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ABSTRACT

Packet classification is a computationally intensive, highly parallelizable task in many
advanced network systems like high-speed routers and firewalls that enable different
functionalities through discriminating incoming traffic. Recently, graphics
processing units (GPUs) have been exploited as efficient accelerators for parallel
implementation of software classifiers. The aggregated bit vector is a highly
parallelizable packet classification algorithm. In this work, first we present a parallel
kernel for running this algorithm on GPUs. Next, we adapt an asymptotic analysis
method which predicts any empirical result of the proposed kernel. Experimental
results not only confirm the efficiency of the proposed parallel kernel but also reveal
the accuracy of the analysis method in predicting important trends in experimental
results.

Subjects Computer Networks and Communications, Distributed and Parallel Computing
Keywords Parallel processing, Aggregated bit vector, GPU, Performance, Analysis

INTRODUCTION

The considerable evolution in the speed of internet communications makes the gap
between communication speed and processing speed ever wider. To resolve this
problem, recent network systems have deployed flow-based traffic processing instead of
packet-based processing. For this purpose, the packet classification technology is used
as a fundamental process in their architecture. In packet classification, arrival packets
are divided into distinctive flows based on a set of predefined filters. Then, the same
actions could be applied on batches of packets in the same flows.

To classify an incoming packet, the content of certain fields from its header are
matched against corresponding conditions in the filters which have been statistically or
dynamically defined. The classifier filters are of different priorities. Therefore, if a packet
matches more than one filter, the packet is tagged by the label of the stream corresponding
to the filter which is of the highest priority (Katsikas et al., 2016; Taylor, 2005).

The algorithms of packet classification are implemented through both hardware and
software. Hardware methods have achieved the highest speeds in classification by utilizing
parallel lookups on ternary content addressable memories (Sun et al., 2017). However,
problems such as considerable prices of these hardware modules, their high consumption
power, the inflexibility of their architecture to any variation in the filters, and inefficiency
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in using storage spaces have motivated many kinds of research in the field of the software
implementation of packet classifiers. In contrast, the algorithms of software packet
classifiers are developed easily and with low costs. In addition, they are highly extensible
and flexible. An important disadvantage of such classifiers, however, is their low speed.
Therefore, the challenge of accelerating software classifiers of IP packets has become a
motivation for many recent studies.

The algorithms of packet classification are categorized into linear search, decision tree,
tuple space, and decomposition. Among these, decision tree and linear search algorithms
do not have the appropriate structure to be parallelized. The main reason is the great
degree of data and control dependence which exists in these algorithms. In contrast, the
reduced dependence of tuple space and decomposition algorithms on data and control
makes them more appropriate for the parallelism on multi-core and many-core systems.
Accordingly, numerous studies have been conducted with the aim of parallel
implementation of packet classification algorithms on multicore and many-core machines.
Interestingly, a growing body of literature has been devoted in recent years to parallel
implementations on graphics processing units (GPUs), especially using GPGPU
technologies (Fan, Xu ¢ Zhao, 2017). So far, however, no comprehensive analysis
method has been proposed for predicting the empirical performance of parallel
implementation of these sets of algorithms given the important characteristics of GPUs
such as their complex memory subsystem.

Review of the related literature shows that none of the studies have parallelized
aggregated bit vector (ABV) algorithm on GPU-like many-core machines. This algorithm
is a decomposition-based algorithm and has an appropriate structure that lets it be highly
parallelized on GPU systems (Baboescu ¢» Varghese, 2001). In this paper, we seek to
parallelize this algorithm on the GPU. The other contributions of the paper are as follows:

1. In order to assess the influence of the machine parameters, such as memory latency,
shared memory size and the number of allowable threads on the overall performance,
the time and memory complexity of the proposed kernel is computed analytically
and then compared with the experimental results. The analysis of empirical results
and their analytical performance models indicates that the proposed model can help
predict the accurate performance of parallel kernels.

2. The evaluation of the experimental results shows that the throughput of the parallel
kernel is about 66.54 times more than the throughput of the sequential version of
the algorithm. This corresponds to a speedup of about 100 times.

The rest of this article is organized as follows. In section two, the structure of the
GPU and the operation method of the ABV algorithm are explained. In the third section,
the related works on parallelizing packet classification algorithms on GPU are reviewed. In
the fourth section, the proposed parallel kernel of the bit-vector algorithm is described.
Then, in the fifth section, analysis of the computing and memory complexity of the
suggested kernel is presented and the results are compared with the experimental results.
Finally, conclusions and directions for future research are discussed in the last section.
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BACKGROUND

In this section, first the structure of GPU and its memory is studied. Then, the method
of constructing the ABV corresponding to a filter set and the algorithm of classifying
IP packets using that construct are explained.

Graphics processing unit

Graphics processing unit is a special system to display graphic images in personal
computers. Following the release of software development packages on this unit by
great manufactures such as Nvidia (Nvidia, 2017; Nakano, 2013a) and ATI, the use of GPU
was accepted as a powerful parallel computing unit along with central processing unit in
accelerating computational processes. The main reason for this big computing revolution
is that the architecture of GPU is specially designed for running compute-intensive and
parallel operations. Accordingly, Nvidia supplied a software platform called compute
unified device architecture (CUDA) for performing nongraphic computations on graphic
processors in 2006 (Nakano, 2013a) CUDA provides possibilities that could be used by
programmers to have access to hardware capabilities of graphic processors in their
nongraphic programs and increase the speed of performing complicated algorithms.

Several investigations including Li ef al. (2013) and Lin et al. (2016) have attempted to
study the use of CUDA platform for parallel implementation of network functions such as
IP lookup in routing tables, aiming at having access to higher throughput. This tool has
been used for executing parallel genetic algorithms (Zhao et al., 2018), neural networks
(Gong et al., 2017), and ant colony optimization algorithm (Llanes et al., 2016). Also,
the capacity of parallel programming in CUDA platform has been used in the field of
cryptography for compressing databases and accelerating encryption algorithms
(Przymus & Kaczmarski, 2014; Vasiliadis et al., 2014).

From a programming perspective, two CUDA processes are involved in parallel
computations: host and device processes. The former runs on central processing unit
and, in fact, executes the main program whereas the latter is executed on GPU. Any
program that is written on CUDA may be formed of several kernels. Each kernel is
executed by a grid and each grid may be formed of several blocks. Each block is formed
of several threads. Indeed, threads are responsible for performing programs.

The graphic processor used in this paper is GT730 that is comprised of two streaming
multiprocessors (SMs), each consisting of 192 streaming processors (Cheng, Grossman ¢
McKercher, 2014). Figure 1 shows the hardware structure of an Nvidia GPU. Each GPU
consists of different types of memory including global, constant, texture, register, and
shared memories. The CUDA grid in this figure includes four blocks each of which
consists of four threads. In our experiments, two blocks are defined for every SM and 1,024
threads are defined in each CUDA block. Therefore, 4,096 threads are used.

The ABV algorithm

Aggregated bit vector algorithm is based on decomposition. To construct the data
structure of this algorithm, source, and destination IP addresses of filters are used to
construct two corresponding binary trees. For example, consider the two-dimensional

Abbasi et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.185 3/20


http://dx.doi.org/10.7717/peerj-cs.185
https://peerj.com/computer-science/

PeerJ Computer Science

Host Device
Streaming Multiprocessor 0 Streaming Multiprocessor 1
sPs SPs
EEm@E OEEm
EEDE Block (0,0) [t i o i Block (1,0)
- - FHH
mmmm (Lo os || mmms e 6s
HEEE | Thread | Theead EEEn l m-)d_J I Thread
EEEE L ey | OooEo oy (ER})
HEEE oEEa
HHHH HHH
==== Block (0,1) ==== Block (1,1)
Shared Memory — B M Shared Memory —ie ha_
@) a1 ©.1) ()
2 L2 Cache (128 KB)
xX
<
o t 128-bit bus 25.6 GB/s
Host | o= Device Memory (1G DDR3)
Memory v

Figure 1 Architecture of an Nvidia GPU. Main parts of an Nvidia GPU are streaming multiprocessors
and memory hierarchies. Each streaming multiprocessor schedules the running threads of associated
blocks on streaming processors. Full-size K&l DOT: 10.7717/peerj-cs.185/fig-1

Table 1 Sample filter set.

Filter Source IP Destination IP
FO 00* 00*
F1 00* or*
J) 10* 11"
F3 11* 10*
F4 0* 10*
F5 0* 11*
Feé 0* 0*
F7 1* or*
F8 1* 0*
o 11* 0*
F10 10* 10*
Note:

Columns from left: filter name, source IP (or F1 field) and destination IP (or F2 field).

filters existing in Table 1. For each dimension of the filter set, a binary tree has been
constructed and shown in Fig. 2. Note that, the priority of filters descends from top to
bottom in Table 1. To form the source tree, the source IP address of the filter is read bit
by bit. Then, the left or right side of the tree is traversed corresponding to each bit “0” or
“1,” respectively. This movement is repeated considering each consecutive bit of the
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Figure 2 ABV algorithm structure with aggregation size A = 4, corresponding to the filters of
Table 1. The trees illustrated in the top and bottom correspond to bit-vector trees of F1 and F2 fields
of the filters of Table 1, respectively. For each node of these trees, the corresponding bit-vector is depicted

close to it. Full-size k&l DOTL: 10.7717/peerj-cs.185/fig-2

source IP prefix of the filter and is terminated by the last bit of it. At this point, the node
corresponding with the mentioned prefix is established. Each node in the tree for a field
is labeled with an N-bit vector. Bit j in the vector is set if the prefix corresponding to rule F; in
the filter set matches the prefix corresponding to the node (Baboescu ¢ Varghese, 2001).
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In Fig. 2, given the match of prefix 00" in Field 1 by the values 00" and 0%, which
correspond to values in filters 1, 2, 3, 7, and 8, the 8-bit vector corresponding to leftmost
leaf node in the right trie of Fig. 2 is 11100011. In order to construct the ABV, the bit vector
of each node is divided into A-bit parts. In any A-bit aggregation, if at least one of the bits
equals one, the aggregated bit is set; otherwise, it is reset. Similarly, the tree of destination
IP addresses of filters is constructed in the same way. The router which uses ABV for
forwarding a packet, should perform a longest-prefix match for each distinct field H;
of the packet header, in the corresponding trie T;. The result of this match is a trie
node N;. As mentioned above, each node contains both the bit vector and the ABV.
Next, the AND of ABVs is computed. If the value of the position j is 1 in the AND of
the aggregate bit vectors, an AND operation is done on the corresponding parts of bit
vectors (bitsA x j, ..., A X (j+ 1) — 1). A filter which its corresponding bit in AND
result is set, is a matched filter. Finally, among all matched filters, the algorithm selects the
filter with highest priority (lowest index) as the best matched filter. For example, Fig. 2
demonstrates the construction of the ABV structure corresponding to the example
database in Table 1. Let us consider a packet with (Fieldl, Field2) = (0010, 0100).

From Fig. 2, it is clear that the longest-prefix matches for these two fields are 00 and 01,
respectively. The related 11-bit regular vectors are 11001110000 and 01000011110,
respectively. Here, given an aggregation size A = 4, the related ABVs (shown below the
regular bit vectors) are 110 and 111, respectively. Since the AND of these two aggregated
vectors produces 110, we should only examine the first eight filters of filter set to find
the possible matching filters. This eliminates the need to examine the remaining four
filters. In addition, given the priority of filters, one can examine the first quarter of
source bit vector 1100 and destination bit vectors 0100. The logical AND of this two 4-bit
yields 0100. Consequently, since the second bit of the result is 1, the best matched filter
would be F1.

When several filters with various priorities match the information of the incoming
packet header during traversal, the filter is selected as the output which is of the highest
priority.

RELATED WORK

Graphics processing unit-based packet classification is one of the many parallel fields in the
literature that have emerged after the introduction of GPU for parallel processing. Since
the emergence of the great capability of GPUs in performing parallel algorithms, a few
studies have been conducted on parallel execution of packet classification algorithms on
such powerful many-core machines. A seminal study in this area is the work of
Nottingham ¢ Irwin (2009) which theoretically investigates the feasibility of parallel
execution of packet classification algorithms on GPUs. They introduce the concept of
parallel packet classification on CUDA and OpenCL platforms. However, their work lacks
implementation and effective evaluation. Hung et al. (2011) evaluate two parallel packet
classification algorithms, namely BPF and RFC, with eight and four different scenarios of
using GPU memory, respectively. According to their empirical results, for both algorithms,
the most efficient scenario is one in which the classifier filters and packets are stored in
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constant and global memory, respectively. The main weakness of their study is that
they use an unrealistic dataset, which includes only three filters as the classifier filter set.
Certainly, the empirical results of such an unrealistic model may not be sufficiently
reliable.

Deng et al. (2011) propose a hybrid microarchitecture by integrating both CPU and
GPU for parallelizing linear packet classification algorithm. In this study, only the slow
global memory is used. Consequently, despite the reported dramatic acceleration, their
hybrid microarchitecture may not be efficient in accurately exploiting the capabilities of
the memory subsystem of GPUs. Kang ¢ Deng (2011) propose the idea of meta-program
for GPU-based packet classification. This technique compiles the rules into instructions
to avoid the expensive latency of memory accesses, as claimed by the authors. The
authors offer no explanation about their data layout in the memory subsystem of GPU.
A more comprehensive study would examine the effect of storing such meta-programs in
different memory modules of GPU on the overall performance of parallel algorithms.

Zhou, Singapura ¢ Prasanna (2014) addresses the impact of efficiently using powerful
parallelism and various types of memory on the performance of algorithms such as packet
classification on many-core machines. They investigate GPU’s characteristics in
parallelism and memory accessing, and implement a Bit-vector packet classifier using
CUDA. Their parallel classification kernel exploits only one CUDA block with 32
threads (one warp). In this kernel, classifying each packet involves two phases. In the first
phase, each of the 32 threads examines all required fields of N/32 filters sequentially
and produces a local classification result. Then, in the second phase, the filter with the
highest priority among the 32 local results is identified in five steps of comparison. In their
recommended data layout, the shared memory of the block is divided into 32 equally-sized
memory banks. Each bank is filled with the same set of filters. The remaining filters
and all required bit vectors are stored in the global memory of GPU. The idea behind this
type of mapping is to minimize the chances of memory bank conflict as much as possible.

However, the performance of this kernel declines significantly as the number of
filters increases. In such a case, the shared memory cannot hold the entire dataset and the
remaining data is stored in the slow global memory of GPU. Consequently, the access
time of threads increases dramatically.

In their groundbreaking study, Varvello et al. (2016) proposed a more effective parallel
kernel for classifying packets on GPUs on the basis of the characteristics of their memory
subsystem. The kernel of this parallel model is designed to maximize parallelism by
splitting the filter set among several blocks so that each block is responsible for
checking the incoming packets only against part of the filter set. The authors demonstrate
the effect of some parameters including size of the filter set, number of blocks as well
as threads per block on the overall efficiency of the parallel kernel of packet classification.
The study would have been more comprehensive if the authors had adopted an efficient
analysis method to predict the effect of different characteristics of GPU and algorithm
on the overall performance and explain all the empirical results.

Zheng et al. (2015) experimented with Hierarchical Intelligent Cuts algorithm on GPU
with different numbers of threads and blocks. In their proposed model for kernel, each
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thread is responsible for classifying a certain number of packets. Qu et al. (2015)
experimented with bit-vector algorithm on a hybrid GPU-CPU system. In their proposed
kernel, on the coming of a new packet, five GPU threads are exploited, each of which
classifies the packet based on the value of each field and creates a bit vector. Next, the CPU
combines all bit vectors, which correspond to different fields of the packet in order to
find the best-matched filter. They show that reduction of four parameters including the
delay of transferring data from host to device, the time required for the kernel search,
the delay of transferring data from device to host, and the time required for combining
results enhances the performance.

These studies clearly indicate that research in the field of GPU-based packet
classification has not yet considered ABV algorithm. The reviewed studies highlight the
need for parallelizing ABV algorithm and exploiting a comprehensive analysis model to
predict its performance on GPU. Constructing such an analysis model for GPU-based
packet classification requires knowledge of system characteristics as well as the
algorithm’s nature.

In the next section, we explore our practical model for GPU-based classification of
IP packets according to ABV, which is enriched using TMM model.

PARALLEL IMPLEMENTATION OF ABV ALGORITHM

Several stages are needed for parallel execution of the aggregated bit-vector algorithm on
GPU. In the first step, the filter set is used to construct the corresponding trees which
are required in the aggregate bit-vector algorithm. Then the structures of the tree, filters,
headers of the packets and array for storing the results of classification are copied from
the host memory into the global memory of the graphic processor. After this step, the
grid structure is specified in CUDA by defining the number of blocks and the number
of corresponding threads in each block. Next, a predefined scenario is followed which
specifies how the threads can pick the packets and classify them concurrently. At the end
of scenario, the result matrix which contains the identification of rules which are best
matched with packets is transferred to the host memory.

After loading the filters of the filter set, their source and destination IP addresses
are used to establish the required trees based on the bit-vector algorithm. Given the
pre-specified aggregation size, the ABVs which correspond to the bit vectors of nodes
are computed and stored in those nodes. In this paper, the aggregation size is taken A = 10.
All this is considered as the pre-processing step of the algorithm.

After this pre-processing, the number of blocks and threads in each block is specified.
Now, it is the time to classify the packet by the threads. In the following, we will explain all
of the above steps according to the pseudo-code of Fig. 3. According to the pseudo-code,
the global memory of GPU is used for maintaining the required data structure of the
algorithm. This memory module has enough capacity to hold all of the required data set.
Hence, all threads of different blocks have access to the data laid in it. Given the number
of the described threads in GPU, each thread is responsible for classifying a definite
number of packets. Each thread can be distinguished from other threads using its
specific index in the block and the block index in the grid. As indicated in line 4, a unique
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Input: filters F, tree Src_IP Tree, tree Dst_IP_Tree, headers H
Output: Reslut_Array
Pre-Processing://performed within host (CPU)
1: Construct Src_IP_Tree and Dst_IP Tree from F
Transfer: // from host to global memory of GPU
2. GPUGlobal memory « CPUmemory(Src_IP Tree,Dst_IP_Tree,H,F, Result_Array)
|H|
|Blocks| x |Threads in Block|
4: ThreadIndex « threadldx +i X (|Blocks| x |Threads in Block|)
+(blockldx X |Threads in Block|)
3 packet « ReadPacket(ThreadIndex)
6: Sre_ABV « Classify(Packet, Src_IP_Tree)
T: Dst_ABV « Classify(Packet, Dst_IP_Tree)
8 ABV « AND(Src_ABV,Dst_ABV)
% BMF « Check ABV bits and Match(Other Fields)
10: if BMF # Null then

3: fori=0toi<

11 Result_Array(Packet_ThreadIndex, BMF)
12: end if

13: ieitl

14: end for

Transfer: // from global memory of GPU to host
13: CPU memory « GPU Global memory (Result_Array)

Figure 3 ABV pseudo-code. The pseudo-code of the proposed parallel ABV algorithm includes pre-
processing and processing (transferring data from the system memory to the device memory, classifying
packets concurrently, and finally transferring the results to the host memory).

Full-size K&l DOTI: 10.7717/peerj-cs.185/fig-3

Thread Index is computed for each thread. This number is used for specifying the packets
which should be classified by that thread.

The method to classify the packets by the threads is so that each thread chooses a
packet from the global memory of the device (line 5). Then, it performs the classification
operation based on the source and destination bit-vector trees which exist in the global
memory of the device. For this purpose, each packet is classified by traversing according
to its source/destination IP address on corresponding bit-vector trees (lines 6-7). Then, the
logical AND operation is performed on two ABVs which were achieved in the traversal
(line 8). Now, corresponding to any set bit in the resultant ABV, its corresponding parts
in the main bit vectors are examined from left to right. In this detailed examination,
the filters whose corresponding bits in both source and destination bit vectors are set
are tested to find the filter with the highest priority that matches completely with the
intended packet (line 9). For this purpose, other fields of packet are inspected linearly.
If the result of classification is not null, the index of the best-matched filter would be stored in
the proper index of Result_Array (lines 10-12). This operation is repeated for all packets.

Note that, to find the filter which best matches an input packet, it is necessary to
compare other fields of it with the corresponding fields of the candidate filters (line 9).
These fields include source port number, destination port number, and protocol number.
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Therefore, it may be required to compare the value of three fields of the packet with

the corresponding fields in all candidate filters. Regarding the considerable latency of
global memory, a trick is required to accelerate this process. We increase the speed of this
step by transferring the fields of the packet header to the local memory of the block (line 5).
Index of the filter which is best matched with the corresponding packet is stored in
Result_Array. This vector is transferred to the host memory as the final result of
packets classification (line 15). Finally, the occupied memory is returned to the system.

COMPLEXITY ANALYSIS

Computational and memory complexity computing is one of the important tools for
predicting and analyzing the efficiency of algorithms. Different analytical models have
been presented for studying the efficiency of parallelized algorithms in the platform of
graphic processors. Some models like TMM (Ma, Agrawal & Chamberlain, 2014a),
PGM (Kirtzic, Daescu ¢ Richardson, 2012), BSP (Amarés et al., 2015), HMM
(Nakano, 2013b), DMM (Nakano, 2014), UMM (Nakano, 2014), and MMM (Hagque,
Maza ¢ Xie, 2014) function asymptotically; in other words, in addition to the
characteristics of parallel algorithm, these models consider some of the main
characteristics associated with the architecture of graphic processor in computing
memory and computational complexities.

In contrast, some other analytical models called calibrated models address such details
in their efficiency analysis that are not important in asymptotic models, thereby analyzing
the complexity and approximating the efficiency of parallel algorithms on graphics
processors more accurately. For example, the calibrated method is used in the model
presented by Hong ¢ Kim (2009) or the model presented by Liu, Miiller- Wittig ¢
Schmidt (2007). The need for deep knowledge about the hardware details of the graphics
processor is among the problems of this model in having access to some of the required
parameters of analysis. Another problem of this model is that it does not consider the
effect of some parameters such as the hit rate of the cache memory of graphics processors.

A new model by Ma, Chamberlain & Agrawal (2014b) has recently been suggested for
analyzing the complexities of parallel algorithms on graphics processors. This model is
obtained from the combination of asymptotic and calibrated models. In this model, in
addition to asymptotic analysis, parameters such as the sequential processing time of the
algorithm, the number of processing cores, the number of transfers to/from memory
and the number of threads in each core are considered. In this paper, this model is
adapted for analyzing the performance of packet classification algorithms. The required
parameters for this analysis model are presented in Table 2.

In the combined model of analysis, the total time of executing ABV algorithm on the
CPU is obtained by Eq. (1) as:

Ty —ax2x (O(logN) + o({%}) 4 O(N)> (1)

According to our experimental setting, the parameters of Table 3 could be considered
in analytical computations. Consequently, the total time of executing the algorithm on the
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Table 2 TMM model parameters.

Parameter Description

Q Number of cores per core group (SMs)

L Time for a slow global memory access

p Total number of processors (cores)

T, Total number of operations in the program (work)

M Number of global memory transactions

T Number of threads per core

n Number of filters in classifier

a Number of packets

B, Number of active thread blocks on each SM

B, Number of requested thread blocks for run parallel algorithm

nr Number of threads on each block

n, Number of access to memory for register the result
Note:

The parameters required for the analytical prediction of the complexity of the parallel ABV algorithm are defined in

each row.

Table 3 Parameters used for complexity computation of ABV algorithm.

Parameter Notation/ Value
formula

Aggregate size A 10

Memory word size in Byte w 4

Number of GPU cores P 384

Number of threads Threads 3,072

GPU global memory access time L 100

Number of threads per core T 8

Memory access width C 32

Span of ABV 2 x O(logN) +%

Complexity of search on ABV O(log N)

Computational complexity of merging search results in T Oo([+8+1)

Computational complexity of merging search results in T, o([#=])

Complexity of finding best matched filter O(N)

Note:
The parameters of the TMM model are
in the table.

computed using the specifications of GPU and ABV algorithm and then inserted

graphic processor for the proposed kernel models and its memory complexity are

obtained by Eqgs. (2) and (3), respectively:

Ty = O max( L, T [L]xMxL
P — P7OO7T><P

- (max( x 2 x (0logN) + O([]) + OWV))

N
,2 % O(logN)—l—X, [

)

ﬁ] X 2 X (O(logN) + oqAI\k]—CD + O(N)) x 100))
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Table 4 System characteristics.

Characteristics
CPU Intel Corei5-6400T@2.2GHZ
RAM 4G
Operating system Windows8,64bit
GPU Model GeForce GT730
Cores 384
SMs 2
Max number of threads per block 1,024
Bus width (bit) 64
Clock rate memory 900 MHz
Note:

The specification of the CPU and the GPU of the system which was used in experiments are illustrated.

M=2x <O(logN) 4 o( L%D + O(N)> 3)

In order to assess the accuracy of the predicted complexities we have conducted some
experiments. In the following, after explaining the classification experiments on GPU as
well as CPU, the results are analyzed.

Implementation and evaluation

In this section, first ClassBench is introduced. This tool is used for producing synthetic filter
sets and synthetic packet headers. Then, the hardware specification of the computer
system and the GPU device which were used for executing the proposed kernel code is
explained. Afterward, the results of implementing the serial and parallel versions of ABV
algorithm on the synthetic dataset are analyzed and evaluated from the efficiency perspective.

ClassBench

ClassBench is a simulator for producing synthetic filters with desired distributions in the
geometric space of filters. This tool produces dummy packets corresponding to the
produced filters. Indeed, it creates filters with distributive parameters that are given to

it as input. The presence of this simulator satisfies the need for real and heterogeneous
filters of Firewalls, IP-Chains, and Access Control Lists. In the majority of the studies
(Deng et al., 2011; Kang & Deng, 2011; Varvello et al., 2016; Zheng et al., 2015; Zhou,
Singapura ¢ Prasanna, 2014), ClassBench has been used for producing the required data
structure due to a need for filters and packets that are close to reality in terms of structural
characteristics and statistical distribution. In this study, this tool was used to produce
the set of filters corresponding to ACL parameter containing 1K, 2K, 4K, 8K, and 10K of
filters along with 1K, 4K, 32K, and 256K of packets for evaluation of the kernel.

System setting

The proposed kernel has been implemented in a system with characteristics mentioned
in Table 4. In this implementation, the CUDA programming framework version 7
based on C++ language is used. In this study, we have used the whole capability of the
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Figure 4 Classification time in CPU. Each bar represents the time required for classifying the specified
number of packets in CPU. The number of filters is 1k, 2k, 4k, 8k, and 10k. The number of classified
packets is 1k, 4k, 32k, and 256k. Full-size K&l DOT: 10.7717/peerj-cs.185/fig-4

graphics card. Hence, given two SMs, 4096 threads are defined. In every SM, two thread
blocks with 1,024 threads are defined.

Evaluation of results

In this section, the efficiency of the suggested mechanism for parallelization on GPU is
studied from different aspects such as time of classification, throughput, and speed up.
Classification time is the time required by GPU to classify all packets. Throughput is
indicative of the number of packets classified per second. In this article, we have computed
speedup through computing the ratio of packet classification time in the proposed kernel to
the time of packet classification in the sequential version of the algorithm on CPU. The time
unit for computations is millisecond and the throughput unit is kilo packets per second.

As mentioned earlier, we used ACL dataset in our experiments. Therefore, in the
following, we will investigate the above benchmarks on ACL dataset. Figures 4 and 5 show
the classification time of different volumes of input packets using different ACL filter sets
of sizes ranging from 1K to 10k on CPU and GPU, respectively. In these two diagrams,
increasing the number of input packets causes a proportional increase in classification
time. For example, classification of 256K packets with 10K ACL filters on CPU lasts
598,754 ms, while it requires 97,485 ms on GPU. Therefore, GPU has been about 61.42
times faster than CPU.

For each number of filters labeled on the horizontal axis of the plot in Fig. 6, the
corresponding speedups are computed using Eqgs. (1) and (2) for pre-specified numbers of
packets ranging from 1K to 256k on CPU and GPU, respectively. These speedups are
illustrated in Fig. 6. Figure 7 illustrates corresponding speedups which have been
computed using the experimental results. In each case, the experimental speedup is lower
than or equal to the analytically predicted speedup. The reason is that in the analytical
computation of speedup, for predicting T, and Tp complexities, the worst cases are used
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Figure 6 Analytically predicted speedups. Each bar represents the analytically predicted speed ups for
classifying the specified number of packets. The number of filters is 1k, 2k, 4k, 8k, and 10k. The number
of classified packets is 1k, 4k, 32k, and 256k. Full-size K&l DOT: 10.7717/peerj-cs.185/fig-6

whereas in the experimentally acquired speedup the statistical properties of packets as
well as the filters can greatly affect T} and Tp. According to Fig. 7, in each case, by
increasing the number of packets, the speedup increases. This result confirms the
scalability of the parallel ABV when the number of input packets increases. The maximum
speedup is achieved in the classification of 256K packets with the ABV algorithm running
on a dataset with 2K filters. In this case, GPU is about 99.9 times faster than CPU.

The throughput of the sequential and parallel versions of the AVB algorithm in the
classification of different numbers of packets using pre-specified numbers of filters are
shown in the plots in Figs. 8 and 9, respectively. In all cases, the throughput of the parallel
kernel is about 60-65 times greater than the throughput of the sequential version of ABV.
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number of classified packets is 1k, 4k, 32k, and 256k. Full-size &) DOTI: 10.7717/peerj-cs.185/fig-8

In both figures, the throughput of packet classification is reduced by increasing the number
of filters. This is due to the inevitable increase in the complexity of the ABV search,
which is dependent on the number of filters. However, unlike the throughput of the
sequential ABV, the throughput of the parallel kernel of ABV is increased by increasing the
number of input packets. This result shows that the capability of hardware-managed
threads in hiding the latency in accessing the slow global memory of GPU as well as their
maximum concurrency is increased by increasing the number of input packets.

The amount of memory used for storing the ABV data structure corresponding to
different sizes of ACL filter sets is displayed in the diagram of Fig. 10. Based on this
diagram, the memory complexity of the ABV increases as the number of filters increases.
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Comparing the proposed method with recent works
In designing a parallel algorithm, it is more important to make it efficient than to make it
asymptotically fast. The relative efficiency of a parallel algorithm is defined as:

E P (4)
In the above equation, S and P represent the highest acquired speedup and the
number of processing cores on GPU, respectively. This metric reveals the maximum
efficiency of a parallel algorithm on a parallel system.
The efficiency of the proposed method is compared with the efficiency of recent parallel
implementations of three different packet classification algorithms (Varvello et al., 2016)
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Table 5 The comparison of processors efficiency in three different GPU-based packet classifications.

Efficiency of The lowest Number Number Type of Parallelized
processing acquired of SMs of cores graphic algorithm
cores speedup card
0.117 60 16 512 GTX580 Linear search
0.195 100 16 512 GTX580 Tuple search
0.214 110 16 512 GTX580 Bloom search
0.257 99 2 384 GT 730 ABV

Note:

The efficiency of the processing cores in different parallelizations of packet classification algorithms are computed and
compared. Rows one to three represent the efficiency of parallel versions of Linear search, Tuple search, and Bloom
search on GPU 580TX, respectively. The efficiency of parallel ABV on GT730 GPU is illustrated in row four.

in Table 5. It is obvious that the efficiency of the proposed method for the parallel
classification of packets using ABV is the highest. That is, our parallel implementation
of ABV, best exploits the resources of a parallel system.

CONCLUSION

Today, packet classification has become a fundamental process in many high-speed
network devices. Parallel implementation of low-complexity packet classification
algorithms on GPU-like highly-threaded machines can keep the speed of this process
as close as possible to the communication speed.

In this paper, we presented a method for parallelizing the ABV algorithm on GPUs
using the CUDA platform. In addition, despite recent blind parallelization of packet
classification algorithms, we use an analytical method which could predict the
performance of the proposed method. Parallel program developers can extend our
analytical framework to evaluate potential optimizations and predict the running time
of any packet classification kernel without actual execution.

In order to evaluate our work, required filter sets and packets were synthetically
generated using ClassBench tool. The experimental results show improvement in the
performance of the parallel ABV on GPU. This improvement could be expressed as
99.9 times speedup and 65 times enhancement in the throughput. In addition, the
experimental results confirm the scalability of the proposed kernel against incoming
packets. Moreover, comparing the maximum efficiency of the proposed method with
that of the latest implementation of three packet classification algorithms including linear,
tuple space and bloom filter approves the superiority of the proposed method.

The GPU cluster has been recently considered as a high-performance platform for
computation-intensive programs. Therefore, future studies should investigate how to
best use such accelerators for packet classification algorithms.
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