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Background: Concrete, a major building product, is the greatest user of virgin resources including sand,
gravel, crushed stone, and fresh water, and it consumes around 1.6 billion metric tons of Portland and
altered Portland cement each year. A time-consuming calibration procedure is required for structural
analysis and design approaches when dealing with severe actions that display extremely nonlinear
behavior. These methods are also diûcult to execute in practice. To reduce time and eûort, machine
learning (ML) might be a viable option

Material and Methods: Set of keywords are design to perform the search PubMed with ûlters to not search
the studies below the year 2015. Furthermore, using PRISMA guidelines, studies were recruited and after
proper screening, a total of 42 studies were summarized. The ability to methodically and accurately
connect disparate parts of the literature is often lacking in review research. Some of the trickiest parts of
original research include knowledge mapping, co-citation, and co-occurrence. Using this data, we were
able to determine which locations were most active in researching machine learning applications for
concrete, where the most inûuential authors were in terms of both output and citations, and which
papers garnered the most citations overall.

Conclusion: ML has become a viable prediction method for a wide variety of structural industrial
applications, and hence it may serve as a potential successor for routinely used empirical models. The
non-ML structural engineering community may use this overview of ML methods, fundamental principles,
access codes, ML libraries, and gathered datasets to construct their own ML models for useful uses.
Structural engineering practitioners and researchers may beneût from this paper's incorporation of
concrete ML studies as well as structural engineering datasets. The construction industry stands to
beneût from the use of machine learning in terms of cost savings, time savings, and labor intensity. The
statistical and graphical representation of contributing authors and nations in this work might facilitate
future collaborations and the sharing of novel ideas and approaches among academics. The limitation of
this systematic review is that its only PubMed based which means it includes studies included in the
PubMed database.
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1 Systematic Literature Review on the Application of Machine Learning for the Prediction of Properties 

2 of Different Types of Concrete

3 Abstract: 

4 Background: Concrete, a major building product, is the greatest user of virgin resources including sand, 

5 gravel, crushed stone, and fresh water, and it consumes around 1.6 billion metric tons of Portland and 

6 altered Portland cement each year. A time-consuming calibration procedure is required for structural 

7 analysis and design approaches when dealing with severe actions that display extremely nonlinear 

8 behavior. These methods are also difficult to execute in practice. To reduce time and effort, machine 

9 learning (ML) might be a viable option

10 Material and Methods:A set of keywords aredesigned to perform the search PubMed with filters to not 

11 search the studies below the year 2015. Furthermore, using PRISMA guidelines, studies were recruited 

12 and after proper screening, a total of 42 studies were summarized. The ability to methodically and 

13 accurately connect disparate parts of the literature is often lacking in review research. Some of the 

14 trickiest parts of original research include knowledge mapping, co-citation, and co-occurrence. Using this 

15 data, we were able to determine which locations were most active in researching machine learning 

16 applications for concrete, where the most influential authors were in terms of both output and citations 

17 and which papers garnered the most citations overall.

18 Conclusion: ML has become a viable prediction method for a wide variety of structural industrial 

19 applications, and hence it may serve as a potential successor for routinely used empirical models. The 

20 non-ML structural engineering community may use this overview of ML methods, fundamental principles, 

21 access codes, ML libraries, and gathered datasets to construct their own ML models for useful uses. 

22 Structural engineering practitioners and researchers may benefit from this paper's incorporation of 

23 concrete ML studies as well as structural engineering datasets. The construction industry stands to benefit 

24 from the use of machine learning in terms of cost savings, time savings, and labor intensity. The statistical 

25 and graphical representation of contributing authors and nations in this work might facilitate future 

26 collaborations and the sharing of novel ideas and approaches among academics.The limitation of this 

27 systematic review is that its only PubMed based which means it includes studies included in the PubMed 

28 database.
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33

34 1. Introduction

35 Innovation and carbon emissions have forced building firms to utilize an increasing amount of high-

36 performance manufactured materials. High building materials provide better strength, ductility, 

37 durability, resistance to external forces, more ecologically friendly development, and cheaper costs than 

38 typical construction products [1]. It is possible for them to dramatically extend the useful life of 

39 construction structures and minimize the amount of time and money needed to maintain such buildings. 

40 Construction materials that are known for their high level of performance include high-strength polymeric 

41 materials, lightweight steel, and concrete nanocomposite reinforced with glass fibers.Concrete, a major 

42 building product, is the greatest user of virgin resources including sand, gravel, crushed stone, and fresh 

43 water and it consumes around 1.6 billion metric tons of Portland and altered Portland cement each year 

44 [2]. The primary component of concrete, Portland cement, is an energy and resource hog. About 7% of 

45 the world's total CO2 emissions come from the manufacture of cement, making it one of the two greatest 

46 sources of greenhouse gas. Research is underway to develop unique materials that improve the qualities 

47 of high-strength concrete in order to produce concrete high-performance and ecologically friendly [2, 3]. 

48 Fly ash (FA) is becoming a popular alternative to Portland cement in concrete because it saves 

49 resources, lasts longer, costs less, and is good for the environment [4]. In addition to being good for the 

50 environment and saving money, fly ash improves the stability of both high strength concrete by making it 

51 easier to work with, making it stronger over time, making it more resistant to sulfate attacks and alkali-

52 silica reactions, lowering the heat of hydration [5], making it less likely to shrink, making it last the same 

53 amount of time when it freezes and thaws, making it less porous, and making it less permeable [5, 6]. But 

54 the amount and type of fly ash used in concrete have to be planned and described correctly because fly 

55 ash is not made in a special way and can't be controlled by strict rules. At the end of the 1940s, FA was 

56 sold on the national market of concrete. It was known that using FA in concrete would improve the 

57 performance of high-volume FA (HVFA) concrete by making it easier to work with (thanks to the ball-

58 bearing effect of spherical particles), making it stronger over time, cheaper, and more durable.  Since FA 

59 is a waste product, it cuts down the total cost of making concrete by a large amount [7-9]. FA will have 

60 different qualities from plant to plant since it is not made in a specific way and can't be held to strict 

61 standards. In other words, its properties are dependent on the characteristics of pulverized coal and how 

62 the pulverization process is done in power plants that make electricity. Over time, HVFA concrete may get 

63 close to the strength of Portland cement concrete (PCC). FA reduces the HVFA cementitious materials' 

64 internal curing thermostat, drying shrinkage, and porous air vacuum. This shows HVFA concrete 

65 compositions are as durable as or greater than PCC [10]. FA may also increase deformation and porosity-

66 related durability.This is because the spherical shape and flat texture of FA granules, the wrapping effect 

67 of particulate, and the protection of opposite charges cement particles from flocculating are all things that 

68 make FA another before concrete [11, 12]. 

69 An artificial intelligence (AI) subfield known as machine learning (ML) focuses on teaching computers 

70 the skill of making predictions using existing datasets and methods. The most essential benefit is that 

71 computers may learn and develop automatically rather than being supervised learning [13]. It was not 

72 until the 1990s that machine learning (ML) became the most prospering branch of artificial intelligence 

73 (AI), and began to grow, despite its 1943 birth and 1959 coinage. Since it's crucial in numerous applications 

74 of the real world, including voice and picture recognition, medical diagnosis, traffic warnings, and self-
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75 driving vehicles, ML has also become one of our generation's most popular buzzwords in the technological 

76 industry. ML According to the learning experience, supervised, unsupervised, and reinforcement learning 

77 are all examples of machine learning [14]. The most fundamental kind of ML is supervised learning, in 

78 which a labeled data set is used for an algorithm in teaching. In structural engineering, this technique has 

79 been extensively utilized for damage identification (classification issues) and strength forecasts 

80 (regression problems) (regression problems). Unsupervised learning, on the other hand, uses an algorithm 

81 that is trained on an unlabeled collection of data. As a result of this, the algorithm is honed using the 

82 reinforcement learning approach. More and more machine learning techniques are being used in 

83 structural engineering. These include neural networks (NN), decision trees (DT) and boosting algorithms 

84 (BA), regression analysis (RA), and support vector machines (SVM) [14-16]. Engineering design has utilized 

85 meta-models (sometimes called surrogate models) to speed up the calculation of black-box ML models 

86 with a relaxed level of accuracy in an effort to save computational time. It is open an interpretation model 

87 that is trained to mimic the forecasts of a black-box ML model. That's why they're called "surrogates": 

88 basic analytical models that act like complicated machine-learning models [15].Structural engineering is a 

89 branch of engineering that deals with the design and study of structures that are capable of supporting 

90 loads. A time-consuming calibration procedure is required for structural analysis and design approaches 

91 when dealing with severe actions that display extremely nonlinear behavior. These methods are also 

92 difficult to execute in practice. To reduce time and effort, machine learning (ML) might be a viable option 

93 [7, 11, and 16]. In 1991, Adele and Yeh used an artificial neural network (ANN) to construct steel beams 

94 in one of the earliest ML applications in structural engineering [17]. Structural engineering was in its 

95 infancy at the time because of the limits of ML methods and computational capacity. In the early stages 

96 of structural engineering applications, this is shown by the fact that just a few relevant publications were 

97 published annually [17, 18].It's also difficult to use machine learning in structural engineering since there 

98 aren't enough test datasets for ML models. Structural analysis research has taken the required efforts to 

99 overcome this obstacle by developing databases to gather data from structural analysis testing. There are 

100 about 250 datasets from more than 50,000 trials housed in the DataCenterHub repository platform [19, 

101 20]. Network for Earthquake Engineering Simulation (NEEShub) [21] is a cyberinfrastructure system for 

102 earthquake engineering and catastrophe risk assessment. DesignSafe [22] is an extension of the NEEShub. 

103 NEEShub datasets for seismic design can be obtained from DataCenterHub [23], as well as image 

104 databases for crack damage detection (e.g., Structural ImageNet with more than 10,000 images, PEER Hub 

105 ImageNet) [24] established by the Pacific earthquake engineering research (PEER) center with more than 

106 36,000 images, bridge crack library with more than 11,000 images, etc). Advances in machine learning 

107 (ML) methods have also been made in the field of structural engineering [25]. For big datasets, BA 

108 approaches like extreme gradient boosting (XGBoost) [26] and classified gradient boosting (CatBoost) are 

109 particularly powerful tools. CNN is considered state-of-the-art ML technology because of its speed in 

110 identifying structural fracture damage. AutoML-Zero, a novel ML approach developed by the Google team 

111 recently, can progress autonomously without human involvement. TensorFlow and Keras from Google 

112 and PyTorch from Facebook are two examples of open-source ML libraries that provide hands-on ML 

113 algorithms and ready-to-run tools for construction applications [27, 28].

114 The scientific world has seen a significant raise in the application of ML in engineering structures, 

115 notably over the duration of last five years, with an evident exponential surge in the number of papers 

116 each year rapid evolution of ML algorithms and processing capacity. However, the use of ML in 

117 construction applications is currently relatively restricted. The industry (e.g. Arup) has created ML-

118 powered tools to produce alternative designs that fulfill the criteria of end-users as one of the real-world 
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119 uses of creative models. Many recent review publications have addressed this topic, but they only focused 

120 on a specific area of engineering structures (e.g., systemic implementation and quality, building system 

121 for fire; tangible property; cement mix proportions; capacity forecasting of concrete buildings; and layout 

122 and safety checks of bridges) only but instead structural engineering needs a complete assessment of all 

123 aspects [29-32].The aim of this systematic review is to summarize all the studies in recent years 

124 implementing the approach of machine learning on the prediction in structural engineering but in 

125 consideration of the limitation applied to concrete as material because concrete material is extensively 

126 used material in the construction industry [2]. 

127 1.1.Rationale 

128 The rationale for conducting this systematic review on machine learning applications in concrete is 

129 driven by the need to address the challenges and limitations of traditional structural analysis and design 

130 approaches. The construction industry heavily relies on concrete, which consumes significant amounts of 

131 virgin resources and plays a crucial role in building infrastructure. However, the conventional methods 

132 used for structural analysis often require time-consuming calibration procedures and struggle to handle 

133 severe actions with highly nonlinear behavior. Therefore, there is a need to explore alternative 

134 approaches that can reduce time and effort while improving accuracy and efficiency. Machine learning 

135 has shown promise in various fields, and its potential application in concrete structural engineering 

136 warrants investigation to identify its benefits and limitations.

137 The intended audience for this systematic review includes both structural engineering practitioners 

138 and researchers in the field of concrete construction. Structural engineers who are interested in exploring 

139 new approaches for structural analysis and design will find value in the overview of machine learning 

140 methods, principles, and available resources provided in this paper. Researchers in the field of concrete 

141 and machine learning will benefit from the summary of existing studies, knowledge mapping, and 

142 identification of influential authors and nations. Additionally, professionals in the construction industry, 

143 including contractors, developers, and project managers, can gain insights into the potential benefits of 

144 machine learning in terms of cost savings, time efficiency, and labor intensity. Overall, this review aims to 

145 bridge the gap between traditional structural engineering practices and the emerging field of machine 

146 learning, providing a valuable resource for those seeking to incorporate ML methods into concrete 

147 applications.

148 1.2.Problem Statement and Research Question

149 According to the author�s best knowledge, this is the most recent and state-of-the-art review on the 

150 application of machine learning techniques to predict the properties of different types of concrete. The 

151 goal is to conduct a literature review to summarize all the work done on the prediction of all the 

152 mechanical properties of concrete. This literature review will help future researchers to opt for the best 

153 algorithm for their concrete and later compare them with the work already done in this area. 

154 2. Methodology for Conducting Systematic Review

155 Recent decades have witnessed the production of civic studies in huge numbers. As a result of this 

156 heterogeneity, the research provided might affect the investigation in a variety of ways, which 

157 complicates evidence and makes it more difficult to draw conclusions [33]. Systematic review and meta-

158 analysis (SR/MAs) is the evidence-based pyramid's highest level of proof. To keep doctors and nurses up 
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159 to date on the latest evidence-based medicine, it is possible to use an organized, well-managed SR/MA. 

160 As a result of our research, we discovered that the most important processes in a systematic review 

161 remain framing, discovering relevant studies via requirements construction and article search, assessing 

162 the quality of the studies utilized, summarizing data, and interpreting conclusions. The majority of issues 

163 may be solved by a researcher without any prior knowledge of the subject matter [34]. For this study, we 

164 followed the Preferred Reporting Items for Systematic Reviews & Meta-Analysts (PRISMA) criteria [35].

165 2.1.Search Engine and Keywords

166 First, a set of keywords has been formulated which is given below to search the PubMed database for 

167 the relevant studies, then after removing duplicates and the inclusion and exclusion criteria discussed in 

168 Table 1 were applied to the rest of the studies which then resulted in narrowing the studies from 116 to 

169 42 (figure 1). Then for the deeper search and in order to get the most possible and accurate results, the 

170 following keywords were also divided into different sets.

171 ï (concrete technology) AND (mechanical OR durability OR compressive strength OR flexural 

172 strength OR modulus of elasticity OR tensile strength) AND ("computer vision" OR "neural 

173 network" OR "artificial intelligence" OR "pattern recognition" OR "machine learning") 
174
175 2.2.Eligibility Criteria

176 Table 1. Inclusion and exclusion criteria for the recruitment of studies are discussed in detail.

177

178
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179 2.3.Flowchart

180

181 Figure 1. PRISMA-based flowchart showing the studies recruitment process. 

182
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183 3. Results: 

184 The table 2 provides a list of research studies on the application of machine learning algorithms in 

185 predicting the properties of different types of concrete. The table includes the authors, year of 

186 publication, type of concrete, property predicted, number of input parameters, machine learning 

187 algorithms used, and reported outcomes. Some of the machine learning algorithms used in these studies 

188 include boosted decision tree regression, support vector machine, artificial neural network, genetic 

189 algorithm-optimized backpropagation neural network, multi-expression programming, linear regression, 

190 and extreme gradient boosting. The properties predicted include compressive strength, split tensile 

191 strength, modulus of elasticity, and static modulus.The reported outcomes include correlation 

192 coefficients, root mean square error, mean absolute error, accuracy, coefficient of determination, mean 

193 absolute percentage error, and mean squared error. The studies vary in the number of input parameters, 

194 ranging from 1 to 10. Some studies used conventional artificial neural networks, adaptive neuro-

195 fuzzyinference, and tabular generative adversarial networks to predict the properties of concrete.

196           Table 2. Summarized details of the studies recruited after conducting PRISMA-based systematic 

197 review. 

198 4. Discussion and Limitations: 

199

200 Figure 2. Pie chart of studies showing no. of ML and NN techniques used in the selected studies. 

201 In figure 2. We can see that 55% of the authors prefer applying supervised machine learning methods 

202 while 45% of the authors opted deep learning neural networks. But it is difficult to say which one is better 

203 although the highest accuracy achieved was through Artificial Neural Network [78]. Three decades ago, 

204 the initial application of machine learning techniques was to try out several existing approaches to simple 

205 tasks. After then, more complicated issues began to be considered. Monitoring structural health, 

206 evaluating concrete qualities, and formulating new mixes are some of the most prevalent uses [79, 80]. 

207 In this part, we'll take a look at how machine learning (figure 3) approaches have been implemented in 

208 these two scenarios. 

209

210 Figure 3. Classification of machine learning algorithms on the basis of their learning types [81]. 

211 4.1.SHM

212 Civil constructions are subject to structural degradation as a result of their usage and environment. 

213 For the assurance of assure public safety and the in-service construction dependability, the SHM system 

214 is essential for early detection of structural problems. Dynamic response assessments separated at 

215 periodic intervals are used to monitor a component over time, damage-sensitive characteristics are 

216 recovered, and then the derived features are statistically examined to determine the present health 

217 condition of the system [82].Long-span bridges, massive dams, and towering buildings are among the 

218 structures where the SHM system has been widely deployed, allowing for a seamless transition from time-

219 based to situation management. Model-driven or data-driven techniques have both been used in recent 

220 studies in this area of interest. As a result of this method, it is possible to detect structural deterioration 

221 by comparing measured data to data generated by a computer model of the structure (typically based on 
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222 finite element analysis (FEA). Due to the repetitive examination of a simulation software model, this 

223 technique is computationally intensive [83-86]. It is also possible that in actuality, a measurement 

224 simulation may not be available at all times or accurately represent the real structure's performances in 

225 every case. Because of this, FEA findings are typically insufficient to accurately measure structural health. 

226 A strategy based on data rather than models generates a model via the use of observed data and then 

227 compares the model's responses to those measured in order to discover damage. This method employs 

228 machine learning techniques, such as pattern recognition. It is becoming more possible to install large and 

229 dense sensor networks for SHM because to recent advancements in sensing methods, and wireless 

230 communication. As a result, continuous and real-time damage identification is made much easier with the 

231 data-driven method [81]. To identify structural damage, machine learning algorithms are often used in 

232 conjunction with supervised learning, which relies on examples of both healthy and damaged data. 

233 Structural damage detection may benefit from the resilience and efficiency of single machine learning 

234 method such as support vector machine, neural networks, and support vector regressions, as well as the 

235 genetic algorithms (GA). For various challenges in the SHM sector, hybrid approaches such as the multi-

236 objective genetic algorithm (MOGA), neuro-fuzzy (NF), and wavelet neural network (WNN) have also been 

237 presented. All investigations proved the accuracy of machine learning-based models and their better 

238 performance over model-driven methods [86. 87]. 

239 4.2.  Properties of Mix Design Concrete

240 It can be seen in table 2 that so many researchers contributed to predict the mechanical properties 

241 of the concrete mix with different substances like fly ash, foundry sand, or rubber waste using ML 

242 algorithms. Concrete buildings are designed with mechanical qualities including compressive strength, 

243 elastic modulus, splitting tensile strength, and shear strength in mind. Predicting the compressive strength 

244 of concrete by linear or non-linear regression equations saves both time and money [88]. Elastic modulus 

245 measurement is difficult and time-consuming. Stress-strain relations of cementitious materials under 

246 compression are often used to get this information [89, 90].  The compressive strength of concrete is 

247 typically used to estimate the splitting tensile strength of concrete because of its complexity, expense, 

248 and time-consuming nature. Based on experimental data, regression models for shear strength of RC 

249 components are also applied. In the past, the mechanical characteristics of concrete were evaluated using 

250 a set equation that was based on a small amount of experimental data and variables. They are only useful 

251 for describing the results of their own experiments used to calibrate them. The model coefficients and the 

252 equation's form must be updated if the original data is changed. To determine fresh concrete's mechanical 

253 qualities, standard models may not be appropriate since the link between components and concrete 

254 characteristics is particularly nonlinear for certain concrete kinds. A widely agreed-upon mathematical 

255 model is also difficult to come by. A concrete structure's long-term performance may be evaluated by 

256 looking at its dry shrinkage, another important feature of concrete. Several empirical equations for 

257 shrinkage estimation have been developed in various codes such as ACI and CEB throughout the last five 

258 decades. Dry shrinkage in concrete is affected by a variety of parameters, including its composition, the 

259 size of the specimen, and the quality of its ingredients. Using these calculations may be problematic in 

260 certain situations. Components and their relative proportions are determined in order to manufacture 

261 concrete that fulfills required strength, workability and durability at a low cost while yet delivering a high 

262 quality product. As an extension of previous practice, concrete mix percentage algorithms are typically 

263 available in the form of empirical formulae or tables. As a consequence of this uncertainty, typical 

264 methods for determining concrete mix proportions are a trial-and-error exercise, which results in higher 
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265 expenses as well as more time [92]. Modeling concrete characteristics and mix design accurately and 

266 reliably may save time and money by providing engineers with the information they need. To circumvent 

267 the limitations of standard empirical regression models, machine learning methods have been used to 

268 represent these features. Construction of accurate and effective models for predicting the characteristics 

269 and mix design of several kinds of concrete, including fiber-reinforced polymer (FRP) concrete have been 

270 done by using Machine Learning Techniques. Many machine learning methods are used in these 

271 investigations, including neural networks, genetic programming, fuzzy logic, support vector machines, and 

272 fuzzy inference systems (FIS). Machine learning approaches have been shown to be a strong tool for 

273 evaluating tangible qualities, regardless of the complexity, incoherence, or incompleteness of the data 

274 used. They're also a superior alternative for deciding on the right quantities of materials in concrete 

275 mixtures to achieve the appropriate strength and rheology [88-94]. Reducing trial mixes results in an 

276 ecological and cost-effective mix design method.

277 4.3.Artificial Neural Network: 

278 Parallel processing occurs in the brain's neural network, which is a web of linked neurons that sends 

279 signals back and forth to process information. ANNs are a cutting-edge analytical technique that mimics 

280 the way the human brain thinks. Similar to other DoE approaches that take in numerous factors to forecast 

281 the response variable, ANNs may be employed mathematically to analyze multiple inputs and generate 

282 an output [95]. The input, hidden layer, and output layer are all parts of the ANN's mechanism. It is here 

283 where data is entered. The output layer processes the data and provides the result via a system of 

284 connection weights. The inputs are fed into the process, and the process concludes with the output. A 

285 technique known as backward propagation is used to reduce the overall weight of the network's 

286 connections. The discrepancy between the anticipated value and the actual value is believed to alter and 

287 change the mechanism of the hidden layer.. It is important to understand the benefits and downsides of 

288 ANNs [96]. Due to its processing, errors may be tolerated, and complicated non-linear relationships 

289 between variables can be solved with ease using data analysis. ANNs have a distinct edge over pre-

290 programmed computational models since they are able to learn from their own mistakes. It is also possible 

291 to overfit the data supplied by ANNs because of the intricacy of their solution [95, 97]. 

292 Concrete compressive strength may be predicted using ANNs, which have a greater number of 

293 variables than previous DoE approaches. Analyzing many concrete experiments that all employ the same 

294 looking to upgrade is a unique use of ANNs thanks to their enhanced processing capability. Gupta et al. 

295 [98] who collected 32 data points from ten different publications on nano-silica-containing concrete, came 

296 up with an exact model for 28-day concrete compressive strength without having to do any experiments. 

297 Additionally, Asteris and Mokos [99] utilized non-destructive test results from a thesis to train ANNs on 

298 209 data sets to estimate concrete strength. Noorzaei et al. [100] and Santosa and PurboSantosa [101] 

299 did a similar study utilizing the elements of concrete as variables and reached the same outcome. In terms 

300 of precision, regression analysis, particularly multiple non-linear regression, falls short in comparison to 

301 ANNs, as shown by the R2 value. When it comes to modeling self-compacting concrete, research found 

302 that the results of MLR outperformed those generated by ANNs. ANNs function best when given more 

303 data, and the low quantity of data in the study (i.e., 15) may account for this. The R2 score alone should 

304 not be utilized to choose the optimal model. The Root Mean Squared Error (RMSE) of the ANNs model 

305 was much lower than the other models in another experiment on recycled aggregate concrete.

306 4.4.Comparison and Motivation of Literature Review 
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307 The PRISMA based methodology adaption for this systematic literature review has been taken from 

308 Zahid et al. [102]. To the best of the author's knowledge, this is the most up-to-date and comprehensive 

309 survey of the use of machine learning methods in predicting the characteristics of various concretes.

310 This literature review is unique because it systematically summarizes the current state of research on 

311 the application of machine learning in the concrete industry, with a focus on structural analysis and design 

312 approaches. The review provides a comprehensive overview of the potential of ML to replace empirical 

313 models and reduce the time and effort required in the industry. It also provides an overview of ML 

314 methods, principles, access codes, libraries, and datasets that can be used by practitioners and 

315 researchers to develop their own ML models.  Additionally, this review identifies the most active locations 

316 and influential authors in researching ML applications for concrete, which could facilitate future 

317 collaborations and sharing of novel ideas and approaches among academics. The statistical and graphical 

318 representation of contributing authors and nations can be useful for researchers and practitioners in 

319 identifying potential collaborators and networking opportunities. Overall, this review provides a valuable 

320 resource for researchers and practitioners in the concrete industry who are interested in exploring the 

321 potential of ML to improve their work. The systematic approach used in this review ensures that the 

322 information presented is comprehensive and unbiased, making it a valuable resource for anyone looking 

323 to learn more about the application of ML in the concrete industry.

324 5. Conclusion: 

325 It can be concluded that the use of machine learning (ML) is being explored as a potential method to 

326 reduce the time and effort required for structural analysis and design approaches in the concrete industry. 

327 The abstract summarizes a systematic review of 42 studies that were conducted using a set of keywords 

328 and PRISMA guidelines. The review highlights the potential of ML to serve as a successor to the routinely 

329 used empirical models in the structural engineering community. The paper also provides an overview of 

330 ML methods, fundamental principles, access codes, ML libraries, and gathered datasets that can be used 

331 by practitioners and researchers to construct their own ML models for useful applications. The 

332 construction industry can benefit from the use of ML in terms of cost savings, time savings, and labor 

333 intensity. The systematic review also identifies the most active locations and influential authors in 

334 researching ML applications for concrete, which could facilitate future collaborations and sharing of novel 

335 ideas and approaches among academics. However, the limitation of this review is that it only includes 

336 studies that are included in the PubMed database.

337 5.1.Future Trend 

338 The great degree of accuracy in actual and predicted outcomes demonstrates the significance of these 

339 techniques in civil engineering. It's becoming increasingly common to use supervised ML techniques since 

340 they provide accurate outputs and reduce the amount of physical labor and overall project expense. In 

341 addition, it is vital to conduct laboratory experiments to compare the results of machine learning 

342 algorithms. In order to compare the results of different machine learning algorithms, It is also possible to 

343 alter or add input factors, such as the number of data points and the kind of material used, size of 

344 specimens, ambient conditions, curing settings, and data loading rate. For the sake of comparison, a 

345 variety of machine learning approaches may be used, including artificial neural networks (ANNs), support 

346 vector machines (SVMs), and boosting [66]. Databases were used to calculate the compressive and split 

347 tensile strengths. As an alternative, additional input parameters and increasing the database may produce 

348 the required results. SFC is compressive and split tensile strength models have been created in this work. 
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349 According to statistical characteristics, these models were able to accurately and reliably estimate SFC 

350 intensities. However, by using the same modeling parameters, MLPNN, ANFIS, and GEP models may be 

351 used to forecast concrete qualities including numerous different concrete ingredients. Based on input 

352 parameters, these models will be changed and the outcomes anticipated are largely dependent on the 

353 database used. The whale optimization algorithm, ant colony optimization, and particle swarm 

354 optimization are just a few examples of heuristic techniques that may be utilized in combination with 

355 machine learning to get optimum results. They may then be compared to this study's methods. The 

356 upgraded and improved version of GEP is known as multi-expression programming (MEP). GEP's 

357 limitations may be overcome via MEP analysis. To put it simply, MEP is given more attention when the 

358 complexity of the target expression is uncertain. There are exceptions, erroneous expressions, and even 

359 division by zero that can be handled by MEP. There are no infertile learners in the next generation since 

360 the gene is responsible for causing exceptions and then changing to an arbitrary terminal symbol. While 

361 MLPNN and ANFIS were used for the prediction of results, single learners were utilized in this study to 

362 anticipate results. Many different sub-models are built, and statistical parameters are used to pick the 

363 best one. This is known as an ensemble ML approach [64].

364 References

[1] R. Siddique, P. Aggarwal, and Y. Aggarwal, �Prediction of compressive strength of self-compacting concrete 

containing bottom ash using artificial neural networks,� Adv. Eng. Softw., vol. 42, no. 10, pp. 780�786, 2011.

[2] N. Pathak and R. Siddique, �Properties of self-compacting-concrete containing fly ash subjected to elevated 

temperatures,� Constr. Build. Mater., vol. 30, pp. 274�280, 2012.

[3] M. Uysal and M. Sumer, �Performance of self-compacting concrete containing different mineral 

admixtures,� Constr. Build. Mater., vol. 25, no. 11, pp. 4112�4120, 2011.

[4] A. F. Bingöl and  Tohumcu, �Effects of different curing regimes on the compressive strength properties of self 

compacting concrete incorporating fly ash and silica fume,� Mater. Eng., vol. 51, pp. 12�18, 2013.

[5] E. Güneyisi, M.  and E. Özbay, �Strength and drying shrinkage properties of self-compacting concretes 

incorporating multi-system blended mineral admixtures,� Constr. Build. Mater., vol. 24, no. 10, pp. 1878�1887, 

2010.

[6] M.  E. Güneyisi, and E. Özbay, �Properties of self-compacting concretes made with binary, ternary, and 

quaternary cementitious blends of fly ash, blast furnace slag, and silica fume,� Constr. Build. Mater., vol. 23, no. 5, 

pp. 1847�1854, 2009.

[7] B. Sukumar, K. Nagamani, and R. SrinivasaRaghavan, �Evaluation of strength at early ages of self-compacting 

concrete with high volume fly ash,� Constr. Build. Mater., vol. 22, no. 7, pp. 1394�1401, 2008.

[8] N. Bouzoubaâ and M. Lachemi, �Self-compacting concrete incorporating high volumes of class F fly ash,� Cem. 

Concr. Res., vol. 31, no. 3, pp. 413�420, 2001.

[9] R. Siddique, �Properties of self-compacting concrete containing class F fly ash,� Mater. Eng., vol. 32, no. 3, pp. 

1501�1507, 2011.

[10] L. H. Jiang and V. M. Malhotra, �Reduction in water demand of non-air-entrained concrete incorporating large 

PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84583:0:3:NEW 29 May 2023)

Manuscript to be reviewedComputer Science



volumes of fly ash,� Cem. Concr. Res., vol. 30, no. 11, pp. 1785�1789, 2000.

[11]  B. Topçu and M.  �Prediction of compressive strength of concrete containing fly ash using artificial 

neural networks and fuzzy logic,� Comput. Mater. Sci., vol. 41, no. 3, pp. 305�311, 2008.

[12] R. Kurda, J. D. Silvestre, J. de Brito, and H. Ahmed, �Optimizing recycled concrete containing high volume of fly ash 

in terms of the embodied energy and chloride ion resistance,� J. Clean. Prod., vol. 194, pp. 735�750, 2018.

[13] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques. Waltham, MA: Morgan Kaufmann, 2012.

[14] ]. I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical Machine Learning Tools and Techniques: Practical 

Machine Learning Tools and Techniques. .

[15] S. Parsons, �Introduction to machine learning, second editon by Ethemalpaydin, MIT press, 584 pp., $55.00. ISBN 

978-0-262-01243-0,� Knowl. Eng. Rev., vol. 25, no. 3, pp. 353�353, 2010.

[16] V. M. Karbhari and L. S.-W. Lee, �Vibration-based damage detection techniques for structural health monitoring of 

civil infrastructure systems,� in Structural Health Monitoring of Civil Infrastructure Systems, Elsevier, 2009, pp. 

177�212.

[17] S. L. Hung and H. Adeli, �A model of perceptron learning with a hidden layer for engineering 

design,� Neurocomputing, vol. 3, no. 1, pp. 3�14, 1991.

[18] H. Adeli, �Neural networks in civil engineering: 1989�2000,� Comput.-aided civ. infrastruct. eng., vol. 16, no. 2, pp. 

126�142, 2001.

[19] P. Hajela and L. Berke, �Neurobiological computational models in structural analysis and design,� Comput. Struct., 

vol. 41, no. 4, pp. 657�667, 1991.

[20] A. C. Catlin et al., �A cyberplatform for sharing scientific research data at DataCenterHub,� Comput. Sci. Eng., vol. 

20, no. 3, pp. 49�70, 2018.

[21] T. J. Hacker et al., �The NEEShubCyberinfrastructure for Earthquake Engineering,� Comput. Sci. Eng., vol. 13, no. 4, 

pp. 67�78, 2011.

[22] J.-P. Pinelli et al., �Disaster risk management through the DesignSafecyberinfrastructure,� Int. J. Disaster Risk Sci., 

vol. 11, no. 6, pp. 719�734, 2020.

[23] Datacenterhub.org. [Online]. Available: https://datacenterhub.org/resources/395+2016. [Accessed: 31-May-

2022].

[24] Y. Gao and K. M. Mosalam, �PEER hub ImageNet: A large-scale multiattribute benchmark data set of structural 

images,� J. Struct. Eng. (N. Y.), vol. 146, no. 10, p. 04020198, 2020.

[25] E. M. Rathje et al., �DesignSafe: New cyberinfrastructure for natural hazards engineering,� Nat. Hazards Rev., vol. 

18, no. 3, p. 06017001, 2017.

[26] T. Chen and C. Guestrin, �XGBoost: A Scalable Tree Boosting System,� in Proceedings of the 22nd ACM SIGKDD 

International Conference on Knowledge Discovery and Data Mining, 2016.

PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84583:0:3:NEW 29 May 2023)

Manuscript to be reviewedComputer Science



[27] E. Real, C. Liang, D. R. So, and Q. V. Le, �AutoML-zero: Evolving machine learning algorithms from scratch,� arXiv 

[cs.LG], pp. 8007�8019, 13--18 Jul 2020.

[28] H. Sun, H. V. Burton, and H. Huang, �Machine learning applications for building structural design and performance 

assessment: State-of-the-art review,� J. Build. Eng., vol. 33, no. 101816, p. 101816, 2021.

[29] W. Fan et al., �Machine learning applied to the design and inspection of reinforced concrete bridges: Resilient 

methods and emerging applications,� Structures, vol. 33, pp. 3954�3963, 2021.

[30] M. Mirrashid and H. Naderpour, �Recent trends in prediction of concrete elements behavior using soft computing 

(2010�2020),� Arch. Comput. Methods Eng., vol. 28, no. 4, pp. 3307�3327, 2021.

[31] H. Salehi and R. Burgueño, �Emerging artificial intelligence methods in structural engineering,� Eng. Struct., vol. 

171, pp. 170�189, 2018.

[32] M. Mishra, �Machine learning techniques for structural health monitoring of heritage buildings: A state-of-the-art 

review and case studies,� J. Cult. Herit., vol. 47, pp. 227�245, 2021.

[33] A. Bello, N. Wiebe, A. Garg, and M. Tonelli, �Evidence-based decision-making 2: Systematic reviews and meta-

analysis, � Methods Mol,� Methods Mol. Biol, vol. 1281, pp. 397�416, 2015.

[34] G. M. Tawfik et al., �A step by step guide for conducting a systematic review and meta-analysis with simulation 

data,� Trop. Med. Health, vol. 47, no. 1, p. 46, 2019.

[35] A. Liberati et al., �The PRISMA statement for reporting systematic reviews and meta-analyses of studies that 

evaluate healthcare interventions: explanation and elaboration,� BMJ, vol. 339, no. jul21 1, p. b2700, 2009.

[36] S. D. Latif, �Developing a boosted decision tree regression prediction model as a sustainable tool for compressive 

strength of environmentally friendly concrete,� Environ. Sci. Pollut. Res. Int., vol. 28, no. 46, pp. 65935�65944, 

2021.

[37] M. F. Iqbal et al., �Sustainable utilization of foundry waste: Forecasting mechanical properties of foundry sand 

based concrete using multi-expression programming,� Sci. Total Environ., vol. 780, no. 146524, p. 146524, 2021.

[38] G. Du, L. Bu, Q. Hou, J. Zhou, and B. Lu, �Prediction of the compressive strength of high-performance self-

compacting concrete by an ultrasonic-rebound method based on a GA-BP neural network,� PLoS One, vol. 16, no. 

5, p. e0250795, 2021.

[39] M. Safiuddin, S. N. Raman, M. Abdus Salam, and M. Z. Jumaat, �Modeling of compressive strength for self-

consolidating high-strength concrete incorporating palm oil fuel ash,� Materials (Basel), vol. 9, no. 5, p. 396, 2016.

[40] M. Hadzima-Nyarko, E. K. Nyarko, N.  I.  and T. Kalman�ipo�, �Modelling the influence of waste 

rubber on compressive strength of concrete by artificial neural networks,� Materials (Basel), vol. 12, no. 4, p. 561, 

2019.

[41] D. Van Dao, H.-B. Ly, S. H. Trinh, T.-T. Le, and B. T. Pham, �Artificial intelligence approaches for prediction of 

compressive strength of geopolymer concrete,� Materials (Basel), vol. 12, no. 6, p. 983, 2019.

[42] P. Ziolkowski and M. Niedostatkiewicz, �Machine learning techniques in concrete mix design,� Materials (Basel), 

PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84583:0:3:NEW 29 May 2023)

Manuscript to be reviewedComputer Science



vol. 12, no. 8, p. 1256, 2019.

[43] J. Y. Yoon, H. Kim, Y.-J. Lee, and S.-H. Sim, �Prediction model for mechanical properties of lightweight aggregate 

concrete using artificial neural network,� Materials (Basel), vol. 12, no. 17, p. 2678, 2019.

[44] M. Abambres and E. O. L. Lantsoght, �ANN-based fatigue strength of concrete under compression,� Materials 

(Basel), vol. 12, no. 22, p. 3787, 2019.

[45] D. Van Dao, H.-B. Ly, H.-L. T. Vu, T.-T. Le, and B. T. Pham, �Investigation and optimization of the C-ANN structure in 

predicting the Compressive Strength of Foamed Concrete,� Materials (Basel), vol. 13, no. 5, p. 1072, 2020.

[46] J. Y. Park, S.-H. Sim, Y. G. Yoon, and T. K. Oh, �Prediction of static modulus and compressive strength of concrete 

from dynamic modulus associated with wave velocity and resonance frequency using machine learning 

techniques,� Materials (Basel), vol. 13, no. 13, p. 2886, 2020.

[47] A. Marani, A. Jamali, and M. L. Nehdi, �Predicting ultra-high-performance concrete compressive strength using 

tabular generative adversarial networks,� Materials (Basel), vol. 13, no. 21, p. 4757, 2020.

[48] Z. Wan, Y. Xu, and B. �avija, �On the use of machine learning models for prediction of compressive strength of 

concrete: Influence of dimensionality reduction on the model performance,� Materials (Basel), vol. 14, no. 4, p. 

713, 2021.

[49] A. Ahmad et al., �Prediction of compressive strength of fly ash based concrete using individual and ensemble 

algorithm,� Materials (Basel), vol. 14, no. 4, p. 794, 2021.

[50] M. Ali Khan, A. Zafar, A. Akbar, M. F. Javed, and A. Mosavi, �Application of gene expression programming (GEP) for 

the prediction of compressive strength of geopolymer concrete,� Materials (Basel), vol. 14, no. 5, p. 1106, 2021.

[51] G. F. Huseien, A. R. M. Sam, I. Faridmehr, and M. H. Baghban, �Performance of epoxy resin polymer as self-healing 

cementitious materials agent in mortar,� Materials (Basel), vol. 14, no. 5, p. 1255, 2021.

[52] A. M Mhaya, M. H. Baghban, I. Faridmehr, G. F. Huseien, A. R. Z. Abidin, and M. Ismail, �Performance evaluation of 

modified rubberized concrete exposed to aggressive environments,� Materials (Basel), vol. 14, no. 8, p. 1900, 

2021.

[53] M. Ahmad et al., �Supervised learning methods for modeling concrete compressive strength prediction at high 

temperature,� Materials (Basel), vol. 14, no. 8, 2021.

[54] A. Ahmad, K. A. Ostrowski, M.  F. Farooq, I. Mehmood, and A. Nafees, �Comparative study of supervised 

machine learning algorithms for predicting the compressive strength of concrete at high temperature,� Materials 

(Basel), vol. 14, no. 15, p. 4222, 2021.

[55] M.  S.  E. K. Nyarko, and M. Hadzima-Nyarko, �Modeling of compressive strength of self-

compacting rubberized concrete using machine learning,� Materials (Basel), vol. 14, no. 15, p. 4346, 2021.

[56] H. Song, A. Ahmad, K. A. Ostrowski, and M. Dudek, �Analyzing the compressive strength of ceramic waste-based 

concrete using experiment and artificial neural network (ANN) approach,� Materials (Basel), vol. 14, no. 16, p. 

4518, 2021.

PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84583:0:3:NEW 29 May 2023)

Manuscript to be reviewedComputer Science



[57] F. Farooq et al., �A comparative study for the prediction of the compressive strength of self-compacting concrete 

modified with fly ash,� Materials (Basel), vol. 14, no. 17, p. 4934, 2021.

[58] W. Ahmad, A. Ahmad, K. A. Ostrowski, F. Aslam, P. Joyklad, and P. Zajdel, �Application of advanced machine 

learning approaches to predict the compressive strength of concrete containing supplementary cementitious 

materials,� Materials (Basel), vol. 14, no. 19, p. 5762, 2021.

[59] S. V. R. Tosee et al., �Metaheuristic prediction of the compressive strength of environmentally friendly concrete 

modified with eggshell powder using the hybrid ANN-SFL optimization algorithm,� Materials (Basel), vol. 14, no. 

20, p. 6172, 2021.

[60] Y. Xu et al., �Computation of high-performance concrete compressive strength using standalone and ensembled 

machine learning techniques,� Materials (Basel), vol. 14, no. 22, p. 7034, 2021.

[61] H. F. Isleem, B. A. Tayeh, W. S. Alaloul, M. A. Musarat, and A. Raza, �Artificial neural network (ANN) and finite 

element (FEM) models for GFRP-reinforced concrete columns under axial compression,� Materials (Basel), vol. 14, 

no. 23, p. 7172, 2021.

[62] A. Nafees et al., �Predictive modeling of mechanical properties of silica fume-based green concrete using artificial 

intelligence approaches: MLPNN, ANFIS, and GEP,� Materials (Basel), vol. 14, no. 24, p. 7531, 2021.

[63] S. A. Khokhar, T. Ahmed, R. A. Khushnood, S. M. Ali, and Shahnawaz, �A predictive mimicker of fracture behavior 

in fiber reinforced concrete using machine learning,� Materials (Basel), vol. 14, no. 24, p. 7669, 2021.

[64] H. Imran, N. M. Al-Abdaly, M. H. Shamsa, A. Shatnawi, M. Ibrahim, and K. A. Ostrowski, �Development of 

prediction model to predict the compressive strength of Eco-friendly concrete using multivariate polynomial 

regression combined with stepwise method,� Materials (Basel), vol. 15, no. 1, p. 317, 2022.

[65] F. Almohammed et al., �Assessment of soft computing techniques for the prediction of compressive strength of 

bacterial concrete,� Materials (Basel), vol. 15, no. 2, p. 489, 2022.

[66] M. Shang et al., �Predicting the mechanical properties of RCA-based concrete using supervised machine learning 

algorithms,� Materials (Basel), vol. 15, no. 2, p. 647, 2022.

[67] M. D. E. Candelaria, S.-H. Kee, and K.-S. Lee, �Prediction of compressive strength of partially saturated concrete 

using machine learning methods,� Materials (Basel), vol. 15, no. 5, p. 1662, 2022.

[68] H. U. Ahmed, A. A. Abdalla, A. S. Mohammed, A. A. Mohammed, and A. Mosavi, �Statistical methods for modeling 

the compressive strength of geopolymer mortar,� Materials (Basel), vol. 15, no. 5, p. 1868, 2022.

[69] H. M. Najm, O. Nanayakkara, M. Ahmad, and M. M. SabriSabri, �Mechanical properties, crack width, and 

propagation of waste ceramic concrete subjected to elevated temperatures: A comprehensive study,� Materials 

(Basel), vol. 15, no. 7, p. 2371, 2022.

[70] X. Yuan et al., �Machine learning prediction models to evaluate the strength of recycled aggregate 

concrete,� Materials (Basel), vol. 15, no. 8, p. 2823, 2022.

[71] S. Ray, M. Haque, T. Ahmed, A. F. Mita, M. H. Saikat, and M. M. Alom, �Predicting the strength of concrete made 

PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84583:0:3:NEW 29 May 2023)

Manuscript to be reviewedComputer Science



with stone dust and nylon fiber using artificial neural network,� Heliyon, vol. 8, no. 3, p. e09129, 2022.

[72] I. Ilyas et al., �Forecasting strength of CFRP confined concrete using Multi Expression Programming,� Materials 

(Basel), vol. 14, no. 23, p. 7134, 2021.

[73] C. Gunasekara, P. Atzarakis, W. Lokuge, D. W. Law, and S. Setunge, �Novel analytical method for mix design and 

performance prediction of high calcium fly ash geopolymer concrete,� Polymers (Basel), vol. 13, no. 6, p. 900, 

2021.

[74] A. Ahmad et al., �Prediction of geopolymer concrete compressive strength using novel machine learning 

algorithms,� Polymers (Basel), vol. 13, no. 19, p. 3389, 2021.

[75] M. N. Amin, M. Iqbal, K. Khan, M. G. Qadir, F. I. Shalabi, and A. Jamal, �Ensemble tree-based approach towards 

flexural strength prediction of FRP reinforced concrete beams,� Polymers (Basel), vol. 14, no. 7, p. 1303, 2022.

[76] A. A. Khalaf, K. Kopecskó, and I. Merta, �Prediction of the compressive strength of fly ash geopolymer concrete by 

an optimised neural network model,� Polymers (Basel), vol. 14, no. 7, p. 1423, 2022.

[77] A. Nafees et al., �Forecasting the mechanical properties of plastic concrete employing experimental data using 

machine learning algorithms: DT, MLPNN, SVM, and RF,� Polymers (Basel), vol. 14, no. 8, p. 1583, 2022.

[78] T. Arciszewski, M. Mustafa, and W. Ziarko, �A methodology of design knowledge acquisition for use in learning 

expert systems,� Int. J. Man. Mach. Stud., vol. 27, no. 1, pp. 23�32, 1987.

[79] J. R. Stone, D. I. Blockley, and B. W. Pilsworth, �Towards machine learning from case histories,� Civ. eng. syst. (CD-

ROM), vol. 6, no. 3, pp. 129�135, 1989.

[80] Y. Reich, �Machine learning techniques for civil engineering problems,� Comput.-aided civ. infrastruct. eng., vol. 

12, no. 4, pp. 295�310, 1997.

[81] A. Aldahiri, B. Alrashed, and W. Hussain, �Trends in using IoT with machine learning in health prediction 

system,� Forecasting, vol. 3, no. 1, pp. 181�206, 2021.

[82] N. L. D. Khoa, B. Zhang, Y. Wang, F. Chen, and S. Mustapha, �Robust dimensionality reduction and damage 

detection approaches in structural health monitoring,� Struct. Health Monit., vol. 13, no. 4, pp. 406�417, 2014.

[83] S.-S. Jin, S. Cho, and H.-J. Jung, �Adaptive reference updating for vibration-based structural health monitoring 

under varying environmental conditions,� Comput. Struct., vol. 158, pp. 211�224, 2015.

[84] F. Salazar, M. A. Toledo, E. Oñate, and R. Morán, �An empirical comparison of machine learning techniques for 

dam behaviour modelling,� Struct. Saf., vol. 56, pp. 9�17, 2015.

[85] Y.-J. Cha and O. Buyukozturk, �Modal strain energy based damage detection using multi-objective optimization,� 

in Structural Health Monitoring, Volume 5, Cham: Springer International Publishing, 2014, pp. 125�133.

[86] V.  N.  D. Divac, N.  and A.  �Modelling of dam behaviour based on neuro-

fuzzy identification,� Eng. Struct., vol. 35, pp. 107�113, 2012.

[87] W. Z. Taffese and E. Sistonen, �Machine learning for durability and service-life assessment of reinforced concrete 

PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84583:0:3:NEW 29 May 2023)

Manuscript to be reviewedComputer Science



structures: Recent advances and future directions,� Autom. Constr., vol. 77, pp. 1�14, 2017.

[88] J.-S. Chou, C.-F. Tsai, A.-D. Pham, and Y.-H. Lu, �Machine learning in concrete strength simulations: Multi-nation 

data analytics,� Constr. Build. Mater., vol. 73, pp. 771�780, 2014.

[89] U. Atici, �Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an 

artificial neural network,� Expert Syst. Appl., vol. 38, no. 8, pp. 9609�9618, 2011.

[90] A. Behnood, K. P. Verian, and M. ModiriGharehveran, �Evaluation of the splitting tensile strength in plain and steel 

fiber-reinforced concrete based on the compressive strength,� Constr. Build. Mater., vol. 98, pp. 519�529, 2015.

[91] A. T. A. Dantas, M. Batista Leite, and K. de Jesus Nagahama, �Prediction of compressive strength of concrete 

containing construction and demolition waste using artificial neural networks,� Constr. Build. Mater., vol. 38, pp. 

717�722, 2013.

[92] A. Nazari and J. G. Sanjayan, �Modelling of compressive strength of geopolymer paste, mortar and concrete by 

optimized support vector machine,� Ceram. Int., vol. 41, no. 9, pp. 12164�12177, 2015.

[93] K.  and M. M. Arbili, �Explicit formulation of drying and autogenous shrinkage of concretes with binary 

and ternary blends of silica fume and fly ash,� Constr. Build. Mater., vol. 94, pp. 371�379, 2015.

[94] S. W. Tang, Y. Yao, C. Andrade, and Z. J. Li, �Recent durability studies on concrete structure,� Cem. Concr. Res., vol. 

78, pp. 143�154, 2015.

[95] V. Sharma, S. Rai, and A. Dev, �A Comprehensive Study of Artificial Neural Networks,� Int. J. Adv. Res. 

Comput. Sci. Softw. Eng, vol. 2, pp. 278�284, 2012.

[96] A. Behnood and E. M. Golafshani, �Predicting the compressive strength of silica fume concrete using hybrid 

artificial neural network with multi-objective grey wolves,� J. Clean. Prod., vol. 202, pp. 54�64, 2018.

[97] B. S. Mohammed, V. C. Khed, and M. F. Nuruddin, �Rubbercrete mixture optimization using response surface 

methodology,� J. Clean. Prod., vol. 171, pp. 1605�1621, 2018.

[98] S. Gupta, �Using artificial neural network to predict the compressive strength of concrete containing nano-

silica,� Civ. Eng. Arch., vol. 1, no. 3, pp. 96�102, 2013.

[99] P. G. Asteris and V. G. Mokos, �Concrete compressive strength using artificial neural networks,� Neural 

Comput. Appl., vol. 32, no. 15, pp. 11807�11826, 2020.

[100] J. Noorzaei, S. Hakim, and M. Jaafar, �Development of Artificial Neural Networks for Predicting Concrete 

Compressive Strength,� Int. J. Eng. Technol, vol. 4, pp. 141�153, 2007.

[101] S. Santosa and Y. PurboSantosa, �Evolutionary artificial neural networks for concrete mix design modelling,� 

Int. J. Comput. Appl., vol. 5, no. 7, 2017.

[102] H. Zahid et al., �A computer vision-based system for recognition and classification of Urdu sign 

language dataset,� PeerJComput. Sci., vol. 8, no. e1174, p. e1174, 2022.

365

PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84583:0:3:NEW 29 May 2023)

Manuscript to be reviewedComputer Science

Highlight

Sticky Note
Align with above references



Figure 1
PRISMA-based ûowchart showing the studies recruitment process.
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Figure 2
Pie chart of studies showing no. of ML and NN techniques used in the selected studies.
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Figure 3
Classiûcation of machine learning algorithms on the basis of their learning types [81].
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Table 1(on next page)

Inclusion and exclusion criteria for the recruitment of studies are discussed in detail.
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1 Table 1. Inclusion and exclusion criteria for the recruitment of studies are discussed in detail.

2

Inclusive Criteria Exclusive Criteria

ï Concrete was used as the primary 

material in the study. 

ï Studies that use any machine 

learning algorithm to predict the 

properties. 

ï Studies that are published are 

either original articles or review 

articles in any conference 

proceeding or journal. 

ï The material used in some of the 

studies was not concrete. 

ï Studies that use any other method 

other than machine learning for 

the prediction. 

ï Studies that are not published are 

either original articles or review 

articles in any conference 

proceeding or journal.

3
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Table 2(on next page)

Summarized details of the studies recruited after conducting PRISMA-based systematic
review.
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1           Table 2. Summarized details of the studies recruited after conducting PRISMA-based systematic 

2 review. 

3

Refer

ence

Author Year Material Properties Input 

parameter

Machine 

learning 

algorithm 

Reported outcomes 

[36] Latif et 

al.

2021 environme

ntally 

friendly 

concrete

compressive 

strength

8 -boosted 

decision 

tree 

regression 

(BDTR) 

-support 

vector 

machine 

(SVM)

R =0.86 

RMSE=6.19 

MAE=4.91

RSR=0.37

[37] Iqbal et 

al. 

2021 concrete 

waste 

foundry 

sand 

(CWFS).

-split tensile 

strength (ST) 

-modulus of 

elasticity

(E)

4 Multi-

Expression 

Programmin

g (MEP)

ST:

R=0.93

RMSE=0.36

MAE=0.28

RSE=0.21

Accuracy=0.051E

R=0.96

RMSE=2.13

MAE=1.70

RSE=0.17

Accuracy=0.032 

[38] Du et 

al. 

2021 high-

performanc

e self-

compacting 

concrete

-compressive 

strength

? genetic 

algorithm

(GA)-

optimized 

backpropag

ation neural 

network 

(BPNN) 

BPNN:

Correlation 

coefficient=0.967

RMSE=3.703

GA-BPNN:

Correlation 
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model coefficient=0.979

RMSE=2.972

[39] Saifudd

in et al. 

2016 Journal Concrete ? artificial 

neural 

networks 

(ANN)

coefficient of 

determination (R2) = 

0.9486

[40] Hadzim

a-

Nyarko 

et al. 

2019 Waste 

Rubber 

Concrete

-compressive 

strength

6 artificial 

neural 

networks 

(ANN)

highest R value of 0.96 and 

0.98 for the

train and test data, 

respectively, an achieved 

the lowest RMSE and 

MAPE values (4.8 and 20.2 

for the

train data, respectively, 

and 3.78 and 21.6 for the 

test data

[41] Dao et 

al.

2019 Geopolyme

r Concrete

-compressive 

strength

4 -adaptive 

neuro fuzzy 

inference 

(ANFIS)

-artificial 

neural 

network 

(ANN)

-ANFIS (MAE = 1.655 MPa, 

RMSE = 2.265 MPa, and R2 

= 0.879)

-ANN (MAE = 1.989 MPa, 

RMSE = 2.423 MPa, and R2 

= 0.851)

[42] Ziolkow

ski et 

al.

2019 Concrete -compressive 

strength

? -artificial 

neural 

network 

(ANN)

?

[43] Yoon et 

al.

2019 Lightweight 

Aggregate 

Concrete

-compressive 

strength

-elastic 

modulus

10 -artificial 

neural 

network 

(ANN)

CS:

MAE% = 14.5%

Correlation coefficient = 

0.930

E:

MAE% = 8.5%

Correlation coefficient = 
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0.977

[44] Abamb

res et 

al.

2019 Concrete -compressive 

strength

1 -artificial 

neural 

network 

(ANN)

AVG = average = 1.00

STD =

standard deviation = 0.02

COV = co-efficient of 

variation = 1.69%

[45] Dao et 

al.

2020 Foamed 

Concrete

-compressive 

strength

3 -

Convention

al Artificial 

Neural 

Network (C-

ANN)

R2 = 0.972

RMSE = 0.140

MAE = 0.114

[46] Park et 

al. 

2020 Concrete -Static 

Modulus --

Compressive

Strength

6 -SVM

-Ensemble

-ANN

-Linear 

Regression

SVM: 

MSE = 12.75

MAPE = 13.71

Ensemble:

MSE = 11.54

MAPE = 14.31

ANN:

MSE = 29.50 

MAPE = 15.47

LR:

MSE = 44.77

MAPE = 29.59

[47] Marani 

et al.

2020 Ultra-high-

performanc

e

concrete 

--

Compressive

Strength

8 -Tabular 

Generative 

Adversarial 

Networks 

(TGAN)

TGAN: 

MAE = 5.46

RMSE = 8.47
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(UHPC)

-Tree-Based 

Ensembles

R2 = 0.95

Ensemble:

MAE = 6.72

RMSE = 8.41

R2 = 0.95

[48] Wan et 

al. 

2021 Concrete -Compressive

Strength

-8 original 

features

-6

Principal

Component 

Analysis 

(PCA)

Features

-6

Manual 

features.

-Linear 

Regression 

(LR)

-Support 

Vector 

Regression 

(SVR)

-Extreme 

Gradient 

Boosting 

(XGBoost)

- Artificial 

Neural 

Network 

(ANN),

LR: 

MSE = 44.90

R2 = 0.84

SVR:

MSE = 25.8

R2 = 0.91

XGBoost:

MSE = 33.87

R2 = 0.87

ANN:

MSE =  26.4

R2 = 0.91

[49] Ahmad 

et al. 

2021 Fly Ash 

Based 

Concrete

--

Compressive

Strength

8 -decision 

tree (DT) 

-Ensemble 

approach 

-Gene 

Expression 

Programmin

DT: 

MAE = 3.89

MSE = 36.01

RMSE = 6.00

DT-bagging:

MAE = 3.113
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g (GEP) MSE = 16.28

RMSE = 4.03

GEP:

MAE = 3.47

MSE = 29.91 

RMSE = 5.46

[50] Khan et 

al. 

2021 Geopolyme

r Concrete

--

Compressive

Strength

9 -Gene 

Expression 

Programmin

g (GEP)

RMSE = 2.64

MAE = 2.057

RSE = 0.06

R = 0.9643

[51] Huseie

n et al. 

2021 self-healing 

concrete

mechanical 

and 

durability 

properties

8 Artificial 

Neural 

Network 

(ANN)

MSE = 3.72

ME = 0.89

MAE = 1.11

RMSE = 1.93

[52] Mhaya 

et al. 

2021 waste 

rubber tire 

crumbs 

(WRTCs)-

based 

concrete

--

Compressive

Strength

6 Artificial 

Neural 

Network 

(ANN)

MSE = 189.69

ME = 3.052

MAE = 8.139

RMSE = 13.773

[53] Ahmad 

et al. 

2021 Concrete --

Compressive

Strength

10 -AdaBoost

-Random 

forest (RF)

-Decision 

tree (DT)

AdaBoost:

R2 = 0.938

RSR = 0.248

MAPE = 12.52

RRMSE = 11.62

RF:

R2 = 0.935

RSR = 0.256
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MAPE = 13.076

RRMSE = 11.661

DT:

R2 = 0.911

RSR = 0.324

MAPE = 16.100

RRMSE = 14.753

[54] Ahmad 

et al.

2021 Concrete --

Compressive

Strength

? -decision 

tree (DT)

-artificial 

neural 

network

(ANN)

-Bagging

-gradient 

boosting 

(GB)

DT:

MAE = 7.54

MSE = 112.3

RMSE = 10.79 

Bagging:

MAE = 5.65

MSE = 61.08

RMSE = 7.81

GB:

MAE = 6.93

MSE = 85.1

RMSE = 9.24

DT:

MAE = 9.15

MSE = 121.66

RMSE = 11.03

PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84583:0:3:NEW 29 May 2023)

Manuscript to be reviewedComputer Science

Cross-Out

Inserted Text
No input parameter? What was the basis of the reported outcome?



[55] Kova
e
vi� et 

sl.

2021 Self-

Compactin

g

Rubberized 

Concrete

--

Compressive

Strength

11 -

multilayere

d 

perceptron 

artificial 

neural 

network 

(MLP-ANN)

-ensembles 

of 

MLPANNs,

MLPANN:

RMSE = 7.44

MAE = 5.54

R= 0.8481

Ensemble MLPANN:

RMSE = 3.68

MAE = 2.80

R= 0.9615

[56] Song et 

al. 

2021 Ceramic 

Waste-

Based

Concrete

--

Compressive

Strength

5 -decision 

tree (DT)

-artificial 

neural 

network

(ANN)

DT:

MAE = 6.94

MSE = 20.76

RMSE = 4.55

ANN:

MAE = 6.12

MSE = 17.98

RMSE = 4.29

[57] Farooq 

et al.

2021 Self-

Compactin

g Concrete 

Modified 

with Fly 

Ash

--

Compressive

Strength

7 -artificial 

neural 

network

(ANN)

-support 

vectormachi

ne (SVM)

-Gene 

Expression 

Programmin

g (GEP)

ANN:

R = 0.95

RMSE = 4.56

MAE = 3.81

SVM:

R = 0.93

RMSE= 4.49

MAE = 3.29

PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84583:0:3:NEW 29 May 2023)

Manuscript to be reviewedComputer Science



GEP:

R = 0.93

RMSE = 4.8

MAE = 3.92

[58] Ahmad 

et al.

2021 Concrete 

Containing

Supplemen

tary 

Cementitio

us 

Materials

--

Compressive

Strength

8 -Bagging 

-AdaBoost

-Gene 

Expression 

Programmin

g (GEP)

-decision 

tree (DT)

Bagging: 

MAE = 3.257

MSE = 20.566

RMSE = 4.53

AdaBoost:

MAE = 5.12

MSE = 47.37

RMSE = 6.88

GEP:

MAE = 5.24

MSE = 50.69

RMSE = 7.12

DT:

MAE = 5.88

MSE = 57.30

RMSE = 7.57
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[59] Tosee 

et al

2021 Environme

ntally 

Friendly 

Concrete 

Modified 

with 

Eggshell

--

Compressive

Strength

4 Hybrid ANN-

SFL 

(artificial 

neural 

network-

Shuffled 

Frog 

Leaping)

MSE = 0.42

AAE = 0.040

VAF = 94

[60] Xu et 

al.

2921 -Concrete --

Compressive

Strength

7 -support

vector 

regression(S

VR)

-AdaBoost

-random 

forest

SVR:

MAE = 3.329

RMSE = 5.325

AdaBoost:

MAE = 2.94

RMSE = 3.90

RT: 

MAE = 2.223

RMSE = 3.183

[61] Isleem 

et al.

2021 GFRP-

Reinforced 

Concrete

-axial load-

axial

Strain

-confinement 

of columns

-ductility

-hardening 

behavior

6 --artificial 

neural 

network

(ANN)

- Finite 

Element 

(FEM)

?
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[62] Nafees 

et al

2021 Silica

Fume-

Based 

Green 

Concrete

Split Tensile 

Strength; 

compressive 

strength 

5 - Multilayer

perceptron 

neural 

networks 

(MLPNN)

-adaptive 

neural fuzzy 

detection 

systems 

(ANFIS)

-genetic 

expression

Programmin

g (GEP).

MLPNN:

0.85; 0.90

ANFIS:

0.91; 0.92

GEP:

0.97; 0.93

[63] Khokha

r et al.

2021 Fiber 

Reinforced 

Concrete

-Compressive

Strength

-Tensile 

Strength

-Strain-

Hardening

-Tensile 

Strain

Capacity

15 - Artificial 

Neural 

Networks 

(ANN)

-Support 

Vector 

Machine 

(SVM)

-XGBoost

ANN:

Accuracy = 96.3%

SVM:

Accuracy = 94%

XGBoost:

Accuracy = 98.4%

[64] Imran 2022 Eco-

Friendly 

Concrete

--

Compressive

Strength

6 -

multivariate

polynomial 

regression 

(MPR)

-linear 

regression 

(LR)

MPR: 

R2 = 0.818

RMSE = 4.6

LR:

R2 = 0.676

RMSE = 6.053
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-support 

vector 

machine 

(SVM)

SVM:

R2 = 0.495 

RMSE = 7.38

[65] Almoha

mmed 

et al

2022 bacterial 

concrete

--

Compressive

Strength

8 -Multiple 

Linear 

Regression 

(MLR)

-Random 

Forest (RF)

-support 

vector

Regression 

(SVR)

-M5P Model 

-Random 

Tree

MLR:

R2 = 0.88

RMSE = 4.87

MAE = 3.96

RF:

R2 = 0.97

RMSE = 2.29

MAE = 1.81

SVR:

R2 = 0.98

RMSE = 1.94

MAE = 1.52

RT:

R2 = 0.96

RMSE = 2.82

MAE = 2.49

M5P:

R2 = 0.94
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RMSE = 4.88

MAE = 2.88

[66] Shang 

et al

2022 recycled 

coarse 

aggregate 

based 

concrete 

splitting 

tensile 

strength; 

Compressive

Strength

9 -Decision 

tree (DT)

-AdaBoost 

-

DT: 

MAE = 3.58; 0.31

MSE = 11.02; 0.29

RMSE = 3.32; 0.54

AdaBoost:

MAE = 2.33; 0.30

MSE = 7.8; 0.20

RMSE = 2.79; 0.45

[67] Candel

aria et 

al. 

2022 Concrete --

Compressive

Strength

8 -artificial

neural 

network 

(ANN)

-support 

ANN:

R2 = 0.97

RMSE = 9.4

MAE = 9.414
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vector 

machine 

(SVM)

-Gaussian 

process 

regression 

(GPR)

- Multi-

Variate 

Regression

SVM:

R2 = 0.95

RMSE = 18.04

MAE = 12.33

GPR:

R2 = 0.94

RMSE = 18.14

MAE = 13.072

MVR:

R2 = 0.93

RMSE = 9.5

MAE = 17.215

[68] Ahmed 

et al.

2022 geopolyme

r concrete

-Compressive

Strength

14 -linear 

regression 

(LR)

-

multinomin

al logistic 

regression 

(MLR)

-nonlinear 

regression 

(NLR)

R2 = 0.853

RMSE = 6.82

[69] Najm et 

al.

2022 Waste 

ceramic 

concrete 

(WOC)

Tensile 

strength; 

compressive 

strength 

11 -artificial 

neural 

networks 

(ANN) 

R2 = 0.9988; 0.9687

MSE = 0.22; 1.8899

RMSE = 0.4699; 1.3744

MAE = 0.469; 1.2279
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[70] Yuan et 

al.

2022 recycled 

aggregate 

concrete 

(RAC)

Compressive 

strength; 

Flexural 

strength 

12 -gradient 

boosting 

-random 

forest (RF) 

GB: 

MAE = 4.77; 0.642

RMSE = 6.9; 1.199

RF:

MAE = 4.19; 0.560

RMSE = 5.6; 0.85

[71] Ray et 

al. 

2022 concrete 

made 

(stone dust 

and nylon 

fiber)

Strength 8 -artificial 

neural 

networks 

(ANN) 

R = 0.95

R2 = 0.90

MSE = 0.09

MAE = 0.20

AE = 0.04

[72] Ilyas et 

al.

2021 CFRP 

Confined 

Concrete

-strength 8 -Multi 

Expression 

Programmin

g (MEP)

RMSE = 7.71

RSE = 0.009 

MAE = 6.33

RRMSE = 0.010

R = 0.9953

[73] Gunase

kara et 

al.

2021 High 

Calcium Fly 

Ash 

Geopolyme

r Concrete

-compressive 

strength

5 -artificial 

neural 

networks 

(ANN) 

?

[74] Ahmad 

et al

2021 geopolyme

r concrete 

(GPC)

-compressive 

strength

9 -artificial 

neural 

networks 

(ANN) 

-Boosting 

ANN: 

MAE = 3.86

MSE = 20.16

RMSE = 4.49
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algorithm 

-Ada boost 

Boosting algorithm: 

MAE = 1.69

MSE = 4.16

RMSE = 2.04

AdaBoost:

MAE = 2.16

MSE = 6.84

RMSE = 2.62

[75] Amin et 

al.

2022 fiber-

reinforced 

polymer 

(FRP) 

reinforced 

Concrete

-Flexural 

Strength

9 -decision 

tree (DT)

-gradient 

boosting 

tree (GBT)

DT: 

R = 0.92

MAE = 10.32

RMSE = 19.92

GBT:

R = 0.94

MAE = 11.25

RMSE = 16.36

[76] Khalaf 

at al. 

2022 Fly Ash 

Geopolyme

r

Concrete

-compressive 

strength

11 Optimized 

Neural 

Network 

Model

MSE = 166.0 

R% = 97.5 

[77] Nafees 

et al

2022 Plastic 

Concrete

-compressive 

strength

9 Ensemble 

boosting

R = 0.814

4
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