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Background: Concrete, a major building product, is Ehe—g;eatest—useiof virgin resources including sand,
gravel, crushed stone, and fresh water, and it consumes around 1.6 billion metric tons of Portland and
altered Portland cement each year. A time-consuming calibration procedure is required for structural
analysis and design approaches when dealing with severe actions that display extremely nonlinear
behavior. These methods are also difficult to execute in practice. To reduce time and effort, machine
learning (ML) might be a viable option

Material and Methods: Set of keywords are des#g-lito perform the search P-u-bMedeith filters to not search
the studies below the year 2015. Furthermore, using PRISMA 01 idelines, studies were FeeFa-i-tediand after
propes screening, a total of 42 studies were summarized. The ability to methodically and accurately
connect disparate parts of the literature is often lacking in review research. Some of the trickiest parts of
original research include knowledge mapping, co-citation, and co-occurrence. Using this data, we were
able to determine which locations were most active in researching machine learning applications for
concrete, where the most influential authors were in terms of both output and citations, and which
papers garnered the most citations overall.

Conclusion: ML has become a viable prediction method for a wide variety of structural industrial
applications, and hence it may serve as a potential successor for routinely used empirical modelsiThe
non-ML structural engineering community may use this overview of ML methods, fundamental principles,
access codes, ML libraries, and gathered datasets to construct their own ML models for useful uses.
Structural engineering practitioners and researchers may benefit from this paper's incorporation of
concrete ML studies as well as structural engineering datasets. The construction industry stands to
benefit from the use of machine learning in terms of cost savings, time savings, and labor intensity. The
statistical and graphical representation of contributing authors and natieniin this work might facilitate
future collaborations and the sharing of novel ideas and approaches among aeaderries; The limitation of
this systematic review is that its only PubMed based which means it includes studies included in the
PubMed database.
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Systematic Literature Review on the Application of Machine Learning for the Prediction of Properties
of Different Types of Concrete

Abstract

Background: Concrete, a major building product, is the greatest user of virgin resources including sand,
gravel, crushed stone, and fresh water, and it consumes around 1.6 billion metric tons of Portland and
altered Portland cement each year. A time-consuming calibration procedure is required for structural
analysis and design approaches when dealing with severe actions that display extremely nonlinear
behavior. These methods are also difficult to execute in practice. To reduce time and effort, machine
learning (ML) might be a viable option

Material and Methods:A set of keywords aredesigned to perform the search PubMed with filters to not
search the studies below the year 2015. Furthermore, using PRISMA guidelines, studies were recruited
and after proper screening, a total of 42 studies were summarized. The ability to methodically and
accurately connect disparate parts of the literature is often lacking in review research. Some of the
trickiest parts of original research include knowledge mapping, co-citation, and co-occurrence. Using this
data, we were able to determine which locations were most active in researching machine learning
applications for concrete, where the most influential authors were in terms of both output and citations
and which papers garnered the most citations overall.

Conclusion: ML has become a viable prediction method for a wide variety of structural industrial
applications, and hence it may serve as a potential successor for routinely used empirical models. The
non-ML structural engineering community may use this overview of ML methods, fundamental principles,
access codes, ML libraries, and gathered datasets to construct their own ML models for useful uses.
Structural engineering practitioners and researchers may benefit from this paper's incorporation of
concrete ML studies as well as structural engineering datasets. The construction industry stands to benefit
from the use of machine learning in terms of cost savings, time savings, and labor intensity. The statistical
and graphical representation of contributing authors and nations in this work might facilitate future
collaborations and the sharing of novel ideas and approaches among academics.The limitation of this
systematic review is that its only PubMed based which means it includes studies included in the PubMed
database.

Keywords: Concrete, machine learning, compressive strength, neural network, mechanical properties,
computer vision, artificial intelligence, durability.
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1. Introduction

Innovation and carbon emissions have forced building firms to utilize an increasing amount of high-
performance manufactured materials. High—building materials provide better strength, duc !y,
durability, resistance to external forces, more ecologically friendly development, and cheaper costs &.an
typical construction products [1]. It is possible for them to dramatically extend the useful life of
construction structures and minimize the amount of time and money needed to maintain such buildings.
Construction materials that are known for their high level of performance include high-strength polymeric
materials, lightweight steel, and concrete nanocomposite reinforced with glass fibers.Concrete, a major
building product, is the greatest user of virgin resources including sand, gravel, crushed stone, and fresh
water and it consumes around 1.6 billion metric tons of Portland and altered Portland cement each year
[2]. The primary component of concrete, Portland cement, is an energy and resource hog. About 7% o*
the world's total CO, emissions come from the manufacture of cement, making it one of the two greates.
sources of greenhouse gas. Research is underway to develop unique materials that improve the qualities
of high-strength concrete in order to produce concrete high-performance and ecologically friendly [2, 3].

Fly ash (FA) is becoming a popular alternative to Portland czient in concrete because it saves
resources, lasts longer, costs less, and is good for the environment =,. In addition to being good for the
environment and saving-meney, fly ash improves the stability of both high strength concrete by making it
easier to work with, making it stronger over time, making it more resistant to sulfate attacks and alkali-
silica reactions, lowering the heat of hydration [5], making it less likely to shrink, making it last the same
amount of time when it freezes and thaws, making it less porous, and making it less permeable [5, 6]. But
the amount and type of fly ash used in concrete have to be planned and described correctly because fly
ash is not made in a special way and can't be controlled by strict rules. At the end of the 1940s, FA was
sold on the national market of concrete. It was known that using FA in concrete would improve the
performance of high-volume FA (HVFA) concrete by making it easier to work with (thanks to the ball-
bearing effect of spherical particles), making it stronger over time, cheaper, and more durable. Since FA
is a waste product, it cuts down the total cost of making concrete by a large amount [7-9]. FA will have
different qualities from plant to plant since it is not made in a specific way and can't be held to strict
standards. In other words, its properties are dependent on the characteristics of pulverized coal and how
the pulverization process is done in power plants that make electricity. Over time, HVFA concrete may get
close to the strength of Portland cement concrete (PCC). FA reduces the HVFA cementitious materials'
internal curing thermostat, drying shrinkage, and porous air vacuum. This shows HVFA concrete
eompositionsarg as durable as or greater than PCC [10]. FA may also increase deformation and porosity-
related durability.This is because the spherical shape and flat texture of FA granules, the wrapping effect
of particulate, and the protection of opposite charges cement particles from flocculating are all things that
make FA another before concrete [11, 12].

An artificial intelligence (Al) subfield known as machine learning (ML) focuses on teaching computers
the skill of making predictions using existing datasets and methods. The most essential benefit is that
computers may learn and develop automatically rather than being supervised learning [13]. It was not
until the 1990s that machine learning (ML) became the most prospering branch of artificial intelligence
(Al), and began to grow, despite its 1943 birth and 1959 coinage. Since it's crucial in numerous applications
of the real world, including voice and picture recognition, medical diagnosis, traffic warnings, and self-
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driving vehicles, ML has also become one of our generation's most popular buzzwords in the technological
industry. ML According to the learning experience, supervised, unsupervised, and reinforcement learning
are all examples of machine learning [14]. The most fundamental kind of ML is supervised learning, in
which a labeled data set is used for an algorithm in teaching. In structural engineering, this technique has
been extensively utilized for damage identification (classification issues) and strength forecasts
(regression problems) (regression problems). Unsupervised learning, on the other hand, uses an algorithm
that is trained on an unlabeled collection of data. As a result of this, the algorithm is honed using the
reinforcement learning approach. More and more machine learning techniques are being used in
structural engineering. These include neural networks (NN), decision trees (DT) and boosting algorithms
(BA), regression analysis (RA), and support vector machines (SVM) [14-16]. Engineering design has utilized
meta-models (sometimes called surrogate models) to speed up the calculation of black-box ML models
with a relaxed level of accuracy in an effort to save computational time. It is open an interpretation model
that is trained to mimic the forecasts of a black-box ML model. That's why they're called "surrogates":
basic analytical models that act like complicated machine-learning models [15].Structural engineering ‘s
branch of engineering that deals with the design and study of structures that are capable of supporting
loads. A time-consuming calibration procedure is required for structural analysis and design approaches
when dealing with severe actions that display extremely nonlinear behavior. These methods are also
difficult to execute in practice. To redu~~*ime and effort, machine learning (ML) might be a viable option
[7, 11, and 16]. In 1991, Adele and Yet. «._2d an artificial neural network (ANN) to construct steel beams
in one of the earliest ML applications in structural engineering [17]. Structural engineering was in its
infancy at the time because of the limits of ML methods and computational capacity. In the early stages
of structural engineering applications, this is shown by the fact that just a few relevant publications were
published annually [17, 18].It's also difficult to use machine learning in structural engineering since there
aren't enough test datasets for ML models. Structural analysis research has taken the required efforts to
overcome this obstacle by developing databases to gather data from structural analysis testing. There are
about 250 datasets from more than 50,000 trials housed in the DataCenterHub repository platform [19,
20]. Network for Earthquake Engineering Simulation (NEEShub) [21] is a cyberinfrastructure system for
earthquake engineering and catastrophe risk assessment. DesignSafe [22] is an extension of the NEEShub.
NEEShub datasets for seismic design can be obtained from DataCenterHub [23], as well as image
databases for crack damage detection (e.g., Structural ImageNet with more than 10,000 images, PEER Hub
ImageNet) [24] established by the Pacific earthquake engineering research (PEER) center with more than
36,000 images, bridge crack library with more than 11,000 images, etc). Advances in machine learning
(ML) methods have also been made in the field of structural engineering [25]. For big datasets, BA
approaches like extreme gradient boosting (XGBoost) [26] and classified gradient boosting (CatBoost) are
particularly powerful tools. CNN is considered state-of-the-art ML technology because of its speed in
identifying structural fracture damage. AutoML-Zero, a novel ML approach developed by the Google team
recently, can progress autonomously without human involvement. TensorFlow and Keras from Google
and PyTorch from Facebook are two examples of open-source ML libraries that provide hands-on ML
algorithms and ready-to-run tools for construction applications [27, 28].

The scientific world has seen a significant raise in the application of ML in engineering structures,
notably over the duration of last five years, with an evident exponential surge in the number of papers
each year rapid evolution of ML algorithms and processing capacity. However, the use of ML in
construction applications is currently relatively restricted. The industry {e-g—Arup} has created ML-
powered tools to produce alternative designs that fulfill the criteria of end-users as one of the real-world
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uses of creative models. Many recent review publications have addressed this topic, but they only focused
on a specific area of engineering structures (e.g., systemic implementation and quality, building system
for fire; tangible property; cement mix proportions; capacity forecasting of concrete buildings; and layout
and safety checks of bridges) only but instead structural engineering needs a complete assessment of all
aspects [29-32].The aim of this systematic review is to summarize althe—stu« in recent years
implementing the approach of machine learning on the prediction in structural engineering but in
consideration of the limitation applied to concrete as material because concrete material is extensively
used material in the construction industry [2].

1.1.Rationale

The rationale for conducting this systematic review on machine learning applications in concrete is
driven by the need to address the challenges and limitations of traditional structural analysis and design
approaches. The construction industry heavily relies on concrete, which consumes significant amounts of
virgin resources and plays a crucial role in building infrastructure. However, the conventional methods
used for structural analysis often require time-consuming calibration procedures and struggle to handle
severe actions with highly nonlinear behavior. Therefore, there is a need to explore alternative
approaches that can reduce time and effort while improving accuracy and efficiency. Machine learning
has shown promise in various fields, and its potential application in concrete structural engineering
warrants investigation to identify its benefits and limitations.

The intended audience for this systematic review includes both structural engineering practitioners
and researchers in the field of concrete construction. Structural engineers who are interested in exploring
new approaches for structural analysis and design will find value in the overview of machine learning
methods, principles, and available resources provided in this paper. Researchers in the field of concrete
and machine learning will benefit from the summary of existing studies, knowledge mapping, and
identification of influential authors and nations. Additionally, professionals in the construction industry,
including contractors, developers, and project managers, can gain insights into the potential benefits of
machine learning in terms of cost savings, time efficiency, and labor intensity. Overall, this review aims to
bridge the gap between traditional structural engineering practices and the emerging field of machine
learning, providing a valuable resource for those seeking to incorporate ML methods into concrete
applications.

1.2.Problem Statement and Research Question

Aceording-to-theauthersbestknewledge, this is the most recent and state-of-the-art review on the

application of machine learning techniques t ) 0 ‘edict the properties of different types of concrete. The
goal is to conduct a literature review to summarize all the work done on the prediction of all the
mechanical properties of concrete. This literature review will help future researchers to opt for the best
algorithm for their concrete and later compare them with the work already done in this area.

2. Methodology for Conducting Systematic Review

Recent decades have witnessed the production of civic studies in huge numbers. As a result of this
heterogeneity, the research provided might affect the investigation in a variety of ways, which
complicates evidence and makes it more difficult to draw conclusions [33]. Systematic review and meta-
analysis (SR/MAs) is the evidence-based pyramid's highest level of proof. To keep doctors and nurses up
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to date on the latest evidence-based medicine, it is possible to use an organized, well-managed SR/MA.
As a result of our research, we discovered that the most important processes in a systematic review
remain framing, discovering relevant studies via requirements construction and article search, assessing
the quality of the studies utilized, summarizing data, and interpreting conclusions. The majority of issues
may be solved by a researcher without any prior knowledge of the subject matter [34]. For this study, we
followed the Preferred Reporting Items for Systematic Reviews & Meta-Analysts (PRISMA) criteria [35].

2.1.Search Engine and Keywords

First, a set of keywords has been formulated which is given below to search the PubMed database for
the relevant studies, then after removing duplicates and the inclusion and exclusion criteria discussed in
Table 1 were applied to the rest of the studies which then resulted in narrowing the studies from 116 to
42 (figure 1). Then for the deeper search and in order to get the most possible and accurate results, the
following keywords were also divided into different sets.

e (concrete technology) AND (mechanical OR durability OR compressive strength OR flexural
strength OR modulus of elasticity OR tensile strength) AND ("computer vision" OR "neural
network" OR "artificial intelligence" OR "pattern recognition" OR "machine learning")

2.2.Eligibility Criteria

Table 1. Inclusion and exclusion criteria for the recruitment of studies are discussed in detail.
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3. Results:

The table 2 provides a list of research studies on the application of machine learning algorithms in
predicting the properties of different types of concrete. The table includes the authors, year of
publication, type of concrete, property predicted, number of input parameters, machine learning
algorithms used, and reported outcomes. Some of the machine learning algorithms used in these studies
include boosted decision tree regression, support vector machine, artificial neural network, genetic
algorithm-optimized backpropagation neural network, multi-expression programming, linear regression,
and extreme gradient boosting. The properties predicted include compressive strength, split tensile
strength, modulus of elasticity, and static modulus.The reported outcomes include correlation
coefficients, root mean square error, mean absolute error, accuracy, coefficient of determination, mean
absolute percentage error, and mean squared error. The studies vary in the number of input parameters,
ranging from 1 to 10. Some studies used conventional artificial neural networks, adaptive neuro-
fuzzyinference, and tabular generative adversarial networks to predict the properties of concrete.

Table 2. Summarized details of the studies recruited after conducting PRISMA-based systematic
review.

4. Discussion and Limitations:

Figure 2. Pie chart of studies showing no. of ML and NN techniques used in the selected studies.

In figure 2. We can see that 55% of the authors prefer applying supervised machine learning methods
while 45% of the authors opted deep learning neural networks. But it is difficult to say which one is better
although the highest accuracy achieved was through Artificial Neural Network [78]. Three decades ago,
the initial application of machine learning techniques was to try out several existing approaches to simple
tasks. After then, more complicated issues began to be considered. Monitoring structural health,
evaluating concrete qualities, and formulating new mixes are some of the most prevalent uses [79, 80].
In this part, we'll take a look at how machine learning (figure 3) approaches have been implemented in
these two scenarios.

Figure 3. Classification of machine learning algorithms on the basis of their learning types [81].
4.1.SHM

Civil constructions are subject to structural degradation as a result of their usage and environment.
For the assurance of assure public safety and the in-service construction dependability, the SHM system
is essential for early detection of structural problems. Dynamic response assessments separated at
periodic intervals are used to monitor a component over time, damage-sensitive characteristics are
recovered, and then the derived features are statistically examined to determine the present health
condition of the system [82].Long-span bridges, massive dams, and towering buildings are among the
structures where the SHM system has been widely deployed, allowing for a seamless transition from time-
based to situation management. Model-driven or data-driven techniques have both been used in recent
studies in this area of interest. As a result of this method, it is possible to detect structural deterioration
by comparing measured data to data generated by a computer model of the structure (typically based on
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finite element analysis (FEA). Due to the repetitive examination of a simulation software model, this
technique is computationally intensive [83-86]. It is also possible that in actuality, a measurement
simulation may not be available at all times or accurately represent the real structure's performances in
every case. Because of this, FEA findings are typically insufficient to accurately measure structural health.
A strategy based on data rather than models generates a model via the use of observed data and then
compares the model's responses to those measured in order to discover damage. This method employs
machine learning techniques, such as pattern recognition. It is becoming more possible to install large and
dense sensor networks for SHM because to recent advancements in sensing methods, and wireless
communication. As a result, continuous and real-time damage identification is made much easier with the
data-driven method [81]. To identify structural damage, machine learning algorithms are often used in
conjunction with supervised learning, which relies on examples of both healthy and damaged data.
Structural damage detection may benefit from the resilience and efficiency of single machine learning
method such as support vector machine, neural networks, and support vector regressions, as well as the
genetic algorithms (GA). For various challenges in the SHM sector, hybrid approaches such as the multi-
objective genetic algorithm (MOGA), neuro-fuzzy (NF), and wavelet neural network (WNN) have also been
presented. All investigations proved the accuracy of machine learning-based models and their better
performance over model-driven methods [86. 87].

4.2. Properties of Mix Design Concrete

It can be seen in table 2 that so many researchers contributed to predict the mechanical properties
of the concrete mix with different substances like fly ash, foundry sand, or rubber waste using ML
algorithms. Concrete buildings are designed with mechanical qualities including compressive strength,
elastic modulus, splitting tensile strength, and shear strength in mind. Predicting the compressive strength
of concrete by linear or non-linear regression equations saves both time and money [88]. Elastic modulus
measurement is difficult and time-consuming. Stress-strain relations of cementitious materials under
compression are often used to get this information [89, 90]. The compressive strength of concrete is
typically used to estimate the splitting tensile strength of concrete because of its complexity, expense,
and time-consuming nature. Based on experimental data, regression models for shear strength of RC
components are also applied. In the past, the mechanical characteristics of concrete were evaluated using
a set equation that was based on a small amount of experimental data and variables. They are only useful
for describing the results of their own experiments used to calibrate them. The model coefficients and the
equation's form must be updated if the original data is changed. To determine fresh concrete's mechanical
qualities, standard models may not be appropriate since the link between components and concrete
characteristics is particularly nonlinear for certain concrete kinds. A widely agreed-upon mathematical
model is also difficult to come by. A concrete structure's long-term performance may be evaluated by
looking at its dry shrinkage, another important feature of concrete. Several empirical equations for
shrinkage estimation have been developed in various codes such as ACI and CEB throughout the last five
decades. Dry shrinkage in concrete is affected by a variety of parameters, including its composition, the
size of the specimen, and the quality of its ingredients. Using these calculations may be problematic in
certain situations. Components and their relative proportions are determined in order to manufacture
concrete that fulfills required strength, workability and durability at a low cost while yet delivering a high
quality product. As an extension of previous practice, concrete mix percentage algorithms are typically
available in the form of empirical formulae or tables. As a consequence of this uncertainty, typical
methods for determining concrete mix proportions are a trial-and-error exercise, which results in higher
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expenses as well as more time [92]. Modeling concrete characteristics and mix design accurately and
reliably may save time and money by providing engineers with the information they need. To circumvent
the limitations of standard empirical regression models, machine learning methods have been used to
represent these features. Construction of accurate and effective models for predicting the characteristics
and mix design of several kinds of concrete, including fiber-reinforced polymer (FRP) concrete have been
done by using Machine Learning Techniques. Many machine learning methods are used in these
investigations, including neural networks, genetic programming, fuzzy logic, support vector machines, and
fuzzy inference systems (FIS). Machine learning approaches have been shown to be a strong tool for
evaluating tangible qualities, regardless of the complexity, incoherence, or incompleteness of the data
used. They're also a superior alternative for deciding on the right quantities of materials in concrete
mixtures to achieve the appropriate strength and rheology [88-94]. Reducing trial mixes results in an
ecological and cost-effective mix design method.

4.3. Artificial Neural Network:

Parallel processing occurs in the brain's neural network, which is a web of linked neurons that sends
signals back and forth to process information. ANNs are a cutting-edge analytical technique that mimics
the way the human brain thinks. Similar to other DoE approaches that take in numerous factors to forecast
the response variable, ANNs may be employed mathematically to analyze multiple inputs and generate
an output [95]. The input, hidden layer, and output layer are all parts of the ANN's mechanism. It is here
where data is entered. The output layer processes the data and provides the result via a system of
connection weights. The inputs are fed into the process, and the process concludes with the output. A
technique known as backward propagation is used to reduce the overall weight of the network's
connections. The discrepancy between the anticipated value and the actual value is believed to alter and
change the mechanism of the hidden layer.. It is important to understand the benefits and downsides of
ANNs [96]. Due to its processing, errors may be tolerated, and complicated non-linear relationships
between variables can be solved with ease using data analysis. ANNs have a distinct edge over pre-
programmed computational models since they are able to learn from their own mistakes. It is also possible
to overfit the data supplied by ANNs because of the intricacy of their solution [95, 97].

Concrete compressive strength may be predicted using ANNs, which have a greater number of
variables than previous DoE approaches. Analyzing many concrete experiments that all employ the same
looking to upgrade is a unique use of ANNs thanks to their enhanced processing capability. Gupta et al.
[98] who collected 32 data points from ten different publications on nano-silica-containing concrete, came
up with an exact model for 28-day concrete compressive strength without having to do any experiments.
Additionally, Asteris and Mokos [99] utilized non-destructive test results from a thesis to train ANNs on
209 data sets to estimate concrete strength. Noorzaei et al. [100] and Santosa and PurboSantosa [101]
did a similar study utilizing the elements of concrete as variables and reached the same outcome. In terms
of precision, regression analysis, particularly multiple non-linear regression, falls short in comparison to
ANNs, as shown by the R2 value. When it comes to modeling self-compacting concrete, research found
that the results of MLR outperformed those generated by ANNs. ANNs function best when given more
data, and the low quantity of data in the study (i.e., 15) may account for this. The R2 score alone should
not be utilized to choose the optimal model. The Root Mean Squared Error (RMSE) of the ANNs model
was much lower than the other models in another experiment on recycled aggregate concrete.

4.4.Comparison and Motivation of Literature Review
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The PRISMA based methodology adaption for this systematic literature review has been taken from
Zahid et al. [102]. Fo-the-best-of the-auther'sknewledge,this-is-the-mest-up-to-date-and-comprehensi

This literature review is unique because it systematically summarizes the current state of research on
the application of machine learning in the concrete industry, with a focus on structural analysis and design
approaches. The review provides a comprehensive overview of the potential of ML to replace empirical
models and reduce the time and effort required in the industry. It also provides an overview of ML
methods, principles, access codes, libraries, and datasets that can be used by practitioners and
researchers to develop their own ML models. Additionally, this review identifies the most active locations
and influential authors in researching ML applications for concrete, which could facilitate future
collaborations and sharing of novel ideas and approaches among academics. The statistical and graphical
representation of contributing authors and nations can be useful for researchers and practitioners in
identifying potential collaborators and networking opportunities. Overall, this review provides a valuable
resource for researchers and practitioners in the concrete industry who are interested in exploring the
potential of ML to improve their work. The systematic approach used in this review ensures that the
information presented is comprehensive and unbiased, making it a valuable resource for anyone looking
to learn more about the application of ML in the concrete industry.

5. Conclusion:

It can be concluded that the use of machine learning (ML) is being explored as a potential method to
reduce the time and effort required for structural analysis and design approaches in the concrete industry.
The abstract summarizes a systematic review of 42 studies that were conducted using a set of keywords
and PRISMA guidelines. The review highlights the potential of ML to serve as a successor to the routinely
used empirical models in the structural engineering community. The paper also provides an overview of
ML methods, fundamental principles, access codes, ML libraries, and gathered datasets that can be used
by practitioners and researchers to construct their own ML models for useful applications. The
construction industry can benefit from the use of ML in terms of cost savings, time savings, and labor
intensity. The systematic review also identifies the most active locations and influential authors in
researching ML applications for concrete, which could facilitate future collaborations and sharing of novel
ideas and approaches among academics. However, the limitation of this review is that it only includes
studies that are included in the PubMed database.

5.1.Future Trend

The great degree of accuracy in actual and predicted outcomes demonstrates the significance of these
techniques in civil engineering. It's becoming increasingly common to use supervised ML techniques since
they provide accurate outputs and reduce the amount of physical labor and overall project expense. In
addition, it is vital to conduct laboratory experiments to compare the results of machine learning
algorithms. In order to compare the results of different machine learning algorithms, It is also possible to
alter or add input factors, such as the number of data points and the kind of material used, size of
specimens, ambient conditions, curing settings, and data loading rate. For the sake of comparison, a
variety of machine learning approaches may be used, including artificial neural networks (ANNs), support
vector machines (SVMs), and boosting [66]. Databases were used to calculate the compressive and split
tensile strengths. As an alternative, additional input parameters and increasing the database may produce
the required results. SFC is compressive and split tensile strength models have been created in this work.
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According to statistical characteristics, these models were able to accurately and reliably estimate SFC
intensities. However, by using the same modeling parameters, MLPNN, ANFIS, and GEP models may be
used to forecast concrete qualities including numerous different concrete ingredients. Based on input
parameters, these models will be changed and the outcomes anticipated are largely dependent on the
database used. The whale optimization algorithm, ant colony optimization, and particle swarm
optimization are just a few examples of heuristic techniques that may be utilized in combination with
machine learning to get optimum results. They may then be compared to this study's methods. The
upgraded and improved version of GEP is known as multi-expression programming (MEP). GEP's
limitations may be overcome via MEP analysis. To put it simply, MEP is given more attention when the
complexity of the target expression is uncertain. There are exceptions, erroneous expressions, and even
division by zero that can be handled by MEP. There are no infertile learners in the next generation since
the gene is responsible for causing exceptions and then changing to an arbitrary terminal symbol. While
MLPNN and ANFIS were used for the prediction of results, single learners were utilized in this study to
anticipate results. Many different sub-models are built, and statistical parameters are used to pick the
best one. This is known as an ensemble ML approach [64].
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Figure 1

PRISMA-based flowchart showing the studies recruitment process.
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Figure 2

Pie chart of studies showing no. of ML and NN techniques used in the selected studies.
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Figure 3
Classification of machine learning algorithms on the basis of their learning types [81].
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Table 1l(on next page)

Inclusion and exclusion criteria for the recruitment of studies are discussed in detail.
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Table 1. Inclusion and exclusion criteria for the recruitment of studies are discussed in detail.

Inclusive Criteria

Exclusive Criteria

Concrete was used as the primary
material in the study.

Studies that use any machine
learning algorithm to predict the
properties.

Studies that are published are
either original articles or review
articles in any conference
proceeding or journal.

The material used in some of the
studies was not concrete.

Studies that use any other method
other than machine learning for
the prediction.

Studies that are not published are
either original articles or review
articles in any conference
proceeding or journal.
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Table 2(on next page)

Summarized details of the studies recruited after conducting PRISMA-based systematic
review.
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Table 2. Summarized details of the studies recruited after conducting PRISMA-based systematic

review.
Refer | Author | Year | Material Properties Input Machine Reported outcomes
ence parameter | learning
algorithm
[36] | Latif et 2021 | environme | compressive | 8 -boosted R =0.86
al. ntally strength decision
_ RMSE=6.19
friendly tree
concrete regression MAE=4.91
(BDTR)
RSR=0.37
-support
vector
machine
(SVM)
[37] | Igbalet | 2021 | concrete -split tensile | 4 Multi- ST:
al. waste strength (ST) Expression
.| R=0.93
foundry Programmin
-modulus of
sand elasticit g (MEP) RMSE=0.36
(CWFS). ¥ -
MAE=0.
(E)
RSE=0.21
Accuracy=0.051E
R=0.96
RMSE=2.13
MAE=1.70
RSE=0.17
Accuracy=0.032
[38] | Duet 2021 | high- -compressive | 2 genetic BPNN:
al. performanc | strength algorithm )
Correlation
e self- o
. (GA)- coefficient=0.967
compacting o
optimized
concrete RMSE=3.703
backpropag
ation neural | GA-BPNN:
network _
(BPNN) Correlation
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model coefficient=0.979
RMSE=2.972
[39] | Saifudd | 2016 | Journal Concrete 2 artificial coefficient of
in et al. neural determination (R?) =
networks 0.9486
(ANN)
[40] | Hadzim | 2019 | Waste -compressive | 6 artificial highest R value of 0.96 and
a- Rubber strength neural 0.98 for the
Nyarko c ¢ networks trai d test dat
ot al. oncrete (ANN) rain an. est data, _
respectively, an achieved
the lowest RMSE and
MAPE values (4.8 and 20.2
for the
train data, respectively,
and 3.78 and 21.6 for the
test data
[41] | Daoet 2019 | Geopolyme | -compressive | 4 -adaptive -ANFIS (MAE = 1.655 MPa,
al. r Concrete | strength neuro fuzzy | RMSE =2.265 MPa, and R2
inference =0.879)
(ANFIS)
-artificial
-ANN (MAE = 1.989 MPa,
neural
RMSE = 2.423 MPa, and R2
network _ 0.851)
(ANN) T
[42] | Ziolkow | 2019 | Concrete -compressive | ? -artificial ?
ski et strength neural
al. network
(ANN)
[43] | Yoonet | 2019 | Lightweight | -compressive | 10 -artificial CS:
al. Aggregate strength neural
E6e8 & MAE% = 14.5%
Concrete lasti network
-elastic
(ANN) Correlation coefficient =
modulus
0.930
E:
MAE% = 8.5%
Correlation coefficient =
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0.977
[44] | Abamb | 2019 | Concrete -compressive -artificial AVG = average = 1.00
res et strength neural
STD =
al. network
(ANN) standard deviation = 0.02
COV = co-efficient of
variation = 1.69%
[45] | Daoet 2020 | Foamed -compressive - R2=0.972
al. Concrete strength Convention
e RMSE = 0.140
al Artificial
Neural MAE =0.114
Network (C-
ANN)
[46] | Parket 2020 | Concrete -Static -SVM SVM:
al. Modulus --
. -Ensemble MSE =12.75
Compressive
Strength -ANN MAPE =13.71
-Linear
Regression
Ensemble:
MSE =11.54
MAPE = 14.31
ANN:
MSE = 29.50
MAPE = 15.47
LR:
MSE = 44.77
MAPE = 29.59
[47] | Marani 2020 | Ultra-high- | -- -Tabular TGAN:
et al. performanc | Compressive Generative
. MAE =5.46
e st th Adversarial
; reng Networks RMSE = 8.47
concrete (TGAN)
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(UHPC) R2=0.95
-Tree-Based
Ensembles
Ensemble:
MAE =6.72
RMSE = 8.41
R?=0.95
[48] | Wanet | 2021 | Concrete -Compressive | -8 original -Linear LR:
al. features Regression
Strength (LR) MSE = 44.90
-6
R2=0.84
Principal
-Support
Component
] Vector SVR:
Analysis .
(PCA) Regression MISE < 25.8
(SVR) T
Features R2=0.91
6 -Extreme
Manual Gradient XGBoost:
features. Boosting
(XGBOOSt) MSE = 33.87
R?=0.87
- Artificial
Neural ANN:
Network
(ANN), MSE = 26.4
R2=0.91
[49] | Ahmad 2021 | Fly Ash -- 8 -decision DT:
et al. Based Compressive tree (DT)
MAE = 3.89
Concrete
Strength
MSE = 36.01
-Ensemble
RMSE = 6.00
approach
_Gene DT-bagging:
Expression MAE =3.113
Programmin
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g (GEP) MSE = 16.28
RMSE = 4.03
GEP:
MAE = 3.47
MSE =29.91
RMSE =5.46
[50] | Khanet | 2021 | Geopolyme | -- 9 -Gene RMSE = 2.64
al. r Concrete | Compressive Expression
.| MAE =2.057
Strength Programmin
g (GEP) RSE = 0.06
R =0.9643
[51] | Huseie 2021 | self-healing | mechanical 8 Artificial MSE =3.72
n et al. concrete and Neural ME = 0.89
durability Network e
properties (ANN) MAE = 1.11
RMSE = 1.93
[52] | Mhaya 2021 | waste -- 6 Artificial MSE = 189.69
et al. rubber tire | Compressive Neural
ME = 3.052
crumbs st th Network
ren
(WRTCs)- & (ANN) MAE = 8.139
based
concrete RMSE = 13.773
[53] | Ahmad 2021 | Concrete -- 10 -AdaBoost AdaBoost:
et al. Compressive
-Random R?2=0.938
Strength forest (RF)
RSR =0.248
-Decision MAPE = 12.52
tree (DT) T
RRMSE =11.62
RF:
R?=0.935
RSR =0.256
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MAPE = 13.076

RRMSE = 11.661

DT:

R?2=0.911

RSR =0.324
MAPE = 16.100

RRMSE = 14.753

[54] | Ahmad 2021 | Concrete -- 2 -decision DT:
et al. Compressive tree (DT)
MAE =7.54
Strength -artificial
MSE = 112.3
neural
network RMSE = 10.79
(ANN)
-Bagging Bagging:
-gradient MAE = 5.65
boosting
(GB) MSE = 61.08
RMSE =7.81
GB:
MAE =6.93
MSE = 85.1
RMSE =9.24
DT:
MAE =9.15
MSE = 121.66
RMSE = 11.03
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[55] | Kovace 2021 | Self- -- 11 - MLPANN:
vié et Compactin | Compressive multilayere
RMSE =7.44
sl. g d
Strength
. perceptron MAE =5.54
Rubberized e
c ; artificial
oncrete neural R=0.8481
network
(MLP-ANN)
Ensemble MLPANN:
-ensembles
of RMSE = 3.68
MLPANNS, | MiAE =2 80
R=0.9615
[56] | Songet | 2021 | Ceramic -- 5 -decision DT:
al. Waste- Compressive tree (DT)
MAE =6.94
Based o
Strength -artificial
MSE = 20.76
Concrete neural
network RMSE = 4.55
(ANN)
ANN:
MAE =6.12
MSE =17.98
RMSE = 4.29
[57] | Farooq 2021 | Self- -- 7 -artificial ANN:
et al. Compactin | Compressive neural
R=0.95
g Concrete st th network
Modified reng ANN RMSE = 4.56
with Fly ( )
Ash MAE = 3.81
-support
vectormachi | SyMm:
ne (SVM)
R=0.93
RMSE= 4.49
-Gene
Expression | MAE=3.29
Programmin
g (GEP)
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GEP:

R=0.93

RMSE = 4.8

MAE =3.92

(58]

Ahmad
et al.

2021

Concrete
Containing

Supplemen
tary
Cementitio
us
Materials

Compressive

Strength

-Bagging
-AdaBoost

-Gene
Expression
Programmin
g (GEP)

-decision
tree (DT)

Bagging:
MAE = 3.257
MSE = 20.566

RMSE =4.53

AdaBoost:
MAE =5.12
MSE = 47.37

RMSE = 6.88

GEP:
MAE = 5.24
MSE = 50.69

RMSE =7.12

DT:
MAE = 5.88
MSE =57.30

RMSE =7.57
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[59] | Tosee 2021 | Environme | -- Hybrid ANN- | MSE = 0.42
et al ntally Compressive SFL
. o AAE =0.040
Friendly (artificial
Strength
Concrete neural VAF = 94
Modified network-
with Shuffled
Eggshell Frog
Leaping)
[60] | Xuet 2921 | -Concrete -- -support SVR:
al. Compressive
vector MAE = 3.329
Strength regression(S
RMSE = 5.325
VR)
“AdaBoost AdaBoost:
MAE =2.94
RMSE = 3.90
-random
forest
RT:
MAE =2.223
RMSE = 3.183
[61] Isleem 2021 | GFRP- -axial load- --artificial ?
et al. Reinforced | axial neural
Concrete ) network
Strain
) (ANN)
-confinement
of columns
-ductility - Finite
hardeni Element
-har e.nmg (FEM)
behavior
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[62] | Nafees 2021 | Silica Split Tensile 5 - Multilayer | MLPNN:
et al Strength;
Fume- . perceptron | 0.85;0.90
compressive
Based neural
strength
Green networks
Concrete (MLPNN) ANFIS:
-adaptive 0.91; 0.92
neural fuzzy
detection
systems GEP:
(ANFIS)
0.97;0.93
-genetic
expression
Programmin
g (GEP).
[63] | Khokha | 2021 | Fiber -Compressive | 15 - Artificial ANN:
retal. Reinforced st th Neural A - 96.3%
Concrete reng Networks ceuracy = 55.5%
-Tensile (ANN)
Strength
SVM:
-Strain-
-Support Accuracy = 94%
Hardening Vector
I Machine
-Tensile
. (SVM) XGBoost:
Strain
= 9
Capacity Accuracy = 98.4%
-XGBoost
[64] | Imran 2022 | Eco- -- 6 - MPR:
Friendly Compressive multivariate
R?2=0.818
Concrete .
Strength polynomial
. RMSE = 4.6
regression
(MPR)
LR:
-linear R2=0.676
regression
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SVM:
-support R?=0.495
vector
. RMSE =7.38
machine
(SVM)
[65] | Almoha | 2022 | bacterial -- -Multiple MLR:
mmed concrete Compressive Linear
. R?=0.88
et al st th Regression
ren
& (MLR) RMSE = 4.87
MAE = 3.96
-Random
Forest (RF)
RF:
R2=0.97
-support
vector RMSE = 2.29
Regression | VIAE=1.81
(SVR)
SVR:
-M5P Model RZ =0.98
RMSE =1.94
-Random MAE = 1.52
Tree
RT:
R2=0.96
RMSE = 2.82
MAE = 2.49
M5P:
Rz2=0.94
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RMSE = 4.88
MAE = 2.88
[66] | Shang 2022 | recycled splitting -Decision DT:
et al coarse tensile tree (DT)
MAE =3.58; 0.31
aggregate strength;
based Compressive MSE = 11.02; 0.29
concrete -AdaBoost
Strength RMSE =3.32; 0.54
) AdaBoost:
MAE = 2.33; 0.30
MSE =7.8; 0.20
RMSE = 2.79; 0.45
[67] | Candel 2022 | Concrete -- -artificial ANN:
aria et Compressive
al neural R?=0.97
' Strength network RMISE = 9.4
(ANN) T
MAE =9.414
-support
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vector SVM:

machine R2=0.95

(SVM) e
RMSE = 18.04

. MAE =12.33

-Gaussian

process

regression
R2=0.94

- Multi- RMSE = 18.14

Variate MAE = 13.072

Regression
MVR:
R2=0.93
RMSE =9.5
MAE =17.215

[68] | Ahmed | 2022 | geopolyme | -Compressive | 14 -linear R?=0.853
et al. r concrete regression
Strength RMSE = 6.82

(LR)

multinomin

al logistic

regression

(MLR)

-nonlinear

regression

(NLR)

[69] | Najmet | 2022 | Waste Tensile 11 -artificial R?=0.9988; 0.9687
al. ceramic strength; neural
. MSE =0.22; 1.8899
concrete compressive networks
(Woc) strength (ANN) RMSE = 0.4699; 1.3744

MAE = 0.469; 1.2279
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[70] | Yuanet | 2022 | recycled Compressive | 12 -gradient GB:
al. aggregate strength; boostin
E6ree g & MAE =4.77; 0.642
concrete Flexural
(RAC) RMSE =6.9; 1.199
strength
-random
forest (RF)
RF:
MAE = 4.19; 0.560
RMSE = 5.6; 0.85
[71] | Rayet 2022 | concrete Strength 8 -artificial R=0.95
al. made neural RZ = 0.90
(stone dust networks T
and nylon (ANN) MSE = 0.09
fiber)
MAE =0.20
AE=0.04
[72] | llyaset | 2021 | CFRP -strength 8 -Multi RMSE =7.71
al. Confined Expression
.| RSE=0.009
Concrete Programmin
g (MEP) MAE = 6.33
RRMSE =0.010
R =0.9953
[73] | Gunase | 2021 | High -compressive | 5 -artificial ?
kara et Calcium Fly | strength neural
al. Ash networks
Geopolyme (ANN)
r Concrete
[74] | Ahmad 2021 | geopolyme | -compressive | 9 -artificial ANN:
et al r concrete | strength neural MAE = 3.86
(GPC) networks T
(ANN) MSE = 20.16
RMSE = 4.49
-Boosting
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algorithm Boosting algorithm:
MAE = 1.69
-Ada boost MSE =4.16
RMSE =2.04
AdaBoost:
MAE = 2.16
MSE = 6.84
RMSE = 2.62
[75] | Aminet | 2022 | fiber- -Flexural 9 -decision DT:
al. reinforced | Strength tree (DT)
R=0.92
polymer
(FRP) MAE = 10.32
reinforced -gradient
Concrete boosting RMSE = 19.92
tree (GBT)
GBT:
R=0.94
MAE =11.25
RMSE = 16.36
[76] | Khalaf 2022 | Fly Ash -compressive | 11 Optimized MSE = 166.0
at al. Geopolyme | strength Neural
R% =97.5
r Network
Model
Concrete
[77] | Nafees 2022 | Plastic -compressive | 9 Ensemble R=0.814
et al Concrete strength boosting
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