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ABSTRACT
Background. Concrete, a fundamental construction material, stands as a significant
consumer of virgin resources, including sand, gravel, crushed stone, and fresh water.
It exerts an immense demand, accounting for approximately 1.6 billion metric tons
of Portland and modified Portland cement annually. Moreover, addressing extreme
conditions with exceptionally nonlinear behavior necessitates a laborious calibration
procedure in structural analysis and design methodologies. These methods are also
difficult to execute in practice. To reduce time and effort, ML might be a viable option.
Material andMethods. A set of keywords are designed to perform the search PubMed
search engine with filters to not search the studies below the year 2015. Furthermore,
using PRISMA guidelines, studies were selected and after screening, a total of 42
studies were summarized. The PRISMA guidelines provide a structured framework to
ensure transparency, accuracy, and completeness in reporting the methods and results
of systematic reviews and meta-analyses. The ability to methodically and accurately
connect disparate parts of the literature is often lacking in review research. Some of
the trickiest parts of original research include knowledge mapping, co-citation, and co-
occurrence. Using this data, we were able to determine which locations weremost active
in researching machine learning applications for concrete, where the most influential
authors were in terms of both output and citations and which articles garnered themost
citations overall.
Conclusion. ML has become a viable prediction method for a wide variety of structural
industrial applications, and hence it may serve as a potential successor for routinely
used empirical model in the design of concrete structures. The non-ML structural
engineering communitymay use this overview ofMLmethods, fundamental principles,
access codes, ML libraries, and gathered datasets to construct their own ML models
for useful uses. Structural engineering practitioners and researchers may benefit from
this article’s incorporation of concrete ML studies as well as structural engineering
datasets. The construction industry stands to benefit from the use of machine learning
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in terms of cost savings, time savings, and labor intensity. The statistical and graphical
representation of contributing authors and participants in this work might facilitate
future collaborations and the sharing of novel ideas and approaches among researchers
and industry professionals. The limitation of this systematic review is that it is only
PubMed based which means it includes studies included in the PubMed database.

Subjects Artificial Intelligence, Data Mining and Machine Learning
Keywords Concrete, Machine learning, Compressive strength, Neural network, Mechanical
properties, Computer vision, Artificial intelligence, Durability

INTRODUCTION
Innovation and carbon emissions have forced building firms to utilize an increasing
amount of high-performance manufactured materials. High building materials provide
better strength, ductility, durability, resistance to external forces, more ecologically friendly
development, and cheaper costs in long term than typical construction products (Aiyer et
al., 2014). High-performance construction materials may come with higher initial costs,
their potential for long-term cost savings through improved performance, energy efficiency,
and reduced maintenance can make them economically viable choices. It is possible for
them to dramatically extend the useful life of construction structures and minimize the
amount of time andmoney needed tomaintain such buildings. Constructionmaterials that
are known for their high level of performance include high-strength polymeric materials,
lightweight steel, and concrete nanocomposite reinforced with glass fibers. Concrete, a
major building product, is one of the greatest user of virgin resources including sand,
gravel, crushed stone, and fresh water and it consumes around 1.6 billion metric tons of
Portland and altered Portland cement each year (Pathak & Siddique, 2012). The primary
component of concrete, Portland cement, is an energy and resource hog. About 7% of
the world’s total CO2 emissions come from the manufacture of cement, making it one
of the two greatest sources of greenhouse gas. Research is underway to develop unique
materials that improve the qualities of high-strength concrete in order to produce concrete
high-performance and ecologically friendly (Pathak & Siddique, 2012; Uysal & Sumer,
2011).

Fly ash (FA) is becoming a popular alternative to Portland cement in concrete because it
saves resources, lasts longer, costs less, and is good for the environment (Bingöl & Tohumcu,
2013). In addition to being good for the environment, fly ash improves the stability of both
high strength concrete by making it easier to work with, making it stronger over time,
making it more resistant to sulfate attacks and alkali-silica reactions, lowering the heat of
hydration (Güneyisi, Gesoğlu & Özbay, 2010), making it less likely to shrink, making it last
the same amount of time when it freezes and thaws, making it less porous, and making
it less permeable (Güneyisi, Gesoğlu & Özbay, 2010; Gesoğlu, Güneyisi & Özbay, 2009). But
the amount and type of fly ash used in concrete has to be planned and described correctly
because fly ash is not made in a special way and cannot be controlled by strict rules.
At the end of the 1940s, FA was sold on the national market of concrete. It was known
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that using FA in concrete would improve the performance of high-volume FA (HVFA)
concrete by making it easier to work with (thanks to the ball-bearing effect of spherical
particles), making it stronger over time, cheaper, and more durable. Since FA is a waste
product, it cuts down the total cost of making concrete by a large amount (Sukumar,
Nagamani & Srinivasa Raghavan, 2008; Bouzoubaâ & Lachemi, 2001; Siddique, 2011). FA
will have different qualities from plant to plant since it is not made in a specific way and
FA must confirm to certain standards like any other ingredient for concrete. In other
words, its properties are dependent on the characteristics of pulverized coal and how the
pulverization process is done in power plants that make electricity. Over time, HVFA
concrete may get close to the strength of Portland cement concrete (PCC). FA reduces the
HVFA cementitious materials’ internal curing thermostat, drying shrinkage, and porous air
vacuum. This shows HVFA concrete compositions are may be as durable as or greater than
PCC (Jiang & Malhotra, 2000). FA, due to its spherical shape and flat texture of granules,
its particulate wrapping effect, and the safeguarding of cement particles from flocculation
through opposite charges, can lead to increased deformation and durability related to
porosity. These factors collectively contribute to making FA an essential component in
concrete, as supported by references (Topçu & Sarıdemir, 2008; Kurda et al., 2018).

An artificial intelligence (AI) subfield known as machine learning (ML) focuses on
teaching computers the skill ofmaking predictions using existing datasets andmethods. The
most essential benefit is that computers may learn and develop automatically rather than
being supervised learning (Han, Kamber & Pei, 2013). It was not until the 1990s that ML
became themost prospering branch of AI, and began to grow, despite its 1943 birth and 1959
coinage. Since it is crucial in numerous applications of the real world, including voice and
picture recognition, medical diagnosis, traffic warnings, and self-driving vehicles, ML has
also become one of our generation’s most popular buzzwords in the technological industry.
ML according to the learning experience, supervised, unsupervised, and reinforcement
learning are all examples of AI (Witten, Frank & Hall, 2016). The most fundamental kind
of ML is supervised learning, in which a labeled data set is used for an algorithm in
teaching. Structural engineering is a branch of engineering that deals with the design and
study of structures that are capable of supporting loads. In structural engineering, this
technique has been extensively utilized for damage identification (classification issues)
and strength forecasts (regression problems). Unsupervised learning, on the other hand,
uses an algorithm that is trained on an unlabeled collection of data. As a result of this,
the algorithm is honed using the reinforcement learning approach. More and more
machine learning techniques are being used in structural engineering. These include neural
networks (NN), decision trees (DT) and boosting algorithms (BA), regression analysis
(RA), and support vector machines (SVM) (Witten, Frank & Hall, 2016; Parsons, 2010;
Karbhari & Lee, 2009). Engineering design has utilized meta-models (sometimes called
surrogate models) to speed up the calculation of black-box ML models with a relaxed level
of accuracy in an effort to save computational time. It is open an interpretation model
that is trained to mimic the forecasts of a black-box ML model. That is why they are
called ‘‘surrogates’’: basic analytical models that act like complicated machine-learning
models (Parsons, 2010). A time-consuming calibration procedure is required for structural
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analysis and design approaches when dealing with severe actions that display extremely
nonlinear behavior. These methods are also difficult to execute in practice. To reduce
time and effort, ML might be a viable option (Sukumar, Nagamani & Srinivasa Raghavan,
2008; Topçu & Sarıdemir, 2008; Karbhari & Lee, 2009). In 1991, Adeli and Hung used
an artificial neural network (ANN) to construct steel beams in one of the earliest ML
applications in structural engineering (Hung & Adeli, 1991). Structural engineering was in
its infancy at the time because of the limits of ML methods and computational capacity.
In the early stages of structural engineering applications, this is shown by the fact that
just a few relevant publications were published annually (Hung & Adeli, 1991; Adeli,
2001). It is also difficult to use machine learning in structural engineering since there
are not enough test datasets for ML models. Structural analysis research has taken the
required efforts to overcome this obstacle by developing databases to gather data from
structural analysis testing. There are about 250 datasets from more than 50,000 trials
housed in the DataCenterHub repository platform (Hajela & Berke, 1991; Catlin et al.,
2018). Network for Earthquake Engineering Simulation (NEEShub) (Hacker, Eigenmann
& Rathje, 2013) is a cyberinfrastructure system for earthquake engineering and catastrophe
risk assessment. DesignSafe (Pinelli et al., 2020) is an extension of the NEEShub. NEEShub
datasets for seismic design can be obtained from DataCenterHub (DEEDShub, 2017), as
well as image databases for crack damage detection (e.g., Structural ImageNet with more
than 10,000 images, PEER Hub ImageNet) (Gao & Mosalam , 2020) established by the
Pacific earthquake engineering research (PEER) center with more than 36,000 images,
bridge crack library with more than 11,000 images, etc.). Advances in ML methods have
also been made in the field of structural engineering (Rathje et al., 2017). For big datasets,
BA approaches like extreme gradient boosting (XGBoost) (Chen & Guestrin, 2016) and
classified gradient boosting (CatBoost) are particularly powerful tools. CNN is considered
state-of-the-art ML technology because of its speed in identifying structural fracture
damage. AutoML-Zero, a novel ML approach developed by the Google team recently, can
progress autonomously without human involvement. TensorFlow and Keras from Google
and PyTorch from Facebook are two examples of open-source ML libraries that provide
hands-on ML algorithms and ready-to-run tools for construction applications (Real et al.,
2020; Sun, Burton & Huang, 2021).

The scientific world has seen a significant raise in the application of ML in engineering
structures, notably over the duration of last five years, with an evident exponential surge
in the number of articles in both journals and conferenceseach year rapid evolution of ML
algorithms and processing capacity. However, the use of ML in construction applications
is currently relatively restricted. The industry has created ML-powered tools to produce
alternative designs that fulfill the criteria of end-users as one of the real-world uses of
creative models. Many recent review publications have addressed this topic, but they only
focused on a specific area of engineering structures (e.g., systemic implementation and
quality, building system for fire; tangible property; cement mix proportions; capacity
forecasting of concrete buildings; and layout and safety checks of bridges) only but instead
structural engineering needs a complete assessment of all aspects (Fan et al., 2021;Mirrashid
& Naderpour, 2021; Salehi & Burgueño, 2018; Mishra, 2021). The aim of this systematic
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review is to summarize maximumstudies in recent years implementing the approach of
machine learning on the prediction in structural engineering but in consideration of the
limitation applied to concrete as material because this is extensively used material in the
construction industry (Pathak & Siddique, 2012).

Rationale
The rationale for conducting this systematic review on machine learning applications in
concrete is driven by the need to address the challenges and limitations of traditional
structural analysis and design approaches. The construction industry heavily relies on
concrete, which consumes significant amounts of virgin resources and plays a crucial role
in building infrastructure. However, the conventional methods used for structural analysis
often require time-consuming calibration procedures and struggle to handle severe actions
with highly nonlinear behavior. Therefore, there is a need to explore alternative approaches
that can reduce time and effort while improving accuracy and efficiency. Machine learning
has shown promise in various fields, and its potential application in concrete structural
engineering warrants investigation to identify its benefits and limitations.

The intended audience for this systematic review includes both structural engineering
practitioners and researchers in the field of concrete construction. Structural engineers who
are interested in exploring new approaches for structural analysis and design will find value
in the overview of machine learning methods, principles, and available resources provided
in this article. Researchers in the field of concrete and machine learning will benefit from
the summary of existing studies, knowledge mapping, and identification of influential
authors and nations. Additionally, professionals in the construction industry, including
contractors, developers, and project managers, can gain insights into the potential benefits
of machine learning in terms of cost savings, time efficiency, and labor intensity. Overall,
this review aims to bridge the gap between traditional structural engineering practices and
the emerging field of machine learning, providing a valuable resource for those seeking to
incorporate ML methods into concrete applications.

Problem statement and research question
This is the most recent and state-of-the-art review on the application of machine learning
techniques to predict the properties of different types of concrete. The goal is to conduct
a literature review to summarize all the work done on the prediction of all the mechanical
properties of concrete. This literature review will help future researchers to opt for the best
algorithm for their concrete and later compare them with the work already done in this
area.

METHODOLOGY FOR CONDUCTING SYSTEMATIC REVIEW
Recent decades have witnessed the production of civic studies in huge numbers. As a result
of this heterogeneity, the research provided might affect the investigation in a variety of
ways, which complicates evidence and makes it more difficult to draw conclusions (Bello et
al., 2015). Systematic review and meta-analysis (SR/MAs) is the evidence-based pyramid’s
highest level of proof. To keep doctors and nurses up to date on the latest evidence-based

Hassan et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1853 5/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1853


Table 1 Inclusion and exclusion criteria for the recruitment of studies are discussed in detail.

Inclusive criteria Exclusive criteria

• Concrete was used as the primary material in the study.
• Studies that use any machine learning
algorithm to predict the properties.
• Studies that are published are either original articles
or review articles in any conference proceeding or journal.

• The material used in some
of the studies was not concrete.
• Studies that use any other method other
than machine learning for the prediction.
• Studies that are not published are either original articles
or review articles in any conference proceeding or journal.

medicine, it is possible to use an organized, well-managed SR/MA. As a result of our
research, we discovered that the most important processes in a systematic review remain
framing, discovering relevant studies via requirements construction and article search,
assessing the quality of the studies utilized, summarizing data, and interpreting conclusions.
The majority of issues may be solved by a researcher without any prior knowledge of the
subject matter (Tawfik et al., 2019). For this study, we followed the Preferred Reporting
Items for Systematic Reviews & Meta-Analysts (PRISMA) criteria (Liberati et al., 2009).

Search engine and keywords
First, a set of keywords has been formulated which is given below to search the PubMed
database for the relevant studies, then after removing duplicates and the inclusion and
exclusion criteria discussed in Table 1 were applied to the rest of the studies which then
resulted in narrowing the studies from 116 to 42 (Fig. 1). Then for the deeper search and
in order to get the most possible and accurate results, the following keywords were also
divided into different sets.
• (concrete technology) AND (mechanical OR durability OR compressive strength OR

flexural strength OR modulus of elasticity OR tensile strength) AND (‘‘computer vision’’
OR ‘‘neural network’’ OR ‘‘artificial intelligence’’ OR ‘‘pattern recognition’’ OR ‘‘machine
learning’’).

Eligibility criteria
Table 1 outlines inclusion and exclusion criteria for a study, likely related to the prediction
of concrete properties using machine learning algorithms. These criteria are used to define
the scope of the study and to determine which studies should be included in the analysis
and which should be excluded. The inclusive criteria define the characteristics that studies
must have to be considered for analysis (focus on concrete, use of machine learning, and
publication in conferences or journals). The exclusive criteria define the characteristics that
would lead to the exclusion of studies from the analysis (focus on non-concrete materials,
use of methods other than machine learning, and lack of appropriate publication types).
These criteria help ensure that the study’s scope remains relevant and focused on the
specific research objectives.
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Figure 1 PRISMA-based flowchart showing the studies recruitment process.
Full-size DOI: 10.7717/peerjcs.1853/fig-1

Flowchart

RESULTS
It was aimed to ensure a rigorous and focused selection process to identify the most
relevant studies for our analysis. Starting with an initial pool of 116 articles, the authors
employed a systematic approach to narrow down the selection to the final set of 42 articles
that were included in our study. In addition to the criteria listed in the table, which
encompassed aspects such as the use of concrete as the primary material, the application
of machine learning algorithms, and publication in recognized conferences or journals, we
also considered several other specific conditions to refine the selection.

Firstly, the authors assessed the alignment of the studies with our research objectives.
Carefully examined the research questions, objectives, and methodologies presented in
each article to ensure that they were directly relevant to our investigation of predicting
concrete properties using machine learning techniques. Secondly, the authors scrutinized
the quality and reliability of the machine learning methods employed in the studies. We
favored articles that demonstrated a clear understanding of machine learning principles,
appropriate use of algorithms, and thorough validation of their predictive models. Lastly,
the authors considered the diversity of the approaches and datasets used across the articles.
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It was aimed to capture a comprehensive spectrum of machine learning techniques and
concrete property predictions, ensuring a well-rounded representation of the field. The final
selection of 42 articles emerged as a robust and comprehensive collection that provided a
strong foundation for our analysis. This stringent selection process bolstered the reliability
and validity of our findings and conclusions.

Table 2 provides a list of research studies on the application of machine learning
algorithms in predicting the properties of different types of concrete. The table includes
the authors, year of publication, type of concrete, property predicted, number of
input parameters, machine learning algorithms used, and reported outcomes. Some
of the machine learning algorithms used in these studies include boosted decision tree
regression, support vector machine, artificial neural network, genetic algorithm-optimized
backpropagation neural network, multi-expression programming, linear regression,
and extreme gradient boosting. The properties predicted include compressive strength,
split tensile strength, modulus of elasticity, and static modulus.The reported outcomes
include correlation coefficients, root mean square error, mean absolute error, accuracy,
coefficient of determination, mean absolute percentage error, and mean squared error.
The studies vary in the number of input parameters, ranging from 1 to 10. Some studies
used conventional artificial neural networks, adaptive neuro-fuzzy inference, and tabular
generative adversarial networks to predict the properties of concrete.

DISCUSSION AND LIMITATIONS
In Fig. 2, we can see that 55% of the authors prefer applying supervised machine learning
methods while 45% of the authors opted deep learning neural networks. But it is difficult to
say which one is better although the highest accuracy achieved was through artificial neural
network (Arciszewski, Mustafa & Ziarko, 1987). Three decades ago, the initial application
of machine learning techniques was to try out several existing approaches to simple tasks.
After then, more complicated issues began to be considered. Monitoring structural health,
evaluating concrete qualities, and formulating new mixes are some of the most prevalent
uses (Stone, Blockley & Pilsworth, 1989; Reich, 1997). In this part, we will take a look at how
machine learning (Fig. 3) approaches have been implemented in these two scenarios.

Structural health monitoring
Civil constructions are subject to structural degradation as a result of their usage and
environment. For the assurance of assure public safety and the in-service construction
dependability, the Structural Health Monitoring (SHM) system is essential for early
detection of structural problems. Dynamic response assessments separated at periodic
intervals are used to monitor a component over time, damage-sensitive characteristics are
recovered, and then the derived features are statistically examined to determine the present
health condition of the system (Khoa et al., 2014). Long-span bridges, massive dams, and
towering buildings are among the structures where the SHM system has been widely
deployed, allowing for a seamless transition from time-based to situation management.
Model-driven or data-driven techniques have both been used in recent studies in this
area of interest. As a result of this method, it is possible to detect structural deterioration
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Table 2 Summarized details of the studies recruited after conducting PRISMA-based systematic review.

Reference Author Year Material Properties Input pa-
rameter

Machine learn-
ing algorithm

Reported out-
comes

Latif (2021) Latif et al. 2021 Environmentally
friendly
concrete

Compressive
strength

8 -Boosted deci-
sion tree regres-
sion (BDTR)
-Support vector
machine (SVM)

R = 0.86
RMSE= 6.19
MAE= 4.91
RSR= 0.37

Iqbal et al.
(2021)

Iqbal et al. 2021 Concrete waste
foundry sand
(CWFS).

-Split tensile
strength (ST)
-Modulus
of elasticity
(E)

4 Multi-
Expression
Programming
(MEP)

ST:
R = 0.93
RMSE= 0.36
MAE= 0.28
RSE= 0.21
Accuracy
= 0.051E
R = 0.96
RMSE= 2.13
MAE= 1.70
RSE= 0.17
Accuracy=
0.032

Du et al. (2021) Du et al. 2021 High-
performance
self-compacting
concrete

-Compressive
strength

? Genetic
algorithm
(GA)-optimized
backpropa-
gation neural
network
(BPNN) model

BPNN:
Correlation
coefficient
= 0.967
RMSE= 3.703
GA-BPNN:
Correlation
coefficient
= 0.979
RMSE= 2.972

Safiuddin et al.
(2016)

Saifuddin et
al.

2016 Journal Concrete ? Artificial neu-
ral networks
(ANN)

Coefficient of
determination
(R2)= 0.9486

Hadzima-
Nyarko et al.
(2019)

Hadzima-
Nyarko et al.

2019 Waste Rubber
Concrete

-Compressive
strength

6 Artificial neu-
ral networks
(ANN)

highest R value
of 0.96 and
0.98 for the
train and
test data,
respectively, an
achieved the
lowest RMSE
and MAPE
values (4.8 and
20.2 for the
train data,
respectively, and
3.78 and 21.6
for the test data

(continued on next page)
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Table 2 (continued)

Reference Author Year Material Properties Input pa-
rameter

Machine learn-
ing algorithm

Reported out-
comes

Van Dao et al.
(2019)

Dao et al. 2019 Geopolymer
Concrete

-Compressive
strength

4 -Adaptive neuro
fuzzy infer-
ence (ANFIS)
-Artificial neu-
ral network
(ANN)

-ANFIS (MAE
= 1.655 MPa,
RMSE= 2.265
MPa, and
R2= 0.879)
-ANN (MAE
= 1.989 MPa,
RMSE= 2.423
MPa, and R2=
0.851)

Ziolkowski &
Niedostatkiewicz
(2019)

Ziolkowski et
al.

2019 Concrete -Compressive
strength

? -Artificial neu-
ral network
(ANN)

?

Yoon et al.
(2019)

Yoon et al. 2019 Lightweight Ag-
gregate Con-
crete

-Compressive
strength
-Elastic
modulus

10 -Artificial neu-
ral network
(ANN)

CS:
MAE%
= 14.5%
Correlation
coefficient
= 0.930
E:
MAE%= 8.5%
Correlation
coefficient= =
0.977

Abambres &
Lantsoght (2019)

Abambres et
al.

2019 Concrete -Compressive
strength

1 -Artificial neu-
ral network
(ANN)

AVG= average
= 1.00
STD =
standard
deviation= 0.02
COV= co-
efficient of
variation =
1.69%

Van Dao et al.
(2020)

Dao et al. 2020 Foamed Con-
crete

-Compressive
strength

3 -Conventional
Artificial Neu-
ral Network (C-
ANN)

R2
= 0.972

RMSE= 0.140
MAE= 0.114

Park et al.
(2020)

Park et al. 2020 Concrete -Static modulus
–Compressive
strength

6 -SVM
-Ensemble
-ANN
-Linear
regression

SVM:
MSE= 12.75
MAPE= 13.71
Ensemble:
MSE= 11.54
MAPE= 14.31
ANN:
MSE= 29.50
MAPE= 15.47
LR:
MSE= 44.77
MAPE= 29.59

(continued on next page)
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Table 2 (continued)

Reference Author Year Material Properties Input pa-
rameter

Machine learn-
ing algorithm

Reported out-
comes

Marani, Jamali
& Nehdi (2020)

Marani et al. 2020 Ultra-high-
performance
concrete
(UHPC)

–Compressive
Strength

8 -Tabular Gen-
erative Ad-
versarial Net-
works (TGAN)
-Tree-Based En-
sembles

TGAN:
MAE= 5.46
RMSE= 8.47
R2
= 0.95

Ensemble:
MAE= 6.72
RMSE= 8.41
R2
= 0.95

Wan, Xu & Šav-
ija (2021)

Wan et al. 2021 Concrete -Compressive
Strength

-8 original
features
-6
Principal
Component
Analysis
(PCA)
Features
-6
Manual
features.

-Linear re-
gression (LR)
-Support Vec-
tor Regres-
sion (SVR)
-Extreme Gra-
dient Boost-
ing (XGBoost)
- Artificial Neu-
ral Network
(ANN),

LR:
MSE= 44.90
R2
= 0.84

SVR:
MSE= 25.8
R2
= 0.91

XGBoost:
MSE= 33.87
R2
= 0.87

ANN:
MSE= 26.4
R2
= 0.91

Ahmad et al.
(2021b)

Ahmad et al. 2021 Fly Ash Based
Concrete

–Compressive
Strength

8 -Decision
tree (DT)
-Ensemble
approach
-Gene
Expression
Programming
(GEP)

DT:
MAE= 3.89
MSE= 36.01
RMSE= 6.00
DT-bagging:
MAE= 3.113
MSE= 16.28
RMSE= 4.03
GEP:
MAE= 3.47
MSE= 29.91
RMSE= 5.46

Ali Khan et al.
(2021)

Khan et al. 2021 Geopolymer
Concrete

–Compressive
Strength

9 -Gene Expres-
sion Program-
ming (GEP)

RMSE= 2.64
MAE= 2.057
RSE= 0.06
R= 0.9643

Huseien et al.
(2021)

Huseien et al. 2021 Self-healing
concrete

Mechanical and
durability prop-
erties

8 Artificial Neural
Network (ANN)

MSE= 3.72
ME= 0.89
MAE= 1.11
RMSE = 1.93

Mhaya et al.
(2021)

Mhaya et al. 2021 Waste rubber
tire crumbs
(WRTCs)-based
concrete

–Compressive
Strength

6 Artificial Neural
Network (ANN)

MSE= 189.69
ME= 3.052
MAE= 8.139
RMSE= 13.773

(continued on next page)
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Table 2 (continued)

Reference Author Year Material Properties Input pa-
rameter

Machine learn-
ing algorithm

Reported out-
comes

Ahmad et al.
(2021d)

Ahmad et al. 2021 Concrete –Compressive
Strength

10 -AdaBoost
-Random
forest (RF)
-Decision tree
(DT)

AdaBoost:
R2
= 0.938

RSR= 0.248
MAPE= 12.52
RRMSE= 11.62
RF:
R2
= 0.935

RSR= 0.256
MAPE = 13.076
RRMSE
= 11.661
DT:
R2
= 0.911

RSR= 0.324
MAPE= 16.100
RRMSE=
14.753

Ahmad et al.
(2021c)

Ahmad et al. 2021 Concrete –Compressive
Strength

? -Decision
tree (DT)
-Artificial
neural network
(ANN)
-Bagging
-Gradient
boosting (GB)

DT:
MAE= 7.54
MSE= 112.3
RMSE= 10.79
Bagging:
MAE= 5.65
MSE= 61.08
RMSE= 7.81
GB:
MAE= 6.93
MSE= 85.1
RMSE= 9.24
DT:
MAE= 9.15
MSE= 121.66
RMSE= 11.03

Kovačević et al.
(2021)

Kovačević et
sl.

2021 Self-
Compacting
Rubberized
Concrete

–Compressive
Strength

11 -Multilayered
perceptron ar-
tificial neu-
ral network
(MLP-ANN)
-Ensembles of
MLPANNs,

MLPANN:
RMSE= 7.44
MAE= 5.54
R = 0.8481
Ensemble
MLPANN:
RMSE= 3.68
MAE= 2.80
R= 0.9615

Song et al.
(2021)

Song et al. 2021 Ceramic
Waste-Based
Concrete

–Compressive
Strength

5 -Decision
tree (DT)
-Artificial
neural network
(ANN)

DT:
MAE= 6.94
MSE= 20.76
RMSE= 4.55
ANN:
MAE= 6.12
MSE= 17.98
RMSE= 4.29

(continued on next page)
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Table 2 (continued)

Reference Author Year Material Properties Input pa-
rameter

Machine learn-
ing algorithm

Reported out-
comes

Farooq et al.
(2021)

Farooq et al. 2021 Self-
Compacting
Concrete
Modified with
Fly Ash

–Compressive
Strength

7 -Artificial
neural network
(ANN)
-Support vector
machine (SVM)
-Gene
Expression
Programming
(GEP)

ANN:
R = 0.95
RMSE= 4.56
MAE= 3.81
SVM:
R = 0.93
RMSE= 4.49
MAE= 3.29
GEP:
R = 0.93
RMSE= 4.8
MAE= 3.92

Ahmad et al.
(2021e)

Ahmad et al. 2021 Concrete
Containing
Supplementary
Cementitious
Materials

–Compressive
Strength

8 -Bagging
-AdaBoost
-Gene
Expression
Programming
(GEP)
-decision
tree (DT)

Bagging:
MAE= 3.257
MSE= 20.566
RMSE= 4.53
AdaBoost:
MAE= 5.12
MSE= 47.37
RMSE= 6.88
GEP:
MAE= 5.24
MSE= 50.69
RMSE= 7.12
DT:
MAE= 5.88
MSE= 57.30
RMSE= 7.57

Tosee et al.
(2021)

Tosee et al. 2021 Environmentally
Friendly
Concrete
Modified with
Eggshell

–Compressive
Strength

4 Hybrid ANN-
SFL (artificial
neural network-
Shuffled Frog
Leaping)

MSE= 0.42
AAE= 0.040
VAF= 94

Xu et al. (2021) Xu et al. 2921 -Concrete –Compressive
Strength

7 -Support
vector
regression
(SVR)
-AdaBoost
-random forest

SVR:
MAE= 3.329
RMSE= 5.325
AdaBoost:
MAE= 2.94
RMSE= 3.90
RT:
MAE= 2.223
RMSE= 3.183

Isleem et al.
(2021)

Isleem et al. 2021 GFRP-
Reinforced
Concrete

-Axial load-axial
strain
-Confinement
of columns
-Ductility
-Hardening
behavior

6 –Artificial
neural network
(ANN)
- Finite Element
(FEM)

?

(continued on next page)
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Table 2 (continued)

Reference Author Year Material Properties Input pa-
rameter

Machine learn-
ing algorithm

Reported out-
comes

Nafees et al.
(2021)

Nafees et al. 2021 Silica
Fume-Based
Green Concrete

Split Tensile
Strength;
compressive
strength

5 - Multilayer
perceptron
neural networks
(MLPNN)
-Adaptive
neural fuzzy
detection
systems
(ANFIS)
-Genetic
expression
programming
(GEP)

MLPNN:
0.85; 0.90
ANFIS:
0.91; 0.92
GEP:
0.97; 0.93

Khokhar et al.
(2021)

Khokhar et
al.

2021 Fiber Rein-
forced Concrete

-Compressive
Strength
-Tensile
Strength
-Strain-
Hardening
-Tensile Strain
Capacity

15 - Artificial
Neural
Networks
(ANN)
-Support Vector
Machine (SVM)
-XGBoost

ANN:
Accuracy
= 96.3%
SVM:
Accuracy
= 94%
XGBoost:
Accuracy=
98.4%

Imran et al.
(2022)

Imran 2022 Eco-Friendly
Concrete

–Compressive
Strength

6 -Multivariate
polynomial re-
gression (MPR)
-Linear re-
gression (LR)
-Support vector
machine (SVM)

MPR:
R2
= 0.818

RMSE= 4.6
LR:
R2
= 0.676

RMSE= 6.053
SVM:
R2
= 0.495

RMSE= 7.38
Almohammed et
al. (2022)

Almohammed
et al.

2022 Bacterial con-
crete

–Compressive
Strength

8 -Multiple Linear
Regression
(MLR)
-Random
Forest (RF)
-Support vector
Regression
(SVR)
-M5P Model
-Random Tree

MLR:
R2
= 0.88

RMSE= 4.87
MAE= 3.96
RF:
R2
= 0.97

RMSE= 2.29
MAE= 1.81
SVR:
R2
= 0.98

RMSE= 1.94
MAE= 1.52
RT:
R2
= 0.96

RMSE= 2.82
MAE= 2.49
M5P:
R2
= 0.94

RMSE= 4.88
MAE= 2.88

(continued on next page)
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Table 2 (continued)

Reference Author Year Material Properties Input pa-
rameter

Machine learn-
ing algorithm

Reported out-
comes

Shang et al.
(2022)

Shang et al. 2022 Recycled coarse
aggregate based
concrete

Splitting ten-
sile strength;
Compressive
Strength

9 -Decision
tree (DT)
-AdaBoost

DT:
MAE=
3.58; 0.31
MSE=
11.02; 0.29
RMSE=
3.32; 0.54
AdaBoost:
MAE=
2.33; 0.30
MSE= 7.8; 0.20
RMSE= 2.79;
0.45

Candelaria, Kee
& Lee (2022)

Candelaria et
al.

2022 Concrete –Compressive
Strength

8 -Artificial
neural
network (ANN)
-Support vector
machine (SVM)
-Gaussian
process
regression
(GPR)
- Multi-Variate
Regression

ANN:
R2
= 0.97

RMSE= 9.4
MAE= 9.414
SVM:
R2
= 0.95

RMSE= 18.04
MAE= 12.33
GPR:
R2
= 0.94

RMSE= 18.14
MAE= 13.072
MVR:
R2
= 0.93

RMSE= 9.5
MAE= 17.215

Ahmed et al.
(2022)

Ahmed et al. 2022 Geopolymer
concrete

-Compressive
Strength

14 -Linear re-
gression (LR)
-Multinominal
logistic regres-
sion (MLR)
-Nonlinear re-
gression (NLR)

R2
= 0.853

RMSE= 6.82

Najm et al.
(2022)

Najm et al. 2022 Waste ceramic
concrete
(WOC)

Tensile strength;
compressive
strength

11 -Artificial neu-
ral networks
(ANN)

R2
= 0.9988;

0.9687
MSE=
0.22; 1.8899
RMSE=
0.4699; 1.3744
MAE= 0.469;
1.2279

(continued on next page)
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Table 2 (continued)

Reference Author Year Material Properties Input pa-
rameter

Machine learn-
ing algorithm

Reported out-
comes

Hung & Adeli
(1991)

Hung &
Adeli

1991 Recycled aggre-
gate concrete
(RAC)

Compressive
strength;
Flexural
strength

12 -Gradient
boosting
-Random forest
(RF)

GB:
MAE=
4.77; 0.642
RMSE=
6.9; 1.199
RF:
MAE=
4.19; 0.560
RMSE= 5.6;
0.85

Ray et al. (2022) Ray et al. 2022 Concrete made
(stone dust and
nylon fiber)

Strength 8 -Artificial neu-
ral networks
(ANN)

R = 0.95
R2
= 0.90

MSE= 0.09
MAE= 0.20
AE= 0.04

Ilyas et al.
(2021)

Ilyas et al. 2021 CFRP Confined
Concrete

-Strength 8 -Multi Expres-
sion Program-
ming (MEP)

RMSE= 7.71
RSE= 0.009
MAE= 6.33
RRMSE= 0.010
R= 0.9953

Gunasekara et
al. (2021)

Gunasekara
et al.

2021 High Calcium
Fly Ash
Geopolymer
Concrete

-Compressive
strength

5 -Artificial neu-
ral networks
(ANN)

?

Ahmad et al.
(2021a)

Ahmad et al. 2021 Geopolymer
concrete (GPC)

-Compressive
strength

9 -Artificial
neural networks
(ANN)
-Boosting
algorithm
-Ada boost

ANN:
MAE= 3.86
MSE= 20.16
RMSE= 4.49
Boosting
algorithm:
MAE= 1.69
MSE= 4.16
RMSE= 2.04
AdaBoost:
MAE= 2.16
MSE= 6.84
RMSE= 2.62

Amin et al.
(2022)

Amin et al. 2022 Fiber-reinforced
polymer (FRP)
reinforced Con-
crete

-Flexural
Strength

9 -Decision
tree (DT)
-Gradient
boosting tree
(GBT)

DT:
R = 0.92
MAE= 10.32
RMSE= 19.92
GBT:
R = 0.94
MAE = 11.25
RMSE= 16.36

(continued on next page)
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Table 2 (continued)

Reference Author Year Material Properties Input pa-
rameter

Machine learn-
ing algorithm

Reported out-
comes

Khalaf, Kopecskó
& Merta (2022)

Khalaf at al. 2022 Fly Ash
Geopolymer
Concrete

-Compressive
strength

11 Optimized Neu-
ral Network
Model

MSE= 166.0
R%= 97.5

Nafees et al.
(2022)

Nafees et al. 2022 Plastic Concrete -Compressive
strength

9 Ensemble
boosting

R= 0.814

Notes.
? not reported.

Figure 2 Pie chart of studies showing number of ML and NN techniques used in the selected studies.
Full-size DOI: 10.7717/peerjcs.1853/fig-2

by comparing measured data to data generated by a computer model of the structure
(typically based on finite element analysis (FEA)). Due to the repetitive examination of a
simulation software model, this technique is computationally intensive (Jin, Cho & Jung,
2015; Salazar et al., 2015;Cha & Buyukozturk, 2014; Ranković et al., 2012). It is also possible
that in actuality, a measurement simulation may not be available at all times or accurately
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Figure 3 Classification of machine learning algorithms on the basis of their learning types (Aldahiri,
Alrashed & Hussain, 2021).

Full-size DOI: 10.7717/peerjcs.1853/fig-3

represent the real structure’s performances in every case. Because of this, FEA findings
are typically insufficient to accurately measure structural health. A strategy based on data
rather than models generates a model via the use of observed data and then compares the
model’s responses to those measured in order to discover damage. This method employs
machine learning techniques, such as pattern recognition. It is becoming more possible
to install large and dense sensor networks for SHM because to recent advancements
in sensing methods, and wireless communication. As a result, continuous and real-time
damage identification is mademuch easier with the data-drivenmethod (Aldahiri, Alrashed
& Hussain, 2021). To identify structural damage, machine learning algorithms are often
used in conjunction with supervised learning, which relies on examples of both healthy
and damaged data. Structural damage detection may benefit from the resilience and
efficiency of single machine learning method such as support vector machine, neural
networks, and support vector regressions, as well as the genetic algorithms (GA). For
various challenges in the SHM sector, hybrid approaches such as the multi-objective
genetic algorithm (MOGA), neuro-fuzzy (NF), and wavelet neural network (WNN) have
also been presented. All investigations proved the accuracy of machine learning-based
models and their better performance over model-driven methods (Ranković et al., 2012;
Taffese & Sistonen, 2017).

Properties of mix design concrete
It can be seen in Table 2 that so many researchers contributed to predict the mechanical
properties of the concrete mix with different substances like fly ash, foundry sand, or
rubber waste using ML algorithms. Concrete buildings are designed with mechanical
qualities including compressive strength, elastic modulus, splitting tensile strength, and
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shear strength in mind. Predicting the compressive strength of concrete by linear or non-
linear regression equations saves both time and money (Chou et al., 2014). Elastic modulus
measurement is difficult and time-consuming. Stress–strain relations of cementitious
materials under compression are often used to get this information (Atici, 2011; Behnood,
Verian & Modiri Gharehveran, 2015). The compressive strength of concrete is typically used
to estimate the splitting tensile strength of concrete because of its complexity, expense,
and time-consuming nature. Based on experimental data, regression models for shear
strength of RC components are also applied. In the past, the mechanical characteristics
of concrete were evaluated using a set equation that was based on a small amount of
experimental data and variables. They are only useful for describing the results of their
own experiments used to calibrate them. The model coefficients and the equation’s
form must be updated if the original data is changed. To determine fresh concrete’s
mechanical qualities, standard models may not be appropriate since the link between
components and concrete characteristics is particularly nonlinear for certain concrete
kinds. A widely agreed-upon mathematical model is also difficult to come by. A concrete
structure’s long-termperformancemay be evaluated by looking at its dry shrinkage, another
important feature of concrete. Several empirical equations for shrinkage estimation have
been developed in various codes such as ACI and CEB throughout the last five decades.
Dry shrinkage in concrete is affected by a variety of parameters, including its composition,
the size of the specimen, and the quality of its ingredients. Using these calculations may
be problematic in certain situations. Components and their relative proportions are
determined in order to manufacture concrete that fulfills required strength, workability
and durability at a low cost while yet delivering a high quality product. As an extension of
previous practice, concrete mix percentage algorithms are typically available in the form
of empirical formulae or tables. As a consequence of this uncertainty, typical methods for
determining concretemix proportions are a trial-and-error exercise, which results in higher
expenses as well as more time (Nazari & Sanjayan, 2015). Modeling concrete characteristics
and mix design accurately and reliably may save time and money by providing engineers
with the information they need. To circumvent the limitations of standard empirical
regression models, machine learning methods have been used to represent these features.
Construction of accurate and effective models for predicting the characteristics and mix
design of several kinds of concrete, including fiber-reinforced polymer (FRP) concrete have
been done by using machine learning techniques. Many machine learning methods are
used in these investigations, including neural networks, genetic programming, fuzzy logic,
support vector machines, and fuzzy inference systems (FIS). Machine learning approaches
have been shown to be a strong tool for evaluating tangible qualities, regardless of the
complexity, incoherence, or incompleteness of the data used. They are also a superior
alternative for deciding on the right quantities of materials in concrete mixtures to achieve
the appropriate strength and rheology (Chou et al., 2014; Atici, 2011; Behnood, Verian
& Modiri Gharehveran, 2015; Dantas, Batista Leite & de Jesus Nagahama, 2013; Nazari &
Sanjayan, 2015; Mermerdaş & Arbili, 2015; Tang et al., 2015). Reducing trial mixes results
in an ecological and cost-effective mix design method.
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Artificial neural network
Parallel processing occurs in the brain’s neural network, which is a web of linked neurons
that sends signals back and forth to process information. ANNs are a cutting-edge analytical
technique that mimics the way the human brain thinks. Similar to other DoE approaches
that take in numerous factors to forecast the response variable, ANNs may be employed
mathematically to analyze multiple inputs and generate an output (Sharma, Rai & Dev,
2012). The input, hidden layer, and output layer are all parts of the ANN’s mechanism.
It is here where data is entered. The output layer processes the data and provides the
result via a system of connection weights. The inputs are fed into the process, and the
process concludes with the output. A technique known as backward propagation is used
to reduce the overall weight of the network’s connections. The discrepancy between the
anticipated value and the actual value is believed to alter and change the mechanism of the
hidden layer. It is important to understand the benefits and downsides of ANNs (Behnood
& Golafshani, 2018). Due to its processing, errors may be tolerated, and complicated
non-linear relationships between variables can be solved with ease using data analysis.
ANNs have a distinct edge over pre-programmed computational models since they are able
to learn from their own mistakes. It is also possible to overfit the data supplied by ANNs
because of the intricacy of their solution (Sharma, Rai & Dev, 2012; Mohammed, Khed &
Nuruddin, 2018).

Concrete compressive strength may be predicted using ANNs, which have a greater
number of variables than previous DoE approaches. Analyzing many concrete experiments
that all employ the same looking to upgrade is a unique use of ANNs thanks to their
enhanced processing capability. Gupta (2013) who collected 32 data points from ten
different publications on nano-silica-containing concrete, came up with an exact model for
28-day concrete compressive strength without having to do any experiments. Additionally,
Asteris & Mokos (2020) utilized non-destructive test results from a thesis to train ANNs on
209 data sets to estimate concrete strength.Noorzaei, Hakim & Jaafar (2007) and Santosa &
Purbo Santosa (2017) did a similar study utilizing the elements of concrete as variables and
reached the same outcome. In terms of precision, regression analysis, particularly multiple
non-linear regression, falls short in comparison to ANNs, as shown by the R2 value. When
it comes to modeling self-compacting concrete, research found that the results of MLR
outperformed those generated by ANNs. ANNs function best when given more data, and
the low quantity of data in the study (i.e., 15) may account for this. The R2 score alone
should not be utilized to choose the optimal model. The root mean squared error (RMSE)
of the ANNs model was much lower than the other models in another experiment on
recycled aggregate concrete.

Comparison and motivation of literature review
The PRISMA based methodology adaption for this systematic literature review has been
taken from Zahid et al. (2022). This literature review is unique because it systematically
summarizes the current state of research on the application of machine learning in the
concrete industry, with a focus on structural analysis and design approaches. The review
provides a comprehensive overview of the potential of ML to replace empirical models
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and reduce the time and effort required in the industry. It also provides an overview
of ML methods, principles, access codes, libraries, and datasets that can be used by
practitioners and researchers to develop their own ML models. Additionally, this review
identifies the most active locations and influential authors in researching ML applications
for concrete, which could facilitate future collaborations and sharing of novel ideas and
approaches among academics. The statistical and graphical representation of contributing
authors and nations can be useful for researchers and practitioners in identifying potential
collaborators and networking opportunities. Overall, this review provides a valuable
resource for researchers and practitioners in the concrete industry who are interested in
exploring the potential of ML to improve their work. The systematic approach used in this
review ensures that the information presented is comprehensive and unbiased, making it
a valuable resource for anyone looking to learn more about the application of ML in the
concrete industry.

CONCLUSION
It can be concluded that the use of ML is being explored as a potential method to
reduce the time and effort required for structural analysis and design approaches in
the concrete industry. The abstract summarizes a systematic review of 42 studies that
were conducted using a set of keywords and PRISMA guidelines. The review highlights
the potential of ML to serve as a successor to the routinely used empirical models in
the structural engineering community. The article also provides an overview of ML
methods, fundamental principles, access codes, ML libraries, and gathered datasets that
can be used by practitioners and researchers to construct their own ML models for useful
applications. The construction industry can benefit from the use of ML in terms of cost
savings, time savings, and labor intensity. The systematic review also identifies the most
active locations and influential authors in researching ML applications for concrete, which
could facilitate future collaborations and sharing of novel ideas and approaches among
academics. However, the limitation of this review is that it only includes studies that are
included in the PubMed database.

Future trend
The great degree of accuracy in actual and predicted outcomes demonstrates the significance
of these techniques in civil engineering. It is becoming increasingly common to use
supervised ML techniques since they provide accurate outputs and reduce the amount of
physical labor and overall project expense. In addition, it is vital to conduct laboratory
experiments to compare the results of machine learning algorithms. In order to compare
the results of different machine learning algorithms, it is also possible to alter or add
input factors, such as the number of data points and the kind of material used, size of
specimens, ambient conditions, curing settings, and data loading rate. For the sake of
comparison, a variety of machine learning approaches may be used, including ANNs,
SVMs, and boosting (Shang et al., 2022). Databases were used to calculate the compressive
and split tensile strengths. As an alternative, additional input parameters and increasing
the database may produce the required results. Silica Fume Concrete (SFC) is compressive
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and split tensile strength models have been created in this work. According to statistical
characteristics, these models were able to accurately and reliably estimate SFC intensities.
However, by using the same modeling parameters, MLPNN, ANFIS, and GEP models may
be used to forecast concrete qualities including numerous different concrete ingredients.
Based on input parameters, these models will be changed and the outcomes anticipated
are largely dependent on the database used. The whale optimization algorithm, ant
colony optimization, and particle swarm optimization are just a few examples of heuristic
techniques that may be utilized in combination with machine learning to get optimum
results. They may then be compared to this study’s methods. The upgraded and improved
version of GEP is known as multi-expression programming (MEP). GEP’s limitations
may be overcome via MEP analysis. To put it simply, MEP is given more attention when
the complexity of the target expression is uncertain. There are exceptions, erroneous
expressions, and even division by zero that can be handled by MEP. There are no infertile
learners in the next generation since the gene is responsible for causing exceptions and
then changing to an arbitrary terminal symbol. While MLPNN and ANFIS were used for
the prediction of results, single learners were utilized in this study to anticipate results.
Many different sub-models are built, and statistical parameters are used to pick the best
one. This is known as an ensemble ML approach (Imran et al., 2022).
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