizing
cache size for minimizing content retrieval delays and enhancing the overall efficiency of a
content delivery system.

In Fig. 9, DPCP shows the highest retrieval delays as the cache size increases, primarily
due to its dependence on content popularity score, which may not effectively reduce delays
with larger caches. PaCC performs slightly better by considering popularity and distance
but is compromised by a hop count-based node selection approach, lacking consideration
for factors like link cost and latency, leading to inefficiencies. Multiple updates in PaCC for
optimal content placement make it computationally expensive, especially with larger
caches.

In contrast, PaCPn employs a centralized caching policy managed by the SDN
controller to minimize computational costs and optimize caching decisions, resulting in
superior performance with larger cache sizes. The PaCPn caching algorithm makes
placement decisions based on distance cost, delivery time, and popularity status to reduce
delivery times and network delays. It uses a closeness-aware metric considering ‘content
delivery time’ and ‘content distance cost.’ Delivery cost reflects the link cost, and distance
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cost measures the caching node’s proximity to the user. The strategy also accounts for
content popularity, optimizing placement for frequently requested content.

In comparative performance evaluations, the dynamic popular content placement
(DPCP) strategy achieves a retrieval delay of 0.07 ms, showcasing its efficiency. The
popularity-aware caching (PaCC) strategy attains even lower delays of 0.06 ms, which is
particularly noteworthy with an expanding edge cache size. However, the PaCPn algorithm
stands out, surpassing all metrics by demonstrating superior performance with delays
reduced to an impressive 0.046 ms.

Impact on retrieval delays based on number of consumers
The impact of the number of consumers on content retrieval delays is a crucial factor in
determining the responsiveness of a content delivery system. As the number of consumers
increases, the system experiences a higher demand for content, potentially leading to
increased retrieval delays. A more extensive consumer base results in more frequent
requests for various content, placing additional demands on the system’s resources. In
scenarios where the optimized placement strategy is not adequately scaled to
accommodate the growing number of consumers, retrieval delays may occur as the system
struggles to meet the heightened demand. Conversely, retrieval delays can be minimized in
an environment with a well-scaled infrastructure capable of handling a more extensive
consumer base. Therefore, optimizing the placement strategy to align with the number of

Figure 9 Impact on retrieval delay by varying cache size. Full-size DOI: 10.7717/peerj-cs.1854/fig-9
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consumers is crucial for ensuring efficient content retrieval and maintaining satisfactory
performance even under increased demand.

As illustrated in Fig. 10, all the considered schemes exhibit lower retrieval delays as the
number of consumers increases. Especially notable is the proposed solution, which
demonstrates the lowest delay compared to other schemes when responding to DATA
requests from consumers. It underscores the potential for optimizing content retrieval
delays by intelligently managing caching decisions and placement, especially in scenarios
with increased consumers and concentrated requests for popular content.

The solution ensures that even with the growing number of consumers, the most
popular content is cached at the closeness edge points, reducing retrieval delays and
enhancing overall content delivery efficiency. The experimental results reveal distinct
performance variations among caching policies. DPCP exhibited a retrieval delay of
0.09 ms, PaCC demonstrated efficiency with a content delivery delay of 0.06 ms, and
notably, our proposed caching scheme outperformed both, achieving an impressive
delivery rate of 0.04 ms. This superior performance is attributed to our innovative heuristic
algorithm, dynamically allocating caching resources to popular content. The dynamic
allocation ensures strategic placement, reducing retrieval delays and enhancing the content
delivery experience.

Figure 10 Impact on retrieval delay by varying consumers. Full-size DOI: 10.7717/peerj-cs.1854/fig-10
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Impact on retrieval delays based on network throughput
The influence of system throughput on content retrieval delays is of crucial significance,
directly impacting the speed and efficiency of delivering requested content. System
throughput, representing the number of data packets processed within a given timeframe,
is crucial in determining how swiftly content can be retrieved and transmitted to
consumers. Higher system throughput correlates with faster content delivery, minimizing
retrieval delays and ensuring a more responsive user experience. In contrast, lower system
throughput can lead to increased retrieval delays as the system struggles to process and
transmit content efficiently. Therefore, optimizing system throughput is instrumental in
achieving prompt and reliable content retrieval, directly contributing to users’ overall
performance and satisfaction interacting with the content delivery system. As a result, the
delivery time is reduced because devices are not individually making cache placements and
forwarding decisions; the controller dynamically implements closeness-aware placement
decisions at regular intervals, unlike the other schemes in which distributed placement
decisions are performed through the betweenness centrality approach. This approach
allows a larger content volume to be efficiently delivered within shorter time frames,
enhancing the overall network throughput of DATA packets in bits per second (DPBS).
Figure 11 shows that the DPCP solution reaches a minimum delay of 0.07 ms. The other
scheme achieves a minimum retrieval delay of 0.05 ms as the system throughput increases.

Figure 11 Impact on retrieval delay by varying system throughput. Full-size DOI: 10.7717/peerj-cs.1854/fig-11
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On the other hand, the proposed solution PaCPn achieves the lowest content delivery rate
of 0.033 ms due to its centralized and dynamically managed placement of popular content
in popular NDN devices.

CONCLUSIONS AND FUTURE WORK
In-network caching can significantly reduce the traffic overhead for content producers,
particularly when retransmissions are required due to packet loss. Placing copies of
requested content in the edge domain can significantly reduce network load and
transmission latency.

This work introduces a novel caching placement scheme that considers distance, time
latency, and content frequency when selecting the popular node or location for caching the
most requested content. A regression VAR model predicts this selection. The SDN
controller drives the proposed caching placement scheme, which monitors consumer
request temporal and regional patterns. It periodically updates the content provider’s
caches using the previous lag values of multi-variant attributes in the proposed popularity
model. To determine the optimal placement for each requested name prefix, we have
introduced a heuristic algorithm driven by closeness metrics. This algorithm primarily
considers the ratio of ‘Content delivery cost’ and ‘Content distance cost,’ associated with
the ‘Status of content frequency,’ when calculating the closeness metric for each requested
INTEREST packet.

To evaluate the performance of our proposed solution, we employed a network topology
comprising programmable NDN caching devices. In our experiment, we assessed the
effectiveness of the proposed cache placement scheme in terms of content retrieval delay
and cache hit ratio. The experimental results showed that our proposed solution, ‘PaCPn,’
improved the cache hit rate by 20% and reduced the retrieval delay by 28% compared to
existing solutions. These substantial enhancements underscore the practical impact of our
proposed caching scheme on the efficiency of content distribution within the network,
emphasizing its potential to elevate user experience and reduce network resource
utilization.

In future work, the proposed solution, which focuses on VAR-based popularity
prediction populated in the distance and time delivery-aware programmable NDN devices,
can be extended by integrating and testing it across diverse domains. Extending our
caching solution to these diverse domains holds promising benefits, as it could enhance the
adaptability and efficiency of content delivery in scenarios such as IoT communication
(Naeem et al., 2018), edge cloud services (Song et al., 2017), and fog computing
applications (Amadeo, Campolo & Molinaro, 2016). By addressing specific challenges and
intricacies within these contexts, our proposed caching scheme has the potential to
contribute significantly to optimizing content distribution across various emerging
technologies, paving the way for more robust and responsive network architectures.
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