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Background: Concrete, a fundamental construction material, stands as a significant consumer of virgin
resources, including sand, gravel, crushed stone, and fresh water. It exerts an immense demand,
accounting for approximately 1.6 billion metric tons of Portland and modified Portland cement annually.
Moreover, addressing extreme conditions with exceptionally nonlinear behavior necessitates a laborious
calibration procedure in structural analysis and design methodologies. These methods are also difficult to
execute in practice. To reduce time and effort, machine learning (ML) might be a viable option.

Material and Methods: A set of keywords are designed to perform the search PubMed search engine with
filters to not search the studies below the year 2015. Furthermore, using PRISMA guidelines, studies were
selected and after screening, a total of 42 studies were summarized. The PRISMA guidelines provide a
structured framework to ensure transparency, accuracy, and completeness in reporting the methods and
results of systematic reviews and meta-analyses. The ability to methodically and accurately connect
disparate parts of the literature is often lacking in review research. Some of the trickiest parts of original
research include knowledge mapping, co-citation, and co-occurrence. Using this data, we were able to
determine which locations were most active in researching machine learning applications for concrete,
where the most influential authors were in terms of both output and citations and which papers garnered
the most citations overall.

Conclusion: ML has become a viable prediction method for a wide variety of structural industrial
applications, and hence it may serve as a potential successor for routinely used empirical model in the
design of concrete structures. The non-ML structural engineering community may use this overview of ML
methods, fundamental principles, access codes, ML libraries, and gathered datasets to construct their
own ML models for useful uses. Structural engineering practitioners and researchers may benefit from
this paper's incorporation of concrete ML studies as well as structural engineering datasets. The
construction industry stands to benefit from the use of machine learning in terms of cost savings, time
savings, and labor intensity. The statistical and graphical representation of contributing authors and
participants in this work might facilitate future collaborations and the sharing of novel ideas and
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approaches among researchers and industry professionals. The limitation of this systematic review is that
its only PubMed based which means it includes studies included in the PubMed database.

PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84583:1:2:NEW 7 Sep 2023)

Manuscript to be reviewedComputer Science



1 Systematic Literature Review on the Application of Machine 

2 Learning for the Prediction of Properties of Different Types of 

3 Concrete

4

5 Syeda Iqra Hassan Corresp., 1, 2 , Sidra Abid Syed 3 ,  Waqad Hashmi Syed 3, Hira Zahid 4 , Samia Tariq 5 , 

6 Mazliham Mohd Su'ud Corresp. 6 Muhammad Mansoor Alam7

7 1 Electrical/ Electronic Engineering, British Malaysian Institute, Universiti of Kuala Lumpur, Kuala 

8 Lumpur, Malaysia

9 2 Electrical Engineering, Ziauddin University, Karachi, Sindh, Pakistan

10 3 Biomedical Engineering, Sir Syed University of Engineering and Technology, Karachi, Sindh, Pakistan

11 4 Biomedical Engineering, Ziauddin University, Karachi, Sindh, Pakistan

12 5 Civil Engineering, Ziauddin University, Karachi, Sindh, Pakistan

13 6 Faculty of Computing and Informatics, Multimedia University, Cyberjaya, Selangor, Malaysia

14 7 Riphah International University, Islamabad, Pakistan.

15 Corresponding Authors: Syeda Iqra Hassan, Mazliham Mohd Su'ud

16 Email address: syeda.iqra@s.unikl.edu.my, mazliham@mmu.edu.pk

17

18 Abstract: 

19 Background: Concrete, a fundamental construction material, stands as a significant consumer of virgin 

20 resources, including sand, gravel, crushed stone, and fresh water. It exerts an immense demand, 

21 accounting for approximately 1.6 billion metric tons of Portland and modified Portland cement annually. 

22 Moreover, addressing extreme conditions with exceptionally nonlinear behavior necessitates a laborious 

23 calibration procedure in structural analysis and design methodologies. These methods are also difficult to 

24 execute in practice. To reduce time and effort, machine learning (ML) might be a viable option. 

25 Material and Methods: A set of keywords are designed to perform the search PubMed search engine with 

26 filters to not search the studies below the year 2015. Furthermore, using PRISMA guidelines, studies were 

27 selected and after screening, a total of 42 studies were summarized. The PRISMA guidelines provide a 

28 structured framework to ensure transparency, accuracy, and completeness in reporting the methods and 

29 results of systematic reviews and meta-analyses. The ability to methodically and accurately connect 

30 disparate parts of the literature is often lacking in review research. Some of the trickiest parts of original 

31 research include knowledge mapping, co-citation, and co-occurrence. Using this data, we were able to 

32 determine which locations were most active in researching machine learning applications for concrete, 

33 where the most influential authors were in terms of both output and citations and which papers garnered 

34 the most citations overall.
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35 Conclusion: ML has become a viable prediction method for a wide variety of structural industrial 

36 applications, and hence it may serve as a potential successor for routinely used empirical model in the 

37 design of concrete structures. The non-ML structural engineering community may use this overview of 

38 ML methods, fundamental principles, access codes, ML libraries, and gathered datasets to construct their 

39 own ML models for useful uses. Structural engineering practitioners and researchers may benefit from 

40 this paper's incorporation of concrete ML studies as well as structural engineering datasets. The 

41 construction industry stands to benefit from the use of machine learning in terms of cost savings, time 

42 savings, and labor intensity. The statistical and graphical representation of contributing authors and 

43 participants in this work might facilitate future collaborations and the sharing of novel ideas and 

44 approaches among researchers and industry professionals. The limitation of this systematic review is that 

45 its only PubMed based which means it includes studies included in the PubMed database.

46 Keywords: Concrete, machine learning, compressive strength, neural network, mechanical properties, 

47 computer vision, artificial intelligence, durability. 

48 ______________________

49 Introduction

50 Innovation and carbon emissions have forced building firms to utilize an increasing amount of high-

51 performance manufactured materials. High building materials provide better strength, ductility, 

52 durability, resistance to external forces, more ecologically friendly development, and cheaper costs in long 

53 term than typical construction products [1]. High-performance construction materials may come with 

54 higher initial costs, their potential for long-term cost savings through improved performance, energy 

55 efficiency, and reduced maintenance can make them economically viable choices. It is possible for them 

56 to dramatically extend the useful life of construction structures and minimize the amount of time and 

57 money needed to maintain such buildings. Construction materials that are known for their high level of 

58 performance include high-strength polymeric materials, lightweight steel, and concrete nanocomposite 

59 reinforced with glass fibers. Concrete, a major building product, is one of the greatest user of virgin 

60 resources including sand, gravel, crushed stone, and fresh water and it consumes around 1.6 billion metric 

61 tons of Portland and altered Portland cement each year [2]. The primary component of concrete, Portland 

62 cement, is an energy and resource hog. About 7% of the world's total CO2 emissions come from the 

63 manufacture of cement, making it one of the two greatest sources of greenhouse gas. Research is 

64 underway to develop unique materials that improve the qualities of high-strength concrete in order to 

65 produce concrete high-performance and ecologically friendly [2, 3]. 

66 Fly ash (FA) is becoming a popular alternative to Portland cement in concrete because it saves 

67 resources, lasts longer, costs less, and is good for the environment [4]. In addition to being good for the 

68 environment, fly ash improves the stability of both high strength concrete by making it easier to work 

69 with, making it stronger over time, making it more resistant to sulfate attacks and alkali-silica reactions, 

70 lowering the heat of hydration [5], making it less likely to shrink, making it last the same amount of time 

71 when it freezes and thaws, making it less porous, and making it less permeable [5, 6]. But the amount and 

72 type of fly ash used in concrete has to be planned and described correctly because fly ash is not made in 

73 a special way and can't be controlled by strict rules. At the end of the 1940s, FA was sold on the national 

74 market of concrete. It was known that using FA in concrete would improve the performance of high-

75 volume FA (HVFA) concrete by making it easier to work with (thanks to the ball-bearing effect of spherical 

76 particles), making it stronger over time, cheaper, and more durable.  Since FA is a waste product, it cuts 
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77 down the total cost of making concrete by a large amount [7-9]. FA will have different qualities from plant 

78 to plant since it is not made in a specific way and FA must confirm to certain standards like any other 

79 ingredient for concrete. In other words, its properties are dependent on the characteristics of pulverized 

80 coal and how the pulverization process is done in power plants that make electricity. Over time, HVFA 

81 concrete may get close to the strength of Portland cement concrete (PCC). FA reduces the HVFA 

82 cementitious materials' internal curing thermostat, drying shrinkage, and porous air vacuum. This shows 

83 HVFA concrete compositions are may be as durable as or greater than PCC [10]. FA, due to its spherical 

84 shape and flat texture of granules, its particulate wrapping effect, and the safeguarding of cement 

85 particles from flocculation through opposite charges, can lead to increased deformation and durability 

86 related to porosity. These factors collectively contribute to making FA an essential component in concrete, 

87 as supported by references [11, 12]. 

88 An artificial intelligence (AI) subfield known as machine learning (ML) focuses on teaching computers 

89 the skill of making predictions using existing datasets and methods. The most essential benefit is that 

90 computers may learn and develop automatically rather than being supervised learning [13]. It was not 

91 until the 1990s that machine learning (ML) became the most prospering branch of artificial intelligence 

92 (AI), and began to grow, despite its 1943 birth and 1959 coinage. Since it's crucial in numerous applications 

93 of the real world, including voice and picture recognition, medical diagnosis, traffic warnings, and self-

94 driving vehicles, ML has also become one of our generation's most popular buzzwords in the technological 

95 industry. Machine learning (ML) according to the learning experience, supervised, unsupervised, and 

96 reinforcement learning are all examples of artificial intelligence (AI) [14]. The most fundamental kind of 

97 ML is supervised learning, in which a labeled data set is used for an algorithm in teaching. Structural 

98 engineering is a branch of engineering that deals with the design and study of structures that are capable 

99 of supporting loads. In structural engineering, this technique has been extensively utilized for damage 

100 identification (classification issues) and strength forecasts (regression problems). Unsupervised learning, 

101 on the other hand, uses an algorithm that is trained on an unlabeled collection of data. As a result of this, 

102 the algorithm is honed using the reinforcement learning approach. More and more machine learning 

103 techniques are being used in structural engineering. These include neural networks (NN), decision trees 

104 (DT) and boosting algorithms (BA), regression analysis (RA), and support vector machines (SVM) [14-16]. 

105 Engineering design has utilized meta-models (sometimes called surrogate models) to speed up the 

106 calculation of black-box ML models with a relaxed level of accuracy in an effort to save computational 

107 time. It is open an interpretation model that is trained to mimic the forecasts of a black-box ML model. 

108 That's why they're called "surrogates": basic analytical models that act like complicated machine-learning 

109 models [15]. A time-consuming calibration procedure is required for structural analysis and design 

110 approaches when dealing with severe actions that display extremely nonlinear behavior. These methods 

111 are also difficult to execute in practice. To reduce time and effort, machine learning (ML) might be a viable 

112 option [7, 11, 16]. In 1991, Adeli and Hung used an artificial neural network (ANN) to construct steel beams 

113 in one of the earliest ML applications in structural engineering [17]. Structural engineering was in its 

114 infancy at the time because of the limits of ML methods and computational capacity. In the early stages 

115 of structural engineering applications, this is shown by the fact that just a few relevant publications were 

116 published annually [17, 18]. It's also difficult to use machine learning in structural engineering since there 

117 aren't enough test datasets for ML models. Structural analysis research has taken the required efforts to 

118 overcome this obstacle by developing databases to gather data from structural analysis testing. There are 

119 about 250 datasets from more than 50,000 trials housed in the DataCenterHub repository platform [19, 

120 20]. Network for Earthquake Engineering Simulation (NEEShub) [21] is a cyberinfrastructure system for 
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121 earthquake engineering and catastrophe risk assessment. DesignSafe [22] is an extension of the NEEShub. 

122 NEEShub datasets for seismic design can be obtained from DataCenterHub [23], as well as image 

123 databases for crack damage detection (e.g., Structural ImageNet with more than 10,000 images, PEER Hub 

124 ImageNet) [24] established by the Pacific earthquake engineering research (PEER) center with more than 

125 36,000 images, bridge crack library with more than 11,000 images, etc). Advances in machine learning 

126 (ML) methods have also been made in the field of structural engineering [25]. For big datasets, BA 

127 approaches like extreme gradient boosting (XGBoost) [26] and classified gradient boosting (CatBoost) are 

128 particularly powerful tools. CNN is considered state-of-the-art ML technology because of its speed in 

129 identifying structural fracture damage. AutoML-Zero, a novel ML approach developed by the Google team 

130 recently, can progress autonomously without human involvement. TensorFlow and Keras from Google 

131 and PyTorch from Facebook are two examples of open-source ML libraries that provide hands-on ML 

132 algorithms and ready-to-run tools for construction applications [27, 28].

133 The scientific world has seen a significant raise in the application of ML in engineering structures, 

134 notably over the duration of last five years, with an evident exponential surge in the number of papers in 

135 both journals and conferences each year rapid evolution of ML algorithms and processing capacity. 

136 However, the use of ML in construction applications is currently relatively restricted. The industry has 

137 created ML-powered tools to produce alternative designs that fulfill the criteria of end-users as one of the 

138 real-world uses of creative models. Many recent review publications have addressed this topic, but they 

139 only focused on a specific area of engineering structures (e.g., systemic implementation and quality, 

140 building system for fire; tangible property; cement mix proportions; capacity forecasting of concrete 

141 buildings; and layout and safety checks of bridges) only but instead structural engineering needs a 

142 complete assessment of all aspects [29-32]. The aim of this systematic review is to summarize maximum 

143 studies in recent years implementing the approach of machine learning on the prediction in structural 

144 engineering but in consideration of the limitation applied to concrete as material because this is 

145 extensively used material in the construction industry [2]. 

146 1.1.Rationale 

147 The rationale for conducting this systematic review on machine learning applications in concrete is 

148 driven by the need to address the challenges and limitations of traditional structural analysis and design 

149 approaches. The construction industry heavily relies on concrete, which consumes significant amounts of 

150 virgin resources and plays a crucial role in building infrastructure. However, the conventional methods 

151 used for structural analysis often require time-consuming calibration procedures and struggle to handle 

152 severe actions with highly nonlinear behavior. Therefore, there is a need to explore alternative 

153 approaches that can reduce time and effort while improving accuracy and efficiency. Machine learning 

154 has shown promise in various fields, and its potential application in concrete structural engineering 

155 warrants investigation to identify its benefits and limitations.

156 The intended audience for this systematic review includes both structural engineering practitioners 

157 and researchers in the field of concrete construction. Structural engineers who are interested in exploring 

158 new approaches for structural analysis and design will find value in the overview of machine learning 

159 methods, principles, and available resources provided in this paper. Researchers in the field of concrete 

160 and machine learning will benefit from the summary of existing studies, knowledge mapping, and 

161 identification of influential authors and nations. Additionally, professionals in the construction industry, 

162 including contractors, developers, and project managers, can gain insights into the potential benefits of 
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163 machine learning in terms of cost savings, time efficiency, and labor intensity. Overall, this review aims to 

164 bridge the gap between traditional structural engineering practices and the emerging field of machine 

165 learning, providing a valuable resource for those seeking to incorporate ML methods into concrete 

166 applications.

167 1.2.Problem Statement and Research Question

168 This is the most recent and state-of-the-art review on the application of machine learning techniques 

169 to predict the properties of different types of concrete. The goal is to conduct a literature review to 

170 summarize all the work done on the prediction of all the mechanical properties of concrete. This literature 

171 review will help future researchers to opt for the best algorithm for their concrete and later compare 

172 them with the work already done in this area. 

173 2. Methodology for Conducting Systematic Review

174 Recent decades have witnessed the production of civic studies in huge numbers. As a result of this 

175 heterogeneity, the research provided might affect the investigation in a variety of ways, which 

176 complicates evidence and makes it more difficult to draw conclusions [33]. Systematic review and meta-

177 analysis (SR/MAs) is the evidence-based pyramid's highest level of proof. To keep doctors and nurses up 

178 to date on the latest evidence-based medicine, it is possible to use an organized, well-managed SR/MA. 

179 As a result of our research, we discovered that the most important processes in a systematic review 

180 remain framing, discovering relevant studies via requirements construction and article search, assessing 

181 the quality of the studies utilized, summarizing data, and interpreting conclusions. The majority of issues 

182 may be solved by a researcher without any prior knowledge of the subject matter [34]. For this study, we 

183 followed the Preferred Reporting Items for Systematic Reviews & Meta-Analysts (PRISMA) criteria [35].

184 2.1.Search Engine and Keywords

185 First, a set of keywords has been formulated which is given below to search the PubMed database for 

186 the relevant studies, then after removing duplicates and the inclusion and exclusion criteria discussed in 

187 Table 1 were applied to the rest of the studies which then resulted in narrowing the studies from 116 to 

188 42 (figure 1). Then for the deeper search and in order to get the most possible and accurate results, the 

189 following keywords were also divided into different sets.

190 ● (concrete technology) AND (mechanical OR durability OR compressive strength OR flexural 

191 strength OR modulus of elasticity OR tensile strength) AND ("computer vision" OR "neural 

192 network" OR "artificial intelligence" OR "pattern recognition" OR "machine learning"). 
193
194 2.2.Eligibility Criteria

195 Table 1 outlines inclusion and exclusion criteria for a study, likely related to the prediction of concrete 

196 properties using machine learning algorithms. These criteria are used to define the scope of the study and 

197 to determine which studies should be included in the analysis and which should be excluded. The inclusive 

198 criteria define the characteristics that studies must have to be considered for analysis (focus on concrete, 

199 use of machine learning, and publication in conferences or journals). The exclusive criteria define the 

200 characteristics that would lead to the exclusion of studies from the analysis (focus on non-concrete 

201 materials, use of methods other than machine learning, and lack of appropriate publication types). These 

202 criteria help ensure that the study's scope remains relevant and focused on the specific research 

203 objectives.
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204

205 Table 1. Inclusion and exclusion criteria for the recruitment of studies are discussed in detail.

206

207 2.3.Flowchart

208

209 Figure 1. PRISMA-based flowchart showing the studies recruitment process. 

210 3. Results

211 It was aimed to ensure a rigorous and focused selection process to identify the most relevant studies 

212 for our analysis. Starting with an initial pool of 116 papers, the authors employed a systematic approach 

213 to narrow down the selection to the final set of 42 papers that were included in our study. In addition to 

214 the criteria listed in the table, which encompassed aspects such as the use of concrete as the primary 

215 material, the application of machine learning algorithms, and publication in recognized conferences or 

216 journals, we also considered several other specific conditions to refine the selection.

217 Firstly, the authors assessed the alignment of the studies with our research objectives. Carefully 

218 examined the research questions, objectives, and methodologies presented in each paper to ensure that 

219 they were directly relevant to our investigation of predicting concrete properties using machine learning 

220 techniques. Secondly, the authors scrutinized the quality and reliability of the machine learning methods 

221 employed in the studies. We favored papers that demonstrated a clear understanding of machine learning 

222 principles, appropriate use of algorithms, and thorough validation of their predictive models. Lastly, the 

223 authors considered the diversity of the approaches and datasets used across the papers. It was aimed to 

224 capture a comprehensive spectrum of machine learning techniques and concrete property predictions, 

225 ensuring a well-rounded representation of the field. The final selection of 42 papers emerged as a robust 

226 and comprehensive collection that provided a strong foundation for our analysis. This stringent selection 

227 process bolstered the reliability and validity of our findings and conclusions.

228 Table 2 provides a list of research studies on the application of machine learning algorithms in 

229 predicting the properties of different types of concrete. The table includes the authors, year of 

230 publication, type of concrete, property predicted, number of input parameters, machine learning 

231 algorithms used, and reported outcomes. Some of the machine learning algorithms used in these studies 

232 include boosted decision tree regression, support vector machine, artificial neural network, genetic 

233 algorithm-optimized backpropagation neural network, multi-expression programming, linear regression, 

234 and extreme gradient boosting. The properties predicted include compressive strength, split tensile 

235 strength, modulus of elasticity, and static modulus. The reported outcomes include correlation 

236 coefficients, root mean square error, mean absolute error, accuracy, coefficient of determination, mean 

237 absolute percentage error, and mean squared error. The studies vary in the number of input parameters, 

238 ranging from 1 to 10. Some studies used conventional artificial neural networks, adaptive neuro-

239 fuzzyinference, and tabular generative adversarial networks to predict the properties of concrete.

240 Table 2. Summarized details of the studies recruited after conducting PRISMA-based systematic review. 

241 ? = not reported. 
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242 4. Discussion and Limitations

243

244 Figure 2. Pie chart of studies showing no. of ML and NN techniques used in the selected studies. 

245 In Figure 2, we can see that 55% of the authors prefer applying supervised machine learning methods 

246 while 45% of the authors opted deep learning neural networks. But it is difficult to say which one is better 

247 although the highest accuracy achieved was through Artificial Neural Network [78]. Three decades ago, 

248 the initial application of machine learning techniques was to try out several existing approaches to simple 

249 tasks. After then, more complicated issues began to be considered. Monitoring structural health, 

250 evaluating concrete qualities, and formulating new mixes are some of the most prevalent uses [79, 80]. 

251 In this part, we'll take a look at how machine learning (figure 3) approaches have been implemented in 

252 these two scenarios. 

253

254 Figure 3. Classification of machine learning algorithms on the basis of their learning types [81]. 

255 4.1.Structural Health Monitoring (SHM)

256 Civil constructions are subject to structural degradation as a result of their usage and environment. 

257 For the assurance of assure public safety and the in-service construction dependability, the Structural 

258 Health Monitoring (SHM) system is essential for early detection of structural problems. Dynamic response 

259 assessments separated at periodic intervals are used to monitor a component over time, damage-

260 sensitive characteristics are recovered, and then the derived features are statistically examined to 

261 determine the present health condition of the system [82]. Long-span bridges, massive dams, and 

262 towering buildings are among the structures where the SHM system has been widely deployed, allowing 

263 for a seamless transition from time-based to situation management. Model-driven or data-driven 

264 techniques have both been used in recent studies in this area of interest. As a result of this method, it is 

265 possible to detect structural deterioration by comparing measured data to data generated by a computer 

266 model of the structure (typically based on finite element analysis (FEA)). Due to the repetitive examination 

267 of a simulation software model, this technique is computationally intensive [83-86]. It is also possible that 

268 in actuality, a measurement simulation may not be available at all times or accurately represent the real 

269 structure's performances in every case. Because of this, FEA findings are typically insufficient to accurately 

270 measure structural health. A strategy based on data rather than models generates a model via the use of 

271 observed data and then compares the model's responses to those measured in order to discover damage. 

272 This method employs machine learning techniques, such as pattern recognition. It is becoming more 

273 possible to install large and dense sensor networks for SHM because to recent advancements in sensing 

274 methods, and wireless communication. As a result, continuous and real-time damage identification is 

275 made much easier with the data-driven method [81]. To identify structural damage, machine learning 

276 algorithms are often used in conjunction with supervised learning, which relies on examples of both 

277 healthy and damaged data. Structural damage detection may benefit from the resilience and efficiency of 

278 single machine learning method such as support vector machine, neural networks, and support vector 

279 regressions, as well as the genetic algorithms (GA). For various challenges in the SHM sector, hybrid 

280 approaches such as the multi-objective genetic algorithm (MOGA), neuro-fuzzy (NF), and wavelet neural 
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281 network (WNN) have also been presented. All investigations proved the accuracy of machine learning-

282 based models and their better performance over model-driven methods [86. 87]. 

283 4.2.  Properties of Mix Design Concrete

284 It can be seen in table 2 that so many researchers contributed to predict the mechanical properties 

285 of the concrete mix with different substances like fly ash, foundry sand, or rubber waste using ML 

286 algorithms. Concrete buildings are designed with mechanical qualities including compressive strength, 

287 elastic modulus, splitting tensile strength, and shear strength in mind. Predicting the compressive strength 

288 of concrete by linear or non-linear regression equations saves both time and money [88]. Elastic modulus 

289 measurement is difficult and time-consuming. Stress-strain relations of cementitious materials under 

290 compression are often used to get this information [89, 90].  The compressive strength of concrete is 

291 typically used to estimate the splitting tensile strength of concrete because of its complexity, expense, 

292 and time-consuming nature. Based on experimental data, regression models for shear strength of RC 

293 components are also applied. In the past, the mechanical characteristics of concrete were evaluated using 

294 a set equation that was based on a small amount of experimental data and variables. They are only useful 

295 for describing the results of their own experiments used to calibrate them. The model coefficients and the 

296 equation's form must be updated if the original data is changed. To determine fresh concrete's mechanical 

297 qualities, standard models may not be appropriate since the link between components and concrete 

298 characteristics is particularly nonlinear for certain concrete kinds. A widely agreed-upon mathematical 

299 model is also difficult to come by. A concrete structure's long-term performance may be evaluated by 

300 looking at its dry shrinkage, another important feature of concrete. Several empirical equations for 

301 shrinkage estimation have been developed in various codes such as ACI and CEB throughout the last five 

302 decades. Dry shrinkage in concrete is affected by a variety of parameters, including its composition, the 

303 size of the specimen, and the quality of its ingredients. Using these calculations may be problematic in 

304 certain situations. Components and their relative proportions are determined in order to manufacture 

305 concrete that fulfills required strength, workability and durability at a low cost while yet delivering a high 

306 quality product. As an extension of previous practice, concrete mix percentage algorithms are typically 

307 available in the form of empirical formulae or tables. As a consequence of this uncertainty, typical 

308 methods for determining concrete mix proportions are a trial-and-error exercise, which results in higher 

309 expenses as well as more time [92]. Modeling concrete characteristics and mix design accurately and 

310 reliably may save time and money by providing engineers with the information they need. To circumvent 

311 the limitations of standard empirical regression models, machine learning methods have been used to 

312 represent these features. Construction of accurate and effective models for predicting the characteristics 

313 and mix design of several kinds of concrete, including fiber-reinforced polymer (FRP) concrete have been 

314 done by using Machine Learning Techniques. Many machine learning methods are used in these 

315 investigations, including neural networks, genetic programming, fuzzy logic, support vector machines, and 

316 fuzzy inference systems (FIS). Machine learning approaches have been shown to be a strong tool for 

317 evaluating tangible qualities, regardless of the complexity, incoherence, or incompleteness of the data 

318 used. They're also a superior alternative for deciding on the right quantities of materials in concrete 

319 mixtures to achieve the appropriate strength and rheology [88-94]. Reducing trial mixes results in an 

320 ecological and cost-effective mix design method.

321 4.3.Artificial Neural Network: 

PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84583:1:2:NEW 7 Sep 2023)

Manuscript to be reviewedComputer Science



322 Parallel processing occurs in the brain's neural network, which is a web of linked neurons that sends 

323 signals back and forth to process information. ANNs are a cutting-edge analytical technique that mimics 

324 the way the human brain thinks. Similar to other DoE approaches that take in numerous factors to forecast 

325 the response variable, ANNs may be employed mathematically to analyze multiple inputs and generate 

326 an output [95]. The input, hidden layer, and output layer are all parts of the ANN's mechanism. It is here 

327 where data is entered. The output layer processes the data and provides the result via a system of 

328 connection weights. The inputs are fed into the process, and the process concludes with the output. A 

329 technique known as backward propagation is used to reduce the overall weight of the network's 

330 connections. The discrepancy between the anticipated value and the actual value is believed to alter and 

331 change the mechanism of the hidden layer. It is important to understand the benefits and downsides of 

332 ANNs [96]. Due to its processing, errors may be tolerated, and complicated non-linear relationships 

333 between variables can be solved with ease using data analysis. ANNs have a distinct edge over pre-

334 programmed computational models since they are able to learn from their own mistakes. It is also possible 

335 to overfit the data supplied by ANNs because of the intricacy of their solution [95, 97]. 

336 Concrete compressive strength may be predicted using ANNs, which have a greater number of 

337 variables than previous DoE approaches. Analyzing many concrete experiments that all employ the same 

338 looking to upgrade is a unique use of ANNs thanks to their enhanced processing capability. Gupta et al. 

339 [98] who collected 32 data points from ten different publications on nano-silica-containing concrete, came 

340 up with an exact model for 28-day concrete compressive strength without having to do any experiments. 

341 Additionally, Asteris and Mokos [99] utilized non-destructive test results from a thesis to train ANNs on 

342 209 data sets to estimate concrete strength. Noorzaei et al. [100] and Santosa and PurboSantosa [101] 

343 did a similar study utilizing the elements of concrete as variables and reached the same outcome. In terms 

344 of precision, regression analysis, particularly multiple non-linear regression, falls short in comparison to 

345 ANNs, as shown by the R2 value. When it comes to modeling self-compacting concrete, research found 

346 that the results of MLR outperformed those generated by ANNs. ANNs function best when given more 

347 data, and the low quantity of data in the study (i.e., 15) may account for this. The R2 score alone should 

348 not be utilized to choose the optimal model. The Root Mean Squared Error (RMSE) of the ANNs model 

349 was much lower than the other models in another experiment on recycled aggregate concrete.

350 4.4.Comparison and Motivation of Literature Review 

351 The PRISMA based methodology adaption for this systematic literature review has been taken from 

352 Zahid et al. [102]. This literature review is unique because it systematically summarizes the current state 

353 of research on the application of machine learning in the concrete industry, with a focus on structural 

354 analysis and design approaches. The review provides a comprehensive overview of the potential of ML to 

355 replace empirical models and reduce the time and effort required in the industry. It also provides an 

356 overview of ML methods, principles, access codes, libraries, and datasets that can be used by practitioners 

357 and researchers to develop their own ML models.  Additionally, this review identifies the most active 

358 locations and influential authors in researching ML applications for concrete, which could facilitate future 

359 collaborations and sharing of novel ideas and approaches among academics. The statistical and graphical 

360 representation of contributing authors and nations can be useful for researchers and practitioners in 

361 identifying potential collaborators and networking opportunities. Overall, this review provides a valuable 

362 resource for researchers and practitioners in the concrete industry who are interested in exploring the 

363 potential of ML to improve their work. The systematic approach used in this review ensures that the 
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364 information presented is comprehensive and unbiased, making it a valuable resource for anyone looking 

365 to learn more about the application of ML in the concrete industry.

366 5. Conclusion: 

367 It can be concluded that the use of machine learning (ML) is being explored as a potential method to 

368 reduce the time and effort required for structural analysis and design approaches in the concrete industry. 

369 The abstract summarizes a systematic review of 42 studies that were conducted using a set of keywords 

370 and PRISMA guidelines. The review highlights the potential of ML to serve as a successor to the routinely 

371 used empirical models in the structural engineering community. The paper also provides an overview of 

372 ML methods, fundamental principles, access codes, ML libraries, and gathered datasets that can be used 

373 by practitioners and researchers to construct their own ML models for useful applications. The 

374 construction industry can benefit from the use of ML in terms of cost savings, time savings, and labor 

375 intensity. The systematic review also identifies the most active locations and influential authors in 

376 researching ML applications for concrete, which could facilitate future collaborations and sharing of novel 

377 ideas and approaches among academics. However, the limitation of this review is that it only includes 

378 studies that are included in the PubMed database.

379

380

381 5.1.Future Trend 

382 The great degree of accuracy in actual and predicted outcomes demonstrates the significance of these 

383 techniques in civil engineering. It's becoming increasingly common to use supervised ML techniques since 

384 they provide accurate outputs and reduce the amount of physical labor and overall project expense. In 

385 addition, it is vital to conduct laboratory experiments to compare the results of machine learning 

386 algorithms. In order to compare the results of different machine learning algorithms, it is also possible to 

387 alter or add input factors, such as the number of data points and the kind of material used, size of 

388 specimens, ambient conditions, curing settings, and data loading rate. For the sake of comparison, a 

389 variety of machine learning approaches may be used, including artificial neural networks (ANNs), support 

390 vector machines (SVMs), and boosting [66]. Databases were used to calculate the compressive and split 

391 tensile strengths. As an alternative, additional input parameters and increasing the database may produce 

392 the required results. Silica Fume Concrete (SFC) is compressive and split tensile strength models have 

393 been created in this work. According to statistical characteristics, these models were able to accurately 

394 and reliably estimate Silica Fume Concrete (SFC) intensities. However, by using the same modeling 

395 parameters, MLPNN, ANFIS, and GEP models may be used to forecast concrete qualities including 

396 numerous different concrete ingredients. Based on input parameters, these models will be changed and 

397 the outcomes anticipated are largely dependent on the database used. The whale optimization algorithm, 

398 ant colony optimization, and particle swarm optimization are just a few examples of heuristic techniques 

399 that may be utilized in combination with machine learning to get optimum results. They may then be 

400 compared to this study's methods. The upgraded and improved version of GEP is known as multi-

401 expression programming (MEP). GEP's limitations may be overcome via MEP analysis. To put it simply, 

402 MEP is given more attention when the complexity of the target expression is uncertain. There are 

403 exceptions, erroneous expressions, and even division by zero that can be handled by MEP. There are no 

404 infertile learners in the next generation since the gene is responsible for causing exceptions and then 
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405 changing to an arbitrary terminal symbol. While MLPNN and ANFIS were used for the prediction of results, 

406 single learners were utilized in this study to anticipate results. Many different sub-models are built, and 

407 statistical parameters are used to pick the best one. This is known as an ensemble ML approach [64].
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Figure 1
PRISMA-based flowchart showing the studies recruitment process.
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Figure 2
Pie chart of studies showing no. of ML and NN techniques used in the selected studies.
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Figure 3
Classification of machine learning algorithms on the basis of their learning types [81].
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Table 1(on next page)

Inclusion and exclusion criteria for the recruitment of studies are discussed in detail.
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1 Table 1. Inclusion and exclusion criteria for the recruitment of studies are discussed in detail.

2

Inclusive Criteria Exclusive Criteria

● Concrete was used as the primary 

material in the study. 

● Studies that use any machine 

learning algorithm to predict the 

properties. 

● Studies that are published are 

either original articles or review 

articles in any conference 

proceeding or journal. 

● The material used in some of the 

studies was not concrete. 

● Studies that use any other method 

other than machine learning for 

the prediction. 

● Studies that are not published are 

either original articles or review 

articles in any conference 

proceeding or journal.

3
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Table 2(on next page)

Summarized details of the studies recruited after conducting PRISMA-based systematic
review.
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1           Table 2. Summarized details of the studies recruited after conducting PRISMA-based systematic 

2 review. 

3

Refer

ence

Author Year Material Properties Input 

parameter

Machine 

learning 

algorithm 

Reported outcomes 

[36] Latif et 

al.

2021 environme

ntally 

friendly 

concrete

compressive 

strength

8 -boosted 

decision 

tree 

regression 

(BDTR) 

-support 

vector 

machine 

(SVM)

R =0.86 

RMSE=6.19 

MAE=4.91

RSR=0.37

[37] Iqbal et 

al. 

2021 concrete 

waste 

foundry 

sand 

(CWFS).

-split tensile 

strength (ST) 

-modulus of 

elasticity

(E)

4 Multi-

Expression 

Programmin

g (MEP)

ST:

R=0.93

RMSE=0.36

MAE=0.28

RSE=0.21

Accuracy=0.051E

R=0.96

RMSE=2.13

MAE=1.70

RSE=0.17

Accuracy=0.032 

[38] Du et 

al. 

2021 high-

performanc

e self-

compacting 

concrete

-compressive 

strength

? genetic 

algorithm

(GA)-

optimized 

backpropag

ation neural 

network 

(BPNN) 

BPNN:

Correlation 

coefficient=0.967

RMSE=3.703

GA-BPNN:

Correlation 
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model coefficient=0.979

RMSE=2.972

[39] Saifudd

in et al. 

2016 Journal Concrete ? artificial 

neural 

networks 

(ANN)

coefficient of 

determination (R2) = 

0.9486

[40] Hadzim

a-

Nyarko 

et al. 

2019 Waste 

Rubber 

Concrete

-compressive 

strength

6 artificial 

neural 

networks 

(ANN)

highest R value of 0.96 and 

0.98 for the

train and test data, 

respectively, an achieved 

the lowest RMSE and 

MAPE values (4.8 and 20.2 

for the

train data, respectively, 

and 3.78 and 21.6 for the 

test data

[41] Dao et 

al.

2019 Geopolyme

r Concrete

-compressive 

strength

4 -adaptive 

neuro fuzzy 

inference 

(ANFIS)

-artificial 

neural 

network 

(ANN)

-ANFIS (MAE = 1.655 MPa, 

RMSE = 2.265 MPa, and R2 

= 0.879)

-ANN (MAE = 1.989 MPa, 

RMSE = 2.423 MPa, and R2 

= 0.851)

[42] Ziolkow

ski et 

al.

2019 Concrete -compressive 

strength

? -artificial 

neural 

network 

(ANN)

?

[43] Yoon et 

al.

2019 Lightweight 

Aggregate 

Concrete

-compressive 

strength

-elastic 

modulus

10 -artificial 

neural 

network 

(ANN)

CS:

MAE% = 14.5%

Correlation coefficient = 

0.930

E:

MAE% = 8.5%

Correlation coefficient = 

PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84583:1:2:NEW 7 Sep 2023)

Manuscript to be reviewedComputer Science



0.977

[44] Abamb

res et 

al.

2019 Concrete -compressive 

strength

1 -artificial 

neural 

network 

(ANN)

AVG = average = 1.00

STD =

standard deviation = 0.02

COV = co-efficient of 

variation = 1.69%

[45] Dao et 

al.

2020 Foamed 

Concrete

-compressive 

strength

3 -

Convention

al Artificial 

Neural 

Network (C-

ANN)

R2 = 0.972

RMSE = 0.140

MAE = 0.114

[46] Park et 

al. 

2020 Concrete -Static 

Modulus --

Compressive

Strength

6 -SVM

-Ensemble

-ANN

-Linear 

Regression

SVM: 

MSE = 12.75

MAPE = 13.71

Ensemble:

MSE = 11.54

MAPE = 14.31

ANN:

MSE = 29.50 

MAPE = 15.47

LR:

MSE = 44.77

MAPE = 29.59

[47] Marani 

et al.

2020 Ultra-high-

performanc

e

concrete 

--

Compressive

Strength

8 -Tabular 

Generative 

Adversarial 

Networks 

(TGAN)

TGAN: 

MAE = 5.46

RMSE = 8.47
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(UHPC)

-Tree-Based 

Ensembles

R2 = 0.95

Ensemble:

MAE = 6.72

RMSE = 8.41

R2 = 0.95

[48] Wan et 

al. 

2021 Concrete -Compressive

Strength

-8 original 

features

-6

Principal

Component 

Analysis 

(PCA)

Features

-6

Manual 

features.

-Linear 

Regression 

(LR)

-Support 

Vector 

Regression 

(SVR)

-Extreme 

Gradient 

Boosting 

(XGBoost)

- Artificial 

Neural 

Network 

(ANN),

LR: 

MSE = 44.90

R2 = 0.84

SVR:

MSE = 25.8

R2 = 0.91

XGBoost:

MSE = 33.87

R2 = 0.87

ANN:

MSE =  26.4

R2 = 0.91

[49] Ahmad 

et al. 

2021 Fly Ash 

Based 

Concrete

--

Compressive

Strength

8 -decision 

tree (DT) 

-Ensemble 

approach 

-Gene 

Expression 

Programmin

DT: 

MAE = 3.89

MSE = 36.01

RMSE = 6.00

DT-bagging:

MAE = 3.113
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g (GEP) MSE = 16.28

RMSE = 4.03

GEP:

MAE = 3.47

MSE = 29.91 

RMSE = 5.46

[50] Khan et 

al. 

2021 Geopolyme

r Concrete

--

Compressive

Strength

9 -Gene 

Expression 

Programmin

g (GEP)

RMSE = 2.64

MAE = 2.057

RSE = 0.06

R = 0.9643

[51] Huseie

n et al. 

2021 self-healing 

concrete

mechanical 

and 

durability 

properties

8 Artificial 

Neural 

Network 

(ANN)

MSE = 3.72

ME = 0.89

MAE = 1.11

RMSE = 1.93

[52] Mhaya 

et al. 

2021 waste 

rubber tire 

crumbs 

(WRTCs)-

based 

concrete

--

Compressive

Strength

6 Artificial 

Neural 

Network 

(ANN)

MSE = 189.69

ME = 3.052

MAE = 8.139

RMSE = 13.773

[53] Ahmad 

et al. 

2021 Concrete --

Compressive

Strength

10 -AdaBoost

-Random 

forest (RF)

-Decision 

tree (DT)

AdaBoost:

R2 = 0.938

RSR = 0.248

MAPE = 12.52

RRMSE = 11.62

RF:

R2 = 0.935

RSR = 0.256
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MAPE = 13.076

RRMSE = 11.661

DT:

R2 = 0.911

RSR = 0.324

MAPE = 16.100

RRMSE = 14.753

[54] Ahmad 

et al.

2021 Concrete --

Compressive

Strength

? -decision 

tree (DT)

-artificial 

neural 

network

(ANN)

-Bagging

-gradient 

boosting 

(GB)

DT:

MAE = 7.54

MSE = 112.3

RMSE = 10.79 

Bagging:

MAE = 5.65

MSE = 61.08

RMSE = 7.81

GB:

MAE = 6.93

MSE = 85.1

RMSE = 9.24

DT:

MAE = 9.15

MSE = 121.66

RMSE = 11.03
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[55] Kovače
vić et 

sl.

2021 Self-

Compactin

g

Rubberized 

Concrete

--

Compressive

Strength

11 -

multilayere

d 

perceptron 

artificial 

neural 

network 

(MLP-ANN)

-ensembles 

of 

MLPANNs,

MLPANN:

RMSE = 7.44

MAE = 5.54

R= 0.8481

Ensemble MLPANN:

RMSE = 3.68

MAE = 2.80

R= 0.9615

[56] Song et 

al. 

2021 Ceramic 

Waste-

Based

Concrete

--

Compressive

Strength

5 -decision 

tree (DT)

-artificial 

neural 

network

(ANN)

DT:

MAE = 6.94

MSE = 20.76

RMSE = 4.55

ANN:

MAE = 6.12

MSE = 17.98

RMSE = 4.29

[57] Farooq 

et al.

2021 Self-

Compactin

g Concrete 

Modified 

with Fly 

Ash

--

Compressive

Strength

7 -artificial 

neural 

network

(ANN)

-support 

vectormachi

ne (SVM)

-Gene 

Expression 

Programmin

g (GEP)

ANN:

R = 0.95

RMSE = 4.56

MAE = 3.81

SVM:

R = 0.93

RMSE= 4.49

MAE = 3.29
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GEP:

R = 0.93

RMSE = 4.8

MAE = 3.92

[58] Ahmad 

et al.

2021 Concrete 

Containing

Supplemen

tary 

Cementitio

us 

Materials

--

Compressive

Strength

8 -Bagging 

-AdaBoost

-Gene 

Expression 

Programmin

g (GEP)

-decision 

tree (DT)

Bagging: 

MAE = 3.257

MSE = 20.566

RMSE = 4.53

AdaBoost:

MAE = 5.12

MSE = 47.37

RMSE = 6.88

GEP:

MAE = 5.24

MSE = 50.69

RMSE = 7.12

DT:

MAE = 5.88

MSE = 57.30

RMSE = 7.57
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[59] Tosee 

et al

2021 Environme

ntally 

Friendly 

Concrete 

Modified 

with 

Eggshell

--

Compressive

Strength

4 Hybrid ANN-

SFL 

(artificial 

neural 

network-

Shuffled 

Frog 

Leaping)

MSE = 0.42

AAE = 0.040

VAF = 94

[60] Xu et 

al.

2921 -Concrete --

Compressive

Strength

7 -support

vector 

regression(S

VR)

-AdaBoost

-random 

forest

SVR:

MAE = 3.329

RMSE = 5.325

AdaBoost:

MAE = 2.94

RMSE = 3.90

RT: 

MAE = 2.223

RMSE = 3.183

[61] Isleem 

et al.

2021 GFRP-

Reinforced 

Concrete

-axial load-

axial

Strain

-confinement 

of columns

-ductility

-hardening 

behavior

6 --artificial 

neural 

network

(ANN)

- Finite 

Element 

(FEM)

?
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[62] Nafees 

et al

2021 Silica

Fume-

Based 

Green 

Concrete

Split Tensile 

Strength; 

compressive 

strength 

5 - Multilayer

perceptron 

neural 

networks 

(MLPNN)

-adaptive 

neural fuzzy 

detection 

systems 

(ANFIS)

-genetic 

expression

Programmin

g (GEP).

MLPNN:

0.85; 0.90

ANFIS:

0.91; 0.92

GEP:

0.97; 0.93

[63] Khokha

r et al.

2021 Fiber 

Reinforced 

Concrete

-Compressive

Strength

-Tensile 

Strength

-Strain-

Hardening

-Tensile 

Strain

Capacity

15 - Artificial 

Neural 

Networks 

(ANN)

-Support 

Vector 

Machine 

(SVM)

-XGBoost

ANN:

Accuracy = 96.3%

SVM:

Accuracy = 94%

XGBoost:

Accuracy = 98.4%

[64] Imran 2022 Eco-

Friendly 

Concrete

--

Compressive

Strength

6 -

multivariate

polynomial 

regression 

(MPR)

-linear 

regression 

(LR)

MPR: 

R2 = 0.818

RMSE = 4.6

LR:

R2 = 0.676

RMSE = 6.053
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-support 

vector 

machine 

(SVM)

SVM:

R2 = 0.495 

RMSE = 7.38

[65] Almoha

mmed 

et al

2022 bacterial 

concrete

--

Compressive

Strength

8 -Multiple 

Linear 

Regression 

(MLR)

-Random 

Forest (RF)

-support 

vector

Regression 

(SVR)

-M5P Model 

-Random 

Tree

MLR:

R2 = 0.88

RMSE = 4.87

MAE = 3.96

RF:

R2 = 0.97

RMSE = 2.29

MAE = 1.81

SVR:

R2 = 0.98

RMSE = 1.94

MAE = 1.52

RT:

R2 = 0.96

RMSE = 2.82

MAE = 2.49

M5P:

R2 = 0.94
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RMSE = 4.88

MAE = 2.88

[66] Shang 

et al

2022 recycled 

coarse 

aggregate 

based 

concrete 

splitting 

tensile 

strength; 

Compressive

Strength

9 -Decision 

tree (DT)

-AdaBoost 

-

DT: 

MAE = 3.58; 0.31

MSE = 11.02; 0.29

RMSE = 3.32; 0.54

AdaBoost:

MAE = 2.33; 0.30

MSE = 7.8; 0.20

RMSE = 2.79; 0.45

[67] Candel

aria et 

al. 

2022 Concrete --

Compressive

Strength

8 -artificial

neural 

network 

(ANN)

-support 

ANN:

R2 = 0.97

RMSE = 9.4

MAE = 9.414
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vector 

machine 

(SVM)

-Gaussian 

process 

regression 

(GPR)

- Multi-

Variate 

Regression

SVM:

R2 = 0.95

RMSE = 18.04

MAE = 12.33

GPR:

R2 = 0.94

RMSE = 18.14

MAE = 13.072

MVR:

R2 = 0.93

RMSE = 9.5

MAE = 17.215

[68] Ahmed 

et al.

2022 geopolyme

r concrete

-Compressive

Strength

14 -linear 

regression 

(LR)

-

multinomin

al logistic 

regression 

(MLR)

-nonlinear 

regression 

(NLR)

R2 = 0.853

RMSE = 6.82

[69] Najm et 

al.

2022 Waste 

ceramic 

concrete 

(WOC)

Tensile 

strength; 

compressive 

strength 

11 -artificial 

neural 

networks 

(ANN) 

R2 = 0.9988; 0.9687

MSE = 0.22; 1.8899

RMSE = 0.4699; 1.3744

MAE = 0.469; 1.2279
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[70] Yuan et 

al.

2022 recycled 

aggregate 

concrete 

(RAC)

Compressive 

strength; 

Flexural 

strength 

12 -gradient 

boosting 

-random 

forest (RF) 

GB: 

MAE = 4.77; 0.642

RMSE = 6.9; 1.199

RF:

MAE = 4.19; 0.560

RMSE = 5.6; 0.85

[71] Ray et 

al. 

2022 concrete 

made 

(stone dust 

and nylon 

fiber)

Strength 8 -artificial 

neural 

networks 

(ANN) 

R = 0.95

R2 = 0.90

MSE = 0.09

MAE = 0.20

AE = 0.04

[72] Ilyas et 

al.

2021 CFRP 

Confined 

Concrete

-strength 8 -Multi 

Expression 

Programmin

g (MEP)

RMSE = 7.71

RSE = 0.009 

MAE = 6.33

RRMSE = 0.010

R = 0.9953

[73] Gunase

kara et 

al.

2021 High 

Calcium Fly 

Ash 

Geopolyme

r Concrete

-compressive 

strength

5 -artificial 

neural 

networks 

(ANN) 

?

[74] Ahmad 

et al

2021 geopolyme

r concrete 

(GPC)

-compressive 

strength

9 -artificial 

neural 

networks 

(ANN) 

-Boosting 

ANN: 

MAE = 3.86

MSE = 20.16

RMSE = 4.49
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algorithm 

-Ada boost 

Boosting algorithm: 

MAE = 1.69

MSE = 4.16

RMSE = 2.04

AdaBoost:

MAE = 2.16

MSE = 6.84

RMSE = 2.62

[75] Amin et 

al.

2022 fiber-

reinforced 

polymer 

(FRP) 

reinforced 

Concrete

-Flexural 

Strength

9 -decision 

tree (DT)

-gradient 

boosting 

tree (GBT)

DT: 

R = 0.92

MAE = 10.32

RMSE = 19.92

GBT:

R = 0.94

MAE = 11.25

RMSE = 16.36

[76] Khalaf 

at al. 

2022 Fly Ash 

Geopolyme

r

Concrete

-compressive 

strength

11 Optimized 

Neural 

Network 

Model

MSE = 166.0 

R% = 97.5 

[77] Nafees 

et al

2022 Plastic 

Concrete

-compressive 

strength

9 Ensemble 

boosting

R = 0.814

4
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