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ABSTRACT
Time series, including noise, non-linearity, and non-stationary properties, are
frequently used in prediction problems. Due to these inherent characteristics of time
series data, forecasting based on this data type is a highly challenging problem. In
many studies within the literature, high-frequency components are commonly
excluded from time series data. However, these high-frequency components can
contain valuable information, and their removal may adversely impact the prediction
performance of models. In this study, a novel method called Two-Level Entropy
Ratio-Based Complete Ensemble Empirical Mode Decomposition with Adaptive
Noise (2LE-CEEMDAN) is proposed for the first time to effectively denoise time
series data. Financial time series with high noise levels are utilized to validate the
effectiveness of the proposed method. The 2LE-CEEMDAN-LSTM-SVR model is
introduced to predict the next day’s closing value of stock market indices within the
scope of financial time series. This model comprises two main components:
denoising and forecasting. In the denoising section, the proposed 2LE-CEEMDAN
method eliminates noise in financial time series, resulting in denoised intrinsic mode
functions (IMFs). In the forecasting part, the next-day value of the indices is
estimated by training on the denoised IMFs obtained. Two different artificial
intelligence methods, Long Short-Term Memory (LSTM) and Support Vector
Regression (SVR), are utilized during the training process. The IMF, characterized by
more linear characteristics than the denoised IMFs, is trained using the SVR, while
the others are trained using the LSTMmethod. The final prediction result of the 2LE-
CEEMDAN-LSTM-SVR model is obtained by integrating the prediction results of
each IMF. Experimental results demonstrate that the proposed 2LE-CEEMDAN
denoising method positively influences the model’s prediction performance, and the
2LE-CEEMDAN-LSTM-SVR model outperforms other prediction models in the
existing literature.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Data Science, Neural
Networks
Keywords Time series, Stock market prediction, Denoising, Two-level CEEMDAN, Entropy

INTRODUCTION
The data, consisting of observation values sorted by time, is a crucial source of information
and strategy in various fields. Predicting new trends, behaviors, or potentially hazardous
events based on past observations is essential. Forecasts based on time series data are
widely applied in many fields, such as transportation, environment, and finance, and have
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recently been of great interest from researchers (Liu et al., 2019; Samal, Babu & Das, 2021).
For instance, accurate weather forecasting prevents loss of life and property due to natural
disasters such as floods and landslides. Likewise, precise forecasting of stock trends or
prices allows investors to make informed decisions in their trading activities, thereby
facilitating profitable outcomes.

Time series are frequently used in the literature to address prediction problems.
However, the inherent high noise and nonlinear, non-stationary properties of time series
pose challenges to accurate prediction. Prediction models, sensitive to noise, encounter
issues such as overfitting, underfitting, and suboptimal performance when applied to noisy
data (Dastgerdi & Mercorelli, 2022; Song, Baek & Kim, 2021). To address this challenge,
adopting an appropriate approach for noise elimination in the data is imperative. A review
of literature focusing on noise reduction in time series reveals studies that cover diverse
domains, including time series related to air-pollution (Samal, Babu & Das, 2021), Total
Column of Ozone (TCO) (Mbatha & Bencherif, 2020), and electricity load/price (Yaslan &
Bican, 2017; Liu et al., 2019). Notably, a significant portion of these studies concentrates on
financial time series (Qiu, Wang & Zhou, 2020; Tang et al., 2021; Liu et al., 2022a; Rezaei,
Faaljou & Mansourfar, 2021; Cao, Li & Li, 2019; Lv et al., 2022; Yong’an, Yan & Aasma,
2020; Bao, Yue & Rao, 2017; Liu et al., 2022b; Zhang et al., 2023). Two primary reasons
underlie this situation: firstly, investors seek to enhance profit expectations through stock
forecasting. The second reason is that financial time series exhibit higher noise than other
time series. This noise is attributed to the influence of various factors, including company
policies, political events, investor expectations, the general economic situation, and the
non-stationary, non-linear characteristics inherent in financial data. For these reasons, this
subject captures the attention of scientists in the field.

Related work
Upon reviewing studies focused on noise elimination in financial time series, it becomes
evident that denoising approaches relying on auto-encoder, Fourier transform, wavelet
transform, and signal decomposition methods are commonly favored. These approaches
are chosen to enhance the prediction performance of models susceptible to noise.

The autoencoder-based noise reduction approaches (Zhao & Yang, 2023; Roostaee &
Abin, 2023; Rekha & Sabu, 2022) are complex and require intensive computation.
Additionally, they lead to the loss of some significant features during the data compression
process. This situation negatively impacts the performance of the developed model. Due to
all these reasons, this method is not widely preferred for denoising in financial time series.

In the literature, a Fourier transform-based denoising approach has been employed to
eliminate noisy components in stock market index data, particularly those that adversely
impact the model’s performance in predicting closing prices for the S&P500, KOSPI, and
SSE indices (Song, Baek & Kim, 2021). In addition, the Fourier transform has also been
used to eliminate the noise in the signals collected from the sensors for the damage
detection module (Yang et al., 2021). In these studies, various deep-learning approaches
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were employed to develop models on denoised data. The experimental results indicated
that hybrid models outperformed basic models by combining denoising techniques with
deep learning methods. The Fourier transform effectively divides a time series into
frequency components and is particularly useful for identifying periodic patterns in the
data, aiding in the analysis of continuous-time signals. However, it has limitations in
describing time and frequency scale changes in time series data, making it less effective in
analyzing time-varying signals (Fourier, 1888). Given its capability to overcome the
limitations of the Fourier transform and its significant achievements in signal processing,
the wavelet transform is employed in analyzing financial time series (Qiu, Wang & Zhou,
2020).

The wavelet transform-based denoising approach has been applied to eliminate noisy
components in different stock market data, and subsequently, LSTM models were
developed on the resulting noiseless data (Dastgerdi & Mercorelli, 2022; Tang et al., 2021;
Bao, Yue & Rao, 2017). A hybrid noise reduction approach, combining the wavelet
transform with complete ensemble empirical mode decomposition with adaptive noise
(CEEMDAN) methods, was proposed to enhance further noise reduction in financial time
series data (Qi, Ren & Su, 2023). While experimental results in these studies indicate a
significant improvement in prediction stability through noise reduction using the wavelet
transform, the method has some limitations. These limitations are that the effectiveness of
Wavelet Transform in noise reduction depends on the number of decomposition layers
and the choice of the basic wavelet function. However, the method’s applicability is
restricted, and the effectiveness of noise reduction is limited due to the absence of
information about the appropriate values for parameters such as the number of
decomposition layers and the choice of the basic wavelet function for time series data (Liu
et al., 2022a). Denoising methods based on mode decomposition have gained prominence
to address these drawbacks of the wavelet transform.

In the literature, various approaches that decompose time series into different frequency
spectra, such as empirical mode decomposition (EMD) (Zhang et al., 2023; Rezaei, Faaljou
& Mansourfar, 2021; Lv et al., 2022), ensemble empirical mode decomposition (EEMD)
(Wu & Huang, 2009), variational mode decomposition (VMD) (Wang, Cheng & Dong,
2023; Cui et al., 2023), complete ensemble empirical mode decomposition (CEEMD)
(Rezaei, Faaljou & Mansourfar, 2021; Yong’an, Yan & Aasma, 2020; Liu et al., 2022b), and
CEEMDAN (Cao, Li & Li, 2019; Lv et al., 2022), are frequently preferred for denoising in
time series. Examining studies in the literature reveals that the utilization of these
approaches, combined with deep learning methods like long short-term memory (LSTM)
and convolutional neural network (CNN), can mitigate the limitations of basic/single
models (Rezaei, Faaljou & Mansourfar, 2021; Cao, Li & Li, 2019; Lv et al., 2022; Yong’an,
Yan & Aasma, 2020; Liu et al., 2022b). Notably, results obtained with hybrid models,
incorporating mode decomposition techniques and deep learning methods, demonstrate
the superior performance of CEEMDAN-based models over others (Cao, Li & Li, 2019; Lv
et al., 2022). When examining the hybrid methods based on mode decomposition applied
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in the literature to predict stock market closing values, these methods were commonly
implemented on indices such as S&P500, HSI, DAX, SSE, and DJIA. Additionally, it is
noteworthy that LSTM, a popular deep learning method, is frequently the method of
choice in these applications (Rezaei, Faaljou & Mansourfar, 2021; Cao, Li & Li, 2019;
Yong’an, Yan & Aasma, 2020). However, in some studies, auto-regressive moving average
(ARMA) (Lv et al., 2022) and feed-forward neural networks (FFNN) (Liu et al., 2022b)
models are utilized to capture linear components resulting from decomposition. In all
these studies, it is seen that the CEEMDANmethod is preferred due to its advantages. The
advantages of the CEEMDANmethod to other mode decomposition methods can be listed
as follows (Torres et al., 2011):

� Adaptive noise control: It is a technique that allows the adjustment of the amount of
noise within a signal based on the characteristics and variability of the signal. The
CEEMDAN method aims to achieve better results in noisy data by using adaptive noise
control. In each decomposition stage of the signal, CEEMDAN analyzes the level of the
noise component and adjusts the noise amount accordingly. This way, the optimal
amount of noise for denoising the signal is determined, and the noise level is adjusted
accordingly at each signal stage. As a result, the CEEMDAN method consistently
achieves superior results compared to other methods, such as EMD, EEMD, and
CEEMD, owing to its effective use of adaptive noise control.

� Improved decomposition: The CEEMDAN method prevents the occurrence of mode
mixing, which is a problem in the EMD method where different modes interfere with
each other. Mode mixing refers to similar oscillations in different modes or significantly
different amplitudes in a single mode. The CEEMDANmethod eliminates mode mixing
by utilizing adaptive noise control and performing ensemble processing, which involves
analyzing the data multiple times. By utilizing these techniques, the CEEMDANmethod
eliminates mode mixing more effectively than other methods, ensuring a more accurate
and reliable signal decomposition.

� Improved signal-to-noise ratio: It provides a better signal-to-noise ratio through adaptive
noise control.

This study introduced a two-level denoising approach named 2LE-CEEMDAN,
incorporating entropy and CEEMDAN to remove noise from time series data effectively.
This novel approach was tested on financial time series data, specifically stock market
index data. In the initial step, the denoising technique was applied to the closing prices of
stock market indices to eliminate noise from the data. Then, LSTM and SVRmethods were
applied to the denoised data to estimate the next day’s closing values of the index. This
methodology reflects a comprehensive strategy combining denoising and predictive
modeling to enhance the accuracy of forecasting financial time series.

Motivation and contributions
In recent years, there has been an increase in research efforts aimed at reducing noise in
financial time series data. It has been observed that prediction models created using
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denoising approaches proposed in these studies achieve more successful forecasting results
than basic models. Based on the mode decomposition in the literature, it is evident that
removing high-frequency components in methods developing trading strategies results in
information loss, adversely affecting the model performances. Addressing how to mitigate
this information loss is an open problem.

The primary motivation of this study is to develop a new approach that effectively
separates noisy data from financial time series without causing any loss of useful
information. Therefore, this aspect distinguishes this study from existing literature,
emphasizing a novel perspective.

The fundamental contributions of the study are provided below:

� A novel denoising method, named 2LE-CEEMDAN, has been developed based on
CEEMDAN to extract valuable information from high-frequency components
discarded as noise.

� A new methodology has been proposed to effectively identify noisy components from
the IMFs obtained through the decomposition of time series data by utilizing
approximate and sample entropy to measure irregularities in the time series data.

� To demonstrate the method’s effectiveness, a new hybrid prediction model has been
presented for predicting the closing prices of stock market indices. This hybrid model
includes the 2LE-CEEMDAN denoising approach with LSTM and SVR methods.

Organization
The rest of this study is organized as follows: In the ‘Methodology’ section, the general
framework of the proposed prediction model within the scope of the study is given, and the
approaches used in this method are detailed. The ‘Experimental Settings’ section mentions
the used dataset for the prediction model, how the hyperparameter adjustments of the
model are made, and performance evaluation metrics. The results obtained in the ‘Results
and Discussion’ section is interpreted by giving them in tables and figures. The results are
discussed in the ‘Conclusion and Future Works’ section, and future works are evaluated.

METHODOLOGY
In this section, firstly the general framework of the 2LE-CEEMDAN-LSTM-SVR
prediction model and the essential stages of the architecture are explained. Secondly, the
2LE-CEEMDAN denoising approach used in this architecture is explained. Finally, the
forecasting model details are given.

Framework
The problem under investigation in this study is the examination of the impact of noise on
a predictive model designed to forecast the price of any commodity. To demonstrate this
impact and predict the closing value of the next day’s stock market index, the study
proposes a forecasting model called 2LE-CEEMDAN-LSTM-SVR. This comprehensive
model has five stages, consisting of two level-based CEEMDAN, entropies, LSTM, and
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SVR. The framework of the model is visually represented in Fig. 1, with detailed
explanations provided below:

� Stage 1-First decomposition: The time series data is decomposed using the CEEMDAN
method at this stage. Subsequently, entropy ratios are computed using the approximate
and sample entropy values for each IMF obtained from the decomposition process.
IMFs with ratios surpassing a predefined threshold value for entropy ratios are classified
as high-frequency components, indicating noisy IMF components. Conversely, those
with ratios below the threshold are identified as noiseless IMFs.

Figure 1 The framework of the proposed forecasting model.
Full-size DOI: 10.7717/peerj-cs.1852/fig-1
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� Stage 2-Second decomposition: In this stage, which also marks the second step of the
2LE-CEEMDAN method, a different approach is taken compared to directly discarding
the IMFs identified as high-frequency in Stage 1. In contrast to directly discarding the
IMFs identified as high-frequency in Stage 1, the second decomposition process is
applied to these data. This is done because these IMFs may contain valuable
information. The procedures outlined in Stage 1 are replicated similarly to categorize the
obtained IMFs as either noisy or noiseless. IMFs determined to be noiseless are selected
to be used in the training phase.

� Stage 3-Forecasting of second decomposition: The noiseless components identified in
Stage 2 undergo separate training using LSTM and SVR methods. The final IMF
obtained from the decomposition, often referred to as the residual, is characterized by
linear properties and is therefore trained using the SVR model. Conversely, the
remaining noiseless IMFs exhibit nonlinear properties and are trained using the LSTM
model. The prediction results from each IMF are subsequently combined, providing a
comprehensive and integrated forecasting outcome that leverages the strengths of both
linear and nonlinear modeling approaches. This multi-model strategy aims to capture
and utilize the distinctive features of each component for enhanced predictive accuracy.

� Stage 4-Forecasting of first decomposition: The residue component determined in
Stage-1 is trained with the SVR method, and the remaining IMFs are trained with the
LSTM method.

� Stage 5-Ensemble unit: It is a simple ensemble unit where the average is calculated after
the prediction results from Stages 3 and 4 are summed. Thus, the final prediction result
was obtained.

2LE-CEEMDAN denoising method
To comprehend the foundation of the 2LE-CEEMDAN denoising method, it is essential to
first detail the explanations of the CEEMDAN and entropy concepts.

CEEMDAN
The EMD method, introduced by Huang et al. (1998), divides a time series into
fundamental components known as IMFs. This method can decompose complex
nonlinear and non-stationary time series data into multiple IMF components, with the last
IMF referred to as the residue. These obtained IMFs are used in data analysis or
understanding the internal structure of a time series. However, the practical
implementation of EMD often leads to the issue of mode mixing, characterized by very
similar oscillations in different modes or significant differences in amplitudes within a
single mode. To address the mode mixing problem, the EEMD was proposed as an
enhanced version by Wu & Huang (2009). EEMD defines IMF components by averaging
over multiple trials, introducing white noise to each trial to achieve less noisy IMFs than
EMD. While EEMD overcomes the mode mixing problem and provides less noisy IMFs, it
has a high computational cost and cannot eliminate white noise during signal
reconstruction. To address these limitations, Torres et al. (2011) introduced the
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CEEMDAN as an improved version of EEMD. CEEMDAN stands out among mode
decomposition methods due to its effective elimination of mode mixing, almost zero
reconstruction error, and significantly reduced computational cost. When given a non-
stationary and nonlinear signal XðtÞ, the decomposition is performed using the
CEEMDAN method, following the steps outlined in Algorithm 1.

Entropy
Entropy is a concept that quantifies the complexity or irregularity of a time series. A higher
entropy value indicates greater complexity and irregularity in the time series. In financial
time series, a high entropy value implies speculative price movements. In the literature, two
prominent entropy approaches based on information theory are approximate entropy and

Algorithm 1 CEEMDAN decomposition method.

Output: gIMFk

rkðnÞ  residues

Ejð:Þ  j-th IMF obtained by EMD decomposition

wi  White noise

xðnÞ  Time series signal

e0  Noise coefficient

I  Number of trials

IMFi
1ðnÞ ¼ xðnÞ þ e0wiðnÞgIMF1ðnÞ ¼ 0

for i ¼ 1 to I dogIMF1ðnÞ ¼ gIMF1ðnÞ þ IMFi
1ðnÞ=I  First IM

end for

r1ðnÞ ¼ xðnÞ � gIMF1ðnÞ  First residuegIMF2ðnÞ ¼ 0

for i ¼ 1 to I dogIMF2ðnÞ ¼ gIMF2ðnÞ þ E1ðr1ðnÞ þ e1E1ðwiðnÞÞÞ=I  Second IMF

end for

while rkðnÞ  until the value of residual component is less than two extremes do

for k ¼ 2 to K do

rkðnÞ ¼ rk�1ðnÞ � gIMFkðnÞ  Residuals for k ¼ 1; 2; ::KgIMFkðnÞ ¼ 0

for i ¼ 1 to I dogIMFkþ1ðnÞ ¼ gIMFkþ1ðnÞ þ E1ðrkðnÞ þ ekEkðwiðnÞÞÞ=I
end for

end for

end while
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Algorithm 2 Calculate the approximate and sample entropy.

Input: Timeseries

Output: ApEn, SampEn

xðlÞ; l ¼ 1; 2; ::;M  Given a time series

p Embedding dimension

z  Tolerance

Stage 1: Extend x(l) to the pth vector UpðlÞ
UpðlÞ ¼ ½xðlÞ; uðl þ 1Þ;…; uðl þ p� 1Þ�  l ¼ 1; 2;…;M � pþ 1

Stage 2: Calculate the distance between UpðlÞ and UpðjÞ
D½UpðlÞ;UpðjÞ� ¼ maxt¼0;1;…;p�1fjxðl þ tÞ � xðjþ tÞjg  j ¼ 1; 2;…;M � pþ 1 and j 6¼ l

Stage 3: Compute approximate entropy

� Measure the regularity and frequency of patterns within tolerance r:

Cp
l ðzÞ ¼

Number of j such that D½UpðlÞ;UpðjÞ� � z

M � pþ 1

� Compute the mean value of the logarithm of Cp
l ðzÞ:

wpðzÞ ¼
PM�pþ1

l¼1 ln½Cp
l ðzÞ�

M � pþ 1

� The ApEn can be defined:

ApEnðp; zÞ ¼ wpðzÞ � wpþ1ðzÞ

Stage 4: Compute sample entropy

� Compute the two coefficients:

Ap
l ðzÞ ¼

PM�p
j¼1;j 6¼l number of times that D½Upþ1ðlÞ;Upþ1ðjÞ�, z

M � p� 1

Bp
l ðzÞ ¼

PM�p
j¼1;j 6¼l number of times that D½UpðlÞ;UpðjÞ�, z

M � p� 1

� Add them as fallow:

ApðzÞ ¼
PM�p

l¼1 Ap
l ðzÞ

M � p

(Continued)
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Algorithm 2 (continued)

BpðzÞ ¼
PM�p

l¼1 Bp
l ðzÞ

M � p

� The SampEn can be defined:

SampEnðp; zÞ ¼ �ln ApðzÞ
BpðzÞ

� �

Algorithm 3 2LE-CEEMDAN denoising method.

Input: Timeseriesdata

IMFs : ½IMF0; IMF1;…; IMFk�1�  k IMFs obtained with CEEMDAN() (Algorithm 1)

procedure SELECTION_IMF(IMFs)

sample entropy list ¼ ½�
approximate entropy list ¼ ½�
for imf in IMFs do

sample entropy list:appendðSampEnðimf ÞÞ
approximate entropy list:appendðApEnðimf ÞÞ
total SampEn ¼ sumðsample entropy listÞ
total ApEn ¼ sumðapproximate entropy listÞ
sample entropy ratio = entropy�100

total SampEn for entropy in sample entropy list
h i

approximate entropy ratio = entropy�100
total ApEn for entropy in approximate entropy list

h i
end for

noisy imfs ¼ ½�
noiseless imfs ¼ ½�
for i in range(len(IMFs)) do

if sample entropy ratio½i�. 20 jj approximate entropy ratio½i�. 20 then

noisy imfs:appendðIMFs½i�Þ
else

noiseless imfs:appendðIMFs½i�Þ
end if

end for

return noisy imfs, noiseless imfs

end procedure

First IMFs ¼ CEEMDANðInputÞ
First decomposition noisy IMF; First decomposition noiseless IMF ¼ Selection IMFðFirst IMFsÞ
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sample entropy. These entropy metrics provide a mathematical measure of the amount of
information, with theoretical distinctions between them (Pincus, 1991; Richman &
Moorman, 2000). Approximate entropy (ApEn) and sample entropy (SampEn) can
mitigate noise-induced complexity in time series. Establishing a threshold value for noise
in these criteria proves sufficient for this purpose. Numerous experiments have indicated
that the proportional use of these two metrics positively contributes to transaction
accuracy. This approach systematically facilitates the correct identification of IMFs
containing noisy components. Algorithm 2 outlines the calculation of ApEn and SampEn
values for the IMFs obtained from the decomposition of time series using CEEMDAN in
the proposed method.

2LE-CEEMDAN
The 2LE-CEEMDAN method, which we propose to effectively eliminate noise in time
series, performs two-level decomposition. While applying this method, the steps in
Algorithm 3 are followed:

1) The initial step involves decomposing the time series using the CEEMDAN method as
outlined in Algorithm 1, resulting in the acquisition of IMFs.

2) For each obtained IMF, the approximate and sample entropy values are initially
computed using Algorithm 2. Subsequently, Algorithm 3 is employed to sum the
entropy values of all IMFs for each entropy metric. This procedure results in the
determination of total SampEn and total ApEn. Finally, approximate entropy ratio and
sample entropy ratio values are computed.

3) The noisy-noiseless components are identified by calculating the entropy ratios for each
IMF. Accordingly, IMFs with a ratio above the predetermined common threshold for
entropy ratios are called high-frequency, in other words, noisy components, while the
others are called noiseless. Since the possibility that these noisy components contain
valuable information, as opposed to directly discarding them, these components are
collected and performed a second decomposition with the assistance of Algorithm 1.

4) For IMFs obtained as a result of the second decomposition process, step 2 is performed
similarly. Then the noisy and noiseless components are determined, and the algorithm
is terminated.

The output of this method is the noiseless IMFs obtained as a result of the first and
second decomposition.

Algorithm 3 (continued)

noisly First IMFs sum ¼ sumðFirst decomposition noisy IMFÞ
Second IMFs ¼ CEEMDANðnoisly First IMFs sumÞ
Second decomposition noisy IMF; Second decomposition noiseless IMF ¼ Selection IMFðSecond IMFsÞ
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Forecasting model
Following the successful removal of noisy components from the time series data through
the 2LE-CEEMDAN algorithm, the noiseless IMFs obtained from the first and second
decomposition stages constitute the input data for the forecasting model. This process is
explained in Stages 3–5, as depicted in the framework presented in Fig. 1. IMFs
characterized by nonlinear attributes are fed into the LSTM model. The last IMF (residue)
with linear characteristics derived from the decomposition process is also given as an input
to the SVR model. After separately were trained each IMF, the prediction results were
ensembled. In other words, as shown in Fig. 1, the prediction results in Stage 3 and 4 are
combined hierarchically to obtain the final prediction result.

LSTM
Unlike traditional neural networks, recurrent neural networks (RNN) have loops in their
architecture and are based on the logic of using sequential information (Elman, 1990).
RNN architectures are widely used in many applications, such as translation, voice
recognition, language modeling, and handwriting recognition because they can establish
and interpret relationships between sequential data (Mikolov et al., 2010). But when
implementing these applications with RNN architectures, two main problems arise:

� Long dependency problem: RNN networks can make sense of and interpret data by
connecting with the past, thanks to their architecture. But when it goes too far back, it
cannot perform this process and establish the necessary connection with the past. In this
case, the so-called long dependency problem arises (Olah, 2015).

� Vanishing gradient problem: One of the problems in neural networks that makes it
difficult to update the weights of previous layers with backpropagation is the excessive
number of layers. The partial derivative is used when calculating the weights of the
previous layers in the backpropagation process. Gradient values are calculated with the
help of this partial derivative. But when the number of layers increases, the gradient
values will approach zero after a certain point in the backpropagation process, and the
weights will not be updated over time. In this case, learning will also be difficult for the
network. This problem is defined as the vanishing gradient problem (Young et al., 2018).

LSTM networks, a special structure of RNN, were introduced by Hochreiter &
Schmidhuber (1997), especially to solve the long dependency problem of RNN. LSTM also
solves the vanishing gradient problem, another problem of RNN. Also, LSTM consists of
modules that repeat each other, such as RNN. But when the architectures of the two
networks are compared, the main difference is the number of layers. The RNN architecture
has a single layer containing a tanh layer, while the LSTM architecture in Fig. 2 consists of
four consecutive layers, unlike RNN.

LSTM uses these four layers to ensure that information is remembered by the network
for long periods. The LSTM transaction equations are given in Eqs. (1)–(6):

ft ¼ rðWf � ½ht�1;Xt� þ bf Þ (1)
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it ¼ rðWi � ½ht�1;Xt� þ biÞ (2)

ot ¼ rðWo � ½ht�1;Xt� þ boÞ (3)eCt ¼ tanhðWc � ½ht�1;Xt� þ bcÞ (4)

Ct ¼ ft � Ct�1 þ it � eCt (5)

ht ¼ ot � tanhðCtÞ (6)

From the above equations, for an input vector X the LSTM unit at time step t: it is an
input gate, ft is a forget gate, ot is an output gate, Ct is a memory cell, ht is the hidden state,
W is weight matrix, b is bias vector and r activation function. The default connections
among these units are presented in Fig. 2.

SVR
Support vector regression is a form of the support vector machines method developed by
Cortes & Vapnik (1995). SVR is an approach that divides data points by a hyperplane and
creates a regression model on this plane. The hyperplane performs predictions by ensuring
that as many data points as possible remain above it. The basic idea is to find a regression
function that passes through two margins where the data points are divided by a
hyperplane and estimate the value of the dependent variable through this function. In
other words, SVR aims to reduce the error by minimizing the distance between the
predicted and observed values by determining the hyperplane. A linear SVR tries to find a
regression function expressed by f ðx;w;w0Þ ¼ wTx þ w0 in hyperspace. Here, f ðx;w;w0Þ
denotes the output value, x denotes the input values, w represents the linear weights, and
w0 denotes the correction term. In SVR, the aim is to find the function f ðx;w;w0Þ by
minimizing the regression risk given in Eq. (7).

min
1
2
kwk2 þ C

X
t

ðetþ þ et�Þ (7)

Here C denotes an adjustment parameter controlling the error, and etþ and et� denote
the deviations from the plane, respectively. The constraints of this function are given in
Eqs. (8)–(10).

y � f ðx;w;w0Þ � eþ etþ (8)

f ðx;w;w0Þ � y � eþ et� (9)

etþ; e
t
� 	 0 (10)

From the above constraints, y denotes the actual value of the dependent variable, and e
denotes the error tolerance. The Lagrangian method is used for the solution of this
optimization method, and as a result of the solution, the f ðx;w;w0Þ function is obtained in
Eq. (11). Where atþ and at� are Lagrange multipliers, and K denotes the kernel function.

f ðx;w;w0Þ ¼
X
t

ðatþ � at�ÞKðxt; xÞ þ w0 (11)
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The critical parameters for the SVR method are:

� C: It is a regularization parameter that controls the error. This parameter controls the
model’s fit to the data points. A small C value tolerates errors, while a greater C value
attempts to minimize the errors. The C parameter can be adjusted to control the trade-
off between overfitting and underfitting.

� Epsilon (e): It determines the error tolerance. This parameter sets the maximum distance
between the hyperplane and the data points. The epsilon value controls how much error
is acceptable and how close the model should be to the data points.

� Kernel function (K): SVR can be applied to linear and non-linear datasets. In this regard,
the kernel function captures linear or non-linear relationships. For example, a linear
kernel is used for linear relationships, while an Radial Basis Function (RBF) kernel
function can be preferred for capturing non-linear relationships. The choice of kernel
function is made considering the dataset’s structure and the prediction problem’s nature

EXPERIMENTAL SETTINGS
Various experiments were carried out to evaluate the effectiveness of the proposed 2LE-
CEEMDAN denoising method in predicting the next day’s closing value of stock market
indices. The denoising method was applied to four stock market index datasets,
eliminating noise and subsequently creating a prediction model using the obtained
noiseless components. This section introduces the datasets utilized in the study and then
outlines the construction of the forecasting model for these datasets. The conclusion of the
section provides metrics related to evaluating the forecasting model’s performance.

Dataset
To assess the impact of the proposed 2LE-CEEMDAN denoising approach on the
prediction model’s performance for one-step-ahead prediction, the following four major
global stock indices were selected:

Figure 2 LSTM architecture. Full-size DOI: 10.7717/peerj-cs.1852/fig-2
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� Standard and Poor’s 500 (S&P500): It is a stock index comprising 500 prominent U.S.
companies. It encompasses around 75% of the American stock market.

� Shanghai Stock Exchange Composite (SSE): It is a stock market index that reflects the
performance of all A-shares and B-shares listed on the Shanghai Stock Exchange.

� Deutscher Aktien (DAX): It is a German stock market index representing the
performance of the 30 largest and most liquid companies trading on the Frankfurt Stock
Exchange. These companies are considered major players in the German economy and
are carefully selected to provide a comprehensive overview of the country’s stock
market.

� Dow Jones Industrial Average (DJI): It is a stock market index that measures the
performance of 30 large and well-established companies listed on stock exchanges in the
United States. The DJI includes companies from various sectors, such as technology,
finance, health care, and manufacturing.

Daily closing values for these stock indices were collected from Yahoo! Finance for the
period between January 1, 2010, and October 1, 2019.

The statistical analysis results, including the amount of data, minimum, maximum,
average, and standard deviation information for each stock market index, are presented in
Table 1. The table shows a substantial range between the minimum and maximum values
of the closing prices for the stock market indices, and the standard deviation values are
notably high. This indicates that the selected stock market indices exhibit high volatility
and possess a non-stationary property.

Construction of the forecasting model
The 2LE-CEEMDAN-LSTM-SVR forecasting model, described in the “Forecasting
Model” section, and designed to predict the next day’s closing value of stock market
indices, is constructed as follows:

� First, the 2LE-CEEMDAN method, given a pseudo-code in Algorithm 3, was applied to
the time series data consisting of closing values for each stock market index. Here, two-
level decomposition and then entropy ratio-based denoising was performed using the
CEEMDAN method. For the CEEMDAN method used in the decomposition of the
stock market index data, the number of trials and white noise standard deviation values
were adjusted to 200 and 0.2, respectively, taking reference from the study of Liu et al.
(2022b). The values of the embedding dimension and tolerance parameters in
approximate entropy and sample entropy calculated for each IMF were determined as 2
and 0.2, respectively, as a result of various experiments. In addition, the noise threshold
value for the entropy ratio used to determine noisy and noiseless components was set as
20 (seen Algorithm 3). Therefore, the IMF components with approximate and sample
entropy ratios above 20% were noisy, and the rest were noiseless.

� Following the successful elimination of noise from the stock index data, the noiseless
IMFs obtained from the first and second decompositions serve as input features for both
the LSTM and SVR models. Each IMF component, identified as noiseless through the
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1st and 2nd decompositions, undergoes separate training in this phase. The training
process involves scaling the IMFs to the range (0,1) using the min-max scaler.
Subsequently, the data is divided into training (90%) and test (10%) datasets. While the
residual one of these IMFs is trained with SVR, the others are trained with the LSTM
model. The final prediction result of the forecasting model is achieved by hierarchically
combining the prediction results obtained from the individually trained IMFs, as
depicted in Stages 3–5 of Fig. 1.

The hyperparameter settings for the LSTM and SVR prediction models are detailed in
Table 2. The hyperparameter tuning process for the SVR method utilized a grid search
approach. Hyperparameter values for LSTM were chosen based on relevant literature
studies, incorporating commonly preferred values in this study. Experiments were
executed by generating training-test sets concerning three different values for the time step
parameter specified in the table. Moreover, to mitigate overfitting during training in the
LSTM method, a dropout layer with a ratio of 0.1 was introduced between both hidden
layers. Additionally, early stopping was implemented.

Performance evaluation
We evaluated the proposed 2LE-CEEMDAN-LSTM-SVR forecasting model using the
mean absolute percentage error (MAPE), mean absolute error (MAE), root mean square
error (RMSE), and R2, which are often used in the literature. The RMSE, MAE, MAPE, and

R2 metrics are calculated using the Eqs. (12)–(15), respectively. In the below equations, n
refers to the number of data, P refers to the estimated value, A refers to the actual value,
and eA refers to the average of actual values.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1
ðPi � AiÞ2

s
(12)

MAE ¼ 1
n

Xn
i¼1
jPi � Aij (13)

MAPE ¼ 1
n

Xn
i¼1
jPi � Ai

Ai
j (14)

R2 ¼ 1�
Pn

i¼1 ðPi � AiÞ2Pn
i¼1 ðPi � eAiÞ2

(15)

Table 1 Descriptive statistics of stock indices closing price.

Index Count Mean Max Min Standard deviation

DAX 2,470 9,445.98 13,559.60 5,072.33 2,350.25

DJI 2,452 17,347.54 27,359.16 9,686.48 4,951.69

S&P500 2,452 1,933.37 3,025.86 1,022.58 567.36

SSE 2,366 2,795.73 5,166.35 1,950.01 537.10
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RESULTS AND DISCUSSION
This section discusses the findings obtained from experiments on DAX, DJI, SSE, and
S&P500 indices to evaluate the forecasting performance of the proposed 2LE-CEEMDAN-
LSTM-SVR forecasting model. The S&P500 stock market index was chosen as an
illustrative case to demonstrate the noise elimination process in the time series.

Noise reduction was executed on this time series data by following the steps outlined in
Algorithm 3. The closing values of the S&P500 and the resulting IMFs from the first
decomposition are depicted in Fig. 3, while the calculated entropy values and ratios for the
IMFs are presented in Table 3A. Considering the entropy ratios, the first three IMFs were
identified as noisy, whereas the remaining IMFs were labeled noiseless. High-frequency
data was obtained by collecting the noiseless components determined from the first
decomposition. The high-frequency data and the IMFs from the second decomposition are
shown in Fig. 4. Similarly, the entropy values and ratios for the IMFs obtained at the
second decomposition stage are provided in Table 3B (IMFiðjÞ denotes the i-th IMF from
the j-th decomposition.). Upon inspecting the entropy ratios of the IMFs, it was observed
that the first 4 IMFs contained noise. Consequently, the first four noisy IMFs were
discarded at this stage, and the noiseless IMFs resulting from the first and second
decompositions were utilized for training in the forecasting phase. All these steps were
replicated for the other three stock market indices.

To evaluate the effect of the 2LE-CEEMDAN denoising method on the forecasting
model, we conducted the following scenarios:

� Scenario-1: Financial time series are decomposed using the CEEMDANmethod. In this
scenario, no denoising approach was applied; only decomposition was carried out on the
financial time series. The last IMF, obtained from the decomposition, is trained with the
SVR method, while the remaining IMFs are trained separately using the LSTM method.

Table 2 Hyperparameter settings of the forecasting model.

Method Parameters Values

LSTM Time step 5, 10, 15

Number of hidden layers 3

Number of units 128, 64, 16

Activation function ReLU

Optimizer Adam

Loss function Mean square error

Regularization Early stopping

Max number of epochs 200

SVR Time step 5, 10, 15

Kernel function Linear

Cost 10

Epsilon 0.001

Cross-validation 5-fold
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Figure 3 S&P500 first decomposition results. Full-size DOI: 10.7717/peerj-cs.1852/fig-3

Table 3 Entropy values and ratios of IMFs obtained from first and second decomposition for the S&P500.

(A) First decomposition (B) Second decomposition

ApEn SampEn ApEn ratio SampEn ratio ApEn SampEn ApEn ratio SampEn ratio

IMF1(1) 0.2035 4.3820 9.9552 31.9381 IMF1(2) 0.4619 3.3763 17.0960 38.6948

IMF2(1) 0.2161 4.4567 10.5730 32.4821 IMF2(2) 0.4676 2.7142 17.3073 31.1064

IMF3(1) 0.4251 2.1043 20.7939 15.3370 IMF3(2) 0.5578 1.4665 20.6438 16.8069

IMF4(1) 0.3518 1.0292 17.2095 7.5015 IMF4(2) 0.5956 0.6657 22.0416 7.6292

IMF5(1) 0.2572 0.6898 12.5807 5.0279 IMF5(2) 0.4655 0.3486 17.2281 3.9949

IMF6(1) 0.2077 0.5092 10.1626 3.7116 IMF6(2) 0.1164 0.1182 4.3076 1.3542

IMF7(1) 0.2915 0.3453 14.2621 2.5168 IMF7(2) 0.0277 0.0259 1.0267 0.2964

IMF8(1) 0.0896 0.1818 4.3813 1.3249 IMF8(2) 0.0068 0.0071 0.2498 0.0811

IMF9(1) 0.0017 0.0220 0.0817 0.1601 IMF9(2) 0.0027 0.0032 0.0992 0.0361
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The final prediction result is obtained by ensembling the prediction results of the
individual IMFs.

� Scenario-2: After decomposing the financial time series with the CEEMDAN method,
noisy and noiseless components were identified using the procedure outlined in
Algorithm 3. In this scenario, the noisy IMFs were directly discarded, and the last of the
remaining noiseless IMFs was trained separately with the SVR method, while the rest
were trained with the LSTM method. The final prediction result was obtained by
ensembling the prediction results of the individual IMFs.

� Scenario-3: In this scenario, proposed the 2LE-CEEMDAN-LSTM-SVR forecasting
model was used.

Scenarios 1–3 were applied to predict the next day’s closing value by considering the
past 5, 10, and 15 observation values of the S&P500, DAX, DJI, and SSE stock indices. The
estimation results obtained through these scenarios are given in Table 4 respectively.

Figure 4 S&P500 second decomposition results. Full-size DOI: 10.7717/peerj-cs.1852/fig-4
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When the results are examined, it is seen that the prediction model, which is based on
applying only the decomposition process and no denoising process, has the worst
performance among all scenarios. Conversely, the 2LE-CEEMDAN-LSTM-SVR
forecasting model emerged as the most effective and successful in comparison.

Table 4 Forecasting results in all scenarios for the indices.

Index Scenario Time step RMSE MAE MAPE R2

S&P500 Scenario 1 5 6.9013 5.3612 4.9323 0.8046

10 7.4713 6.1221 5.4440 0.6666

15 7.3907 6.1057 5.0829 0.6903

Scenario 2 5 6.1225 4.7923 2.2288 0.9431

10 7.3718 6.2237 2.3221 0.7003

15 6.6946 5.8330 2.3448 0.8106

Scenario 3 5 5.2491 4.1086 1.9110 0.9512

10 6.3197 5.3354 1.9909 0.7431

15 5.7394 5.0007 2.0107 0.8376

DAX Scenario 1 5 18.6773 15.8175 9.2827 0.8370

10 23.4496 19.6941 11.2345 0.7256

15 22.8000 18.7486 11.2457 0.7123

Scenario 2 5 13.6687 12.1355 3.7203 0.9728

10 17.8461 15.5167 3.7956 0.9500

15 16.8262 14.0575 3.7117 0.9017

Scenario 3 5 11.7707 10.4151 3.1193 0.9770

10 15.2011 13.1796 3.1783 0.9581

15 14.3498 11.9659 3.1078 0.9179

DJI Scenario 1 5 64.1036 51.0375 4.6789 0.7963

10 76.7421 64.8978 4.6717 0.6458

15 69.6178 54.4051 4.7296 0.7835

Scenario 2 5 29.1110 24.6261 5.7191 0.9346

10 42.7217 37.2901 5.5960 0.7577

15 26.8920 22.7033 5.6887 0.9722

Scenario 3 5 25.4506 21.5191 4.9036 0.9439

10 37.0988 32.3404 4.7977 0.7923

15 23.4998 19.8059 4.8770 0.9761

SSE Scenario 1 5 9.3477 7.6544 3.3557 0.8116

10 9.7774 8.0523 3.3336 0.7564

15 12.6617 11.2470 3.4131 0.6840

Scenario 2 5 8.4603 7.0721 3.2049 0.9430

10 8.3467 7.0678 3.1801 0.9456

15 12.2441 11.3312 3.3860 0.8317

Scenario 3 5 7.4032 6.1885 2.8059 0.9501

10 7.3038 6.1847 2.7836 0.9524

15 10.7141 9.9153 2.9638 0.8528
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Additionally, when comparing the forecasting results performed by considering the past 5,
10, and 15 observation values, it is observed that the forecasts performed using five
observation values for S&P500 and DAX, 10 for SSE, and 15 for DJI are more successful.
Accordingly, the success graphs of the S&P500, DAX, DJI, and SSE stock market indices in
the 2LE-CEEMDAN-LSTM-SVR model are given in Figs. 5–8, respectively. The curve
shown in blue in the figures represents the actual closing values of the indices, the green
curve shows the denoised data obtained as a result of applying the 2LE-CEEMDAN
method, and the orange curve shows the prediction result of the 2LE-CEEMDAN-LSTM-
SVR model. When these figures are examined, it is noteworthy that the sharpness in the

Figure 5 The success graph of the 2LE-CEEMDAN-LSTM-SVR model on the S&P500 test data.
Full-size DOI: 10.7717/peerj-cs.1852/fig-5

Figure 6 The success graph of the 2LE-CEEMDAN-LSTM-SVR model on the DAX test data.
Full-size DOI: 10.7717/peerj-cs.1852/fig-6
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closing values of the indices is smoothed by the proposed 2LE-CEEMDAN method, and
the forecasting results generally overlap with the denoised data.

Comparison with other models
In this study, we conducted an experimental comparison among four models to assess the
performance of the recommended 2LE-CEEMDAN-LSTM-SVR forecasting model in the
context of stock market prediction. Details regarding these models’ denoising,
decomposition, and forecasting methods are presented in Table 5. Among these models,
both CEEMD-CNN-LSTM (Rezaei, Faaljou & Mansourfar, 2021) and CEEMDAN-LSTM

Figure 7 The success graph of the 2LE-CEEMDAN-LSTM-SVR model on the DJI test data.
Full-size DOI: 10.7717/peerj-cs.1852/fig-7

Figure 8 The success graph of the 2LE-CEEMDAN-LSTM-SVR model on the SSE test data.
Full-size DOI: 10.7717/peerj-cs.1852/fig-8
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(Cao, Li & Li, 2019) did not apply any denoising approach to the IMFs; instead, each IMF
was individually trained using the specified forecasting model. Additionally, the CAL (Lv
et al., 2022) model performed decomposition and denoising processes. This model was
applied to the ARMA approach on the IMF, which is more linear as a result of denoising,
and the LSTM method was applied to the remaining ones. Finally, the GRU based on
CEEMDAN-Wavelet forecasting model (Qi, Ren & Su, 2023) used a combination of
decomposition and wavelet transformation for denoising financial time series. The wavelet
threshold denoising method was applied to the IMFs obtained from the decomposition,
and these IMFs were then reconstructed. Subsequently, the reconstructed IMFs were
trained using the GRU method.

The 2LE-CEEMDAN-LSTM-SVR forecasting model proposed in our study uses
decomposition and denoising methodologies. Diverging from the approaches mentioned
in previous studies, our proposed model employs a two-level decomposition coupled with
an entropy ratio-based denoising technique. Moreover, in contrast to the strategy of
training all noiseless IMFs with a single forecasting model, as observed in the studies by
Rezaei, Faaljou & Mansourfar (2021) and Cao, Li & Li (2019), our model adopts a
differentiated approach. Specifically, the more linear components are trained using the
SVR method, while the remaining components are trained using the LSTM method.
Additionally, the stock market indices utilized by the models in the comparative analysis
are detailed in Table 5.

The performance comparison of the 2LE-CEEMDAN-LSTM-SVR prediction model
and the baseline methods proposed for intraday stock market prediction is presented in
Table 6. Upon examination of the table, our proposed 2LE-CEEMDAN-LSTM-SVR
prediction model demonstrates superior performance compared to the CEEMD-CNN-
LSTM and CEEMDAN-LSTM models, which lack the denoising approach and solely rely
on the decomposition method. Furthermore, in a comparative analysis of experimental
results, it is evident that our 2LE-CEEMDAN-LSTM-SVR model exhibits lower error
metrics than prediction models utilizing both denoising and decomposition approaches.
This outcome validates the effectiveness of our proposed 2LE-CEEMDAN approach in

Table 5 Contrastive experiments.

Model Stock market index Decomposition
method

Denoising method Forecasting
model

CEEMD-CNN-LSTM (Rezaei, Faaljou &
Mansourfar, 2021)

S&P500, DJI, DAX,
Nikkei225

Single level CEEMD – CNN-LSTM

CEEMDAN-LSTM (Cao, Li & Li, 2019) S&P500, DAX, HSI, SSE Single level
CEEMDAN

– LSTM

CAL (Lv et al., 2022) S&P500, DAX, HSI, SSE Single level
CEEMDAN

Augmented Dickey Fuller
Test

ARMA-LSTM

GRU based on CEEMDAN-Wavelet (Qi, Ren & Su,
2023)

S&P500, CSI300 Single level
CEEMDAN

Wavelet transform GRU

2LE-CEEMDAN-LSTM-SVR S&P500, DAX, DJI, SSE Two level
CEEMDAN

Entropy ratio-based LSTM-SVR
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reducing noise in financial time series, demonstrating that the 2LE-CEEMDAN-LSTM-
SVR model successfully predicts the closing prices of the next day’s stock market indices.

CONCLUSION AND FUTURE WORKS
This study introduces a novel two-level entropy-based CEEMDAN method, denoted as
2LE-CEEMDAN, to address the noise issue in time series data, specifically applied to the
intraday stock market prediction task. The proposed 2LE-CEEMDAN-LSTM-SVR hybrid
model integrates frequency decomposition, entropy, LSTM, and SVR. The model
comprises two stages: firstly, the 2LE-CEEMDAN method is employed to eliminate noise
from the stock market index data, and secondly, the LSTM-SVR prediction model is
trained on the obtained denoised data. To assess the effectiveness of the 2LE-CEEMDAN-
LSTM-SVR forecasting model, the study applies it to predict the next day’s closing value
for four major stock market indices: S&P500, DAX, DJI, and SSE. The results demonstrate
that the proposed 2LE-CEEMDAN method effectively eliminates noise in financial time
series data, positively impacting the model’s forecasting performance. Comparative
analysis with existing models in the literature reveals that the 2LE-CEEMDAN-LSTM-
SVR model outperforms alternative approaches. This study stands out as the first known
article to utilize a two-level hierarchical decomposition and an entropy-ratio-based
approach to eliminate noise in non-stationary and nonlinear financial time series
effectively.

The introduction of a new correlation-based approach for determining IMFs as
independent variables in the forecasting model is anticipated to impact the model’s
predictive performance positively. Additionally, incorporating technical indicators into the
model is a potential avenue for further improving its performance. These aspects will be
the focus of future work to enhance the robustness and accuracy of the forecasting model.
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Table 6 Performance comparison.

Models S&P500 DAX DJI SSE

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

CEEMD-CNN-LSTM (Rezaei, Faaljou & Mansourfar, 2021) 13.76 10.58 84.88 65.03 155.52 118.02 – –

CEEMDAN-LSTM (Cao, Li & Li, 2019) 4.83 3.92 33.35 24.85 – – 8.74 6.86

CAL (Lv et al., 2022) 26.14 17.14 101.83 72.33 – – 19.92 14.03

GRU based on CEEMDAN-Wavelet (Qi, Ren & Su, 2023) 22.27 17.39 – – – – – –

2LE-CEEMDAN-LSTM-SVR 5.25 4.11 11.77 10.42 23.50 19.81 7.30 6.18
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