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ABSTRACT
In Computed Tomography (CT) imaging, one of the most serious concerns has
always been ionizing radiation. Several approaches have been proposed to reduce the
dose level without compromising the image quality. With the emergence of deep
learning, thanks to the increasing availability of computational power and huge
datasets, data-driven methods have recently received a lot of attention. Deep learning
based methods have also been applied in various ways to address the low-dose CT
reconstruction problem. However, the success of these methods largely depends on
the availability of labeled data. On the other hand, recent studies showed that training
can be done successfully without the need for labeled datasets. In this study, a
training scheme was defined to use low-dose projections as their own training targets.
The self-supervision principle was applied in the projection domain. The parameters
of a denoiser neural network were optimized through self-supervised training. It was
shown that our method outperformed both traditional and compressed sensing-
based iterative methods, and deep learning based unsupervised methods, in the
reconstruction of analytic CT phantoms and human CT images in low-dose CT
imaging. Our method’s reconstruction quality is also comparable to a well-known
supervised method.
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INTRODUCTION
Computed Tomography (CT) imaging is one of the most common tools used in the
diagnosis of diseases. The inside of the human body can be monitored and problematic
tissues, deformities, and lesions can be detected via CT. Despite these benefits, CT imaging
has one crucial downside: ionizing radiation. The radiation dose reduction in CT imaging
is possible in several ways such as: i) decreasing the number of projections, ii) reducing of
X-ray tube current, iii) narrowing the viewing angle.

During CT imaging, the source emits X-ray, and the detector data at different angles are
collected. These gathered data are known as CT projections, and the image created from
them is known as a CT image. The reconstruction in CT is the creation of images from
these noisy indirect projections. Filtered back projection (FBP), the most traditional
method used in CT imaging, works by projecting CT projections back to the image
domain. With the help of a filter, since low frequencies are sampled more than high
frequencies due to the system geometry, it reduces the effect of low frequencies and
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increases the weight of high frequencies. However, this operation increases the sensitivity
of the FBP method to noise. Therefore, when the projections are noisy or incomplete, FBP
method does not produce satisfactory results.

To overcome this limitation of the FBP method, iterative methods were developed.
Simultaneous algebraic reconstruction technique (SART), one of the most popular of these
methods, simultaneously back-projects the error for all projections (Andersen & Kak,
1984). Recently compress sensing based iterative reconstruction methods have been
proposed. Compressed sensing states that: if the information is sparse on a known basis,
this information can most likely be recovered by incomplete measurements (Donoho, 2006;
Candès, Romberg & Tao, 2006). Given that the information to be recovered is not sparse in
its original space, sparsifying transforms can be used. Among them, total variation (TV)
has been extensively used. TV minimization method aims to minimize the gradient
magnitude of the images, which constrains the solution set to piece-wise smooth images
(Rudin, Osher & Fatemi, 1992). Iterative and compressed-sensing-based methods were
merged and proposed for low-dose CT problem (Yu & Wang, 2009; Sidky & Pan, 2008).
Image domain denoisers were also used to address this problem. Non-Local means
(Buades, Coll & Morel, 2005) and Block Matching 3D (BM3D) (Dabov et al., 2007)
exploit the non-local similarities of the images and use these similarities for denoising.
These methods are quite hyperparameter dependent and use simplistic hand-crafted
priors.

Nowadays, deep learning based studies have become attractive with the increase in
computing capacity and the availability of large datasets. Numerous deep learning based
methods have been proposed for image domain inverse problems such as denoising,
deconvolution, and inpainting. Deep learning based methods have also been applied to the
low-dose CT problem. Convolutional neural networks (CNN) based methods were used as
denoisers in the image domain (Jin et al., 2017; Chen et al., 2017; Buzug, 2008; Yang et al.,
2018; Liu et al., 2020). Deep learning methods were also extended by applying iteratively
with classical reconstruction techniques (Adler & Öktem, 2018; Wu et al., 2017; He et al.,
2019).

Advancements in the deep learning field made it possible to define sophisticated
learning methods and learned constraints to further optimize low-dose CT
reconstructions. Wu et al. (2021) applied a residual-based network method by optimizing
the network using both measurement consistency and image quality awareness.
Spectral2Spectral (Guo et al., 2023) study used the similarity prior within the image-
spectral domain as a regularization term to constrain the network training. Deep learning
methods were also used in metal artifact reduction by applying the loss in the dual domain
(Zhou et al., 2022). Another method to improve the image quality of low-dose CT images is
to denoise the projections. Yang et al. (2023) applied this method by using transformer
architecture with self-attention. Wu et al. (2023) proposed a wavelet-improved denoising
for low-dose CT problems that exploit the score-based generative model approach.

For most of the deep learning based methods given, one of the most important factors of
the success is the availability of large datasets. Another field of focus aims to tackle this
problem by enabling denoising without the need for noisy-denoised pairs datasets.
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In order to address this issue, deep image prior (DIP) study suggested to use the
architecture of CNNs as a regularizer. Baguer, Leuschner & Schmidt (2020) combined this
approach with TV regularizer and applied this unsupervised deep CNN based method to
low-dose CT problem. Noise2Noise proposes a method for the denoising problem that
does not require noise-free target images (Lehtinen et al., 2018). However, it still requires
two independent noisy measurements of the same information. Noise2Self (Batson &
Royer, 2019) and Noise2Void (Krull, Buchholz & Jug, 2019) studies, on the other hand,
suggested that denoising can be performed using only the noisy measurement itself. In
other words, the image itself is used as the target image during the model training. One of
the problems that may arise at this point is that the model can converge to an identity
function. Noise2Self study suggested a kind of perturbation mechanism called Jth invariant
principle. Noise2Void study approached the denoising problem on a pixel scale and
defined a receptive field so that the pixel was not used during the estimation of that pixel.
Subsequently, studies (Quan et al., 2020; Xie, Wang & Ji, 2020) were also proposed to
prevent this convergence in different ways.

The opportunity of training on noisy target images could be quite valuable for low-dose
CT reconstruction. Since it is not always easy to obtain low-dose/normal-dose pairs to
create big datasets, various learning methods without noise-free targets have been
proposed. Noise2Inverse (Hendriksen, Pelt & Batenburg, 2020) study proposed a learning
method that exploits Noise2Noise (Lehtinen et al., 2018) principle by grouping projections
and using them as targets against each other. To learn a reconstruction method from a
single image, Noise2Filter (Lagerwerf et al., 2020) study combined Noise2Inverse and NN-
FBP (Pelt & Batenburg, 2013) methods.

In our study, we propose a method so-called Proj2Proj which customizes Noise2Self
method for the low-dose CT reconstruction problem by applying the self-supervision
principle in the projection domain. We used the self-supervision to train a neural network
that denoises the reconstruction. We were able to train this neural network with only low-
dose projections without the need for low-dose/normal-dose pairs whose availability might
be a big concern in this field. Our method outperformed traditional and compressed
sensing-based iterative methods and an unsupervised deep CNN based method in the
reconstruction of analytic phantoms and human CT images both qualitatively and
quantitatively. Furthermore, it produced such results that were comparable with a well-
known supervised approach, FBP+U-Net (Jin et al., 2017). In addition to peak signal-to-
noise (PSNR) and Structural Similarity (SSIM), the Learned Perceptual Image Patch
Similarity (LPIPS) (Zhang et al., 2018) metric was also used for the qualitative
comparisons, which focuses on the perceptual similarity of the results. The preliminary
results of this study were published in a leading conference in biomedical imaging. The
present article extends (Unal, Ertas & Yildirim, 2021) by detailing the mathematical
definition of the method and adding theoretical justification of the method, by training the
network with two different datasets, by extending the experiments with self-supervised and
supervised deep learning based methods and new metrics.

The article is organized as follows. The rationale and implementation of the
self-supervised training method are described in “Method”. The experiment datasets
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and settings, as well as the findings, are presented in “Experiments”. “Discussion” discusses
further details of the method. Finally, the last section brings the article to a conclusion.

METHOD
Normal-dose CT image acquisition process can be defined as follows:

yN ¼ ANx
� þ g; xN ¼ FBPðyNÞ (1)

where x� is the ground-truth X-ray attenuation of the body, AN is the normal-dose data
acquisition matrix, g is the data acquisition noise, yN is the normal-dose CT projections.
Conventionally, the normal dose CT image is reconstructed with the FBP method.

The low-dose reconstruction process can be represented as:

yL ¼ ALx
� þ g; xL ¼ FBPðyLÞ (2)

where x� is the ground-truth image, AL is the low-dose data acquisition matrix, yL is the
low-dose CT projections. Similarly, the low-dose CT image can be reconstructed with FBP
method and represented here as xL. However, xL does not usually have sufficient image
quality when it is compared with the ground truth image x�.

In the presence of normal-dose CT projections, a supervised reconstruction model can
be shown with the following equation:

h� ¼ argmin
h

Ex½jjfhðxLÞ � xNjj22� (3)

where fh is the deep neural network (DNN) which is parameterized with h, Ex is the
expectation over different x images, xL is the reconstructed low-dose image defined in (2),
and xN is the reconstructed normal-dose image defined in (1). The supervised model given
in (3) can be used in projection domain as follows:

h� ¼ argmin
h

Ey½jjANfhðxLÞ � yNjj22� (4)

where Ey is the expectation over different y projections. For the supervised solution to the
low-dose CT problem, both low-dose and normal-dose pairs of the same information are
required. DNN which is defined with fh learns how to map a low-dose image to a normal-
dose one. However, it is not easy to collect such data due to the sensitivity of human tissues
to ionizing radiation. The proposed method requires only the low-dose projections yL
without the need of yN or xN. This idea was formulated by defining a self-supervised loss
that uses only low-dose projections and images, yL and xL.

Ex;y½jjALfhðxLÞ � yLjj22� (5)

where Ex;y is an expectation over x and y random variables and the rest of the variables are
defined in (1) and (2). Our proposed self-supervised loss can be proven to converge the
supervised solution. Let’s replace yL in (5) with ALx� þ g using (2):

Ex;n½jjALfhðxLÞ � ALx
� � gjj22�: (6)
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If (6) is rewritten by expanding the l2-norm square:

Ex½jjðALfhðxLÞ � ALx
�Þjj22� þ Eg½jjgjj22� � Ex;g½2hALfhðxLÞ � ALx

�; gi� (7)

The second term is the expectation over g of jjgjj22 which is the variance of the noise and
not taken into account during the minimization since its gradient equals to zero. The third
term of the equation is expectation over x; g of �Ex;g½2hALðfhðxLÞ � x�Þ; gi� whose weight
becomes minimal in (7) since fhðxLÞ � x� ideally converges to zero. As a result, the first
term, Ex½jjðALfhðxLÞ � ALx�Þjj22�, becomes the most effective term in this optimization
problem which is actually correlated with the supervised loss defined in (3) and uses x�

random variable as the target.
In the previous paragraph, it is shown why self-supervised loss can be an effective

candidate to learn a mapping from low-dose to normal-dose. However, fh might converge
to an identity function in (5). To overcome this issue, Jth invariant principle was applied
(Batson & Royer, 2019) which proposes that N subset of the pixels are selected from noisy
target images and the selected pixels are perturbed using the neighbor pixels, and the loss is
defined based on only these pixels as in (8). In this way, the convergence of fh to an identity
function is prevented. To apply this principle to our Proj2Proj loss function, (5) is
rewritten as follows:

h� ¼ argmin
h

Ey½jjJðALfhðFBPðyLJcÞÞ � yLÞjj22� (8)

where J is the mask which filters only the Jth subset of the pixels, yLJc is the low-dose
projections whose Jth subset of pixels are perturbed. Finally, the proposed loss function can
learn from only low-dose projections without the need of normal-dose images or
projections.

The complete working schema of the proposed Proj2Proj reconstruction method is also
given in Fig. 1. The process can be examined in three parts as preprocessing, training, and
reconstruction and evaluation. In preprocessing, low-dose projections are created from the
CT images via low-dose CT forward operator. The obtained projection dataset is split into
training, validation, and test sets. For the training set projections, the Jth subset of the pixels
is perturbed and given as the input to FBP reconstruction algorithm. The perturbations are
done via the following steps:

� The input image is divided into square pieces with the help of a grid. In our setup, it is
selected as 4� 4.

� The pixel (ith) to be perturbed is selected by taking the modulo of the number of
iterations over the number of pixels in the grid (in our case 4 × 4 = 16). For example, if
the iteration number is 17, 17mod ð16Þ equals to 1.

� ith pixel of all the grids are perturbed with the average of all four neighbor pixels
excluding the ith pixel itself.

The output of FBP is denoised with the neural network fh and forward projected to
projection space via low-dose CT forward transform. The error is calculated between the
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output and the perturbed projections after the same Jth subset mask is applied to the error.
The neural network is optimized by minimizing the loss function in (8) with the Adam
(Kingma & Ba, 2015) optimizer. After the network weights (h) are optimized by the
training, they are used for the reconstruction. In the reconstruction phase, the input
projections are given to the FBP operator in raw form without perturbation. The output of
the FBP operator is denoised with the learned neural network fh� whose output is the
reconstructed image by the proposed approach.

EXPERIMENTS
The details of experiments and code are given at the code repository (https://github.com/
mozanunal/SparseCT).

Experimental setup
Deep lesion dataset (Yan et al., 2017) as human CT data and Shepp-Logan phantom and
ellipses dataset as synthetic data were used in the experiments. The image resolution was
selected as 512 × 512. The ellipses dataset consists of 36,400 artificially generated images
and it was split into training (32,000 slices), validation (3,200 slices), and test (3,200 slices)
datasets. DeepLesion dataset consists of 32,120 CT slices from 10,594 studies of 4,427
unique patients. It was split into three datasets as training (60%), validation (20%), and test
(20%). For simulated low-dose CT setup, 64-view parallel beam projections were generated

Figure 1 Proposed working schema for self-supervised low-dose CT reconstruction. Image source
credit: Yang et al. (2018). Full-size DOI: 10.7717/peerj-cs.1849/fig-1
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using Radon transform, and detector resolution was selected as 512 × 1 pixels. The
projections were contaminated with the noise level between 30–40 dB.

Comparison methods
FBP, SART (Andersen & Kak, 1984), SART+TV (Yu & Wang, 2009), SART+BM3D
(Dabov et al., 2007), DIP+TV (Baguer, Leuschner & Schmidt, 2020) and FBP+U-Net (Jin
et al., 2017) methods were compared with our self-supervised reconstruction method.
Inverse Radon transform was used with a ramp filter for FBP. Iteration number = 40 and
relaxation parameter = 0.15 were chosen for SART hyperparameters. The TV weight was
set to 0.9 and sigma parameter of BM3D was chosen as 0.35. All these hyperparameters
were chosen to generate the highest PSNR values in the validation sets. In addition to these
methods, another BM3D (sigma = 0.20) reconstructor was used in the comparisons which
gives the highest SSIM (Wang, Simoncelli & Bovik, 2003) for the validation set. For the
implementation of the FBP+U-Net, the same network architecture of the proposed
method was used and the number of parameters and iteration number were selected as the
same for a fair comparison. For the realization of DIP+TVmethod, the reference study was
used (Baguer, Leuschner & Schmidt, 2020) and Skipnet (Wang et al., 2018) was used as the
network architecture. The network overfitted to a single image for 4,000 iterations with a
learning rate of 0.02. The hyperparameters were obtained from the validation dataset.

Network architecture and training
U-Net, a commonly used architecture in denoising applications, was selected for the
denoiser neural network. Since U-Net is an auto-encoder, it is successful at extracting
features of the images and then decoding them from these latent representations (Chen
et al., 2017). Besides, thanks to the skip connections between the scales of the encoder and
the decoder, the gradient flow is facilitated and the higher-order structure can be
transferred to the output more easily. In our model, a five-scale structure was preferred
with the convolutional filter numbers being 64, 128, 256, 512, 1,024 from the first layer to
the last layer.

The number of parameters and training iterations were chosen as 2.160.000 and
200.000, respectively. In total, the self-supervised method was trained for 28 hours on a
computer with an RTX2080 TI graphics card. The learning rate was chosen as 0.0001 and
ADAM (Kingma & Ba, 2015) optimizer was used.

The proposed self-supervised method was trained with two different schemes: i)
Proj2Proj method trained on ellipses dataset, ii) Proj2Proj method trained on human CT
dataset. Each was used in the comparisons of the corresponding dataset.

RESULTS
In order to validate the proposed method, the experiments were done on Shepp-Logan,
ellipses dataset and human CT dataset with different noise levels. PSNR, SSIM, and LPIPS
metrics were used for quantitative assessment. In addition to the numerical analysis, 1-D
profile analysis and visual examination for qualitative assessment were used.
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Table 1 summarizes the quantitative performance of reconstruction methods with
64-view CT projections from the ellipses dataset at different noise levels. FBP produced the
poorest results based on these metrics for all noise levels. The performance of SART was
significantly improved when its output image was denoised via TV or BM3Dwith different
r values. As an unsupervised deep CNN based method, DIP+TV, showed slightly worse
results than iterative and regularized reconstruction methods in general. However, the
performance of DIP+TV increases with decreasing noise level. Considering the
unsupervised architecture, Proj2Proj outperforms DIP+TV in all metrics, especially in
higher noise levels which is the main challenge in low-dose CT reconstruction. However,
the supervised method generated significantly better results than Proj2Proj in terms of
PSNR and SSIM values. LPIPS aims to mimic human perception in terms of measuring
image similarity. Therefore, it is a good candidate for measuring the quality of CT images
in terms of clinical usability. For the LPIPS metric, the proposed Proj2Proj method
produced significantly higher results than iterative and regularized methods and a
competitor unsupervised method, DIP+TV. Moreover, it produced slightly higher values
than the supervised equivalent of our method, FBP+U-Net and this is also supported by
the visual assessments.

The reconstruction of Shepp–Logan phantom (Shepp & Logan, 1974) results are given
in Fig. 2. FBP reconstruction suffered from severe artifacts. SART generated better results
than FBP however it still contains significant background noise. Although TV and BM3D
suppress this background noise successfully to some extent, the detectability of fine details
was adversely affected due to their over-smoothing effect. Compared to these methods,
Proj2Proj method performed the best in both suppressing the background noise and
recovering the fine details. Considering deep CNN based reconstructions, DIP+TV suffers
from deformities in details though it provides a smoother background than SART.
However, Proj2Proj and supervised FBP+U-net produced better results than all other
methods with a smoother background in Proj2Proj. For a better qualitative comparison,
Fig. 2 is zoomed which favored our method in recovering sharper features. In Fig. 3, the
reconstruction results of an ellipses image with a noise level of 33 dB are given. When the
performance of all methods are compared, there is a strong analogy with those obtained for

Table 1 The ellipses dataset results for 64 projections with the noise level 30 to 40 dB SNR.

30 dB SNR 33 dB SNR 37 dB SNR 40 dB SNR

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

FBP 12:14� 1:66 0:25� 0:01 0:23� 0:03 14:97� 1:62 0:29� 0:02 0:28� 0:02 18:52� 1:54 0:38� 0:03 0:37� 0:01 20:84� 1:55 0:46� 0:04 0:39� 0:02

SART 19:38� 1:62 0:41� 0:04 0:50� 0:05 21:76� 1:56 0:50� 0:05 0:51� 0:04 24:36� 1:61 0:63� 0:05 0:55� 0:06 25:77� 1:69 0:71� 0:05 0:61� 0:06

SART+TV 27:59� 1:93 0:85� 0:03 0:60� 0:02 27:84� 1:95 0:87� 0:03 0:68� 0:07 27:99� 1:97 0:88� 0:02 0:73� 0:05 28:04� 1:97 0:88� 0:02 0:81� 0:02

BM3D 0.35 27:95� 2:08 0:90� 0:03 0:60� 0:09 28:45� 2:01 0:91� 0:02 0:68� 0:08 28:70� 1:94 0:92� 0:02 0:79� 0:04 28:76� 1:94 0:92� 0:02 0:84� 0:04

BM3D 0.20 26:89� 2:26 0:85� 0:07 0:62� 0:07 28:27� 2:13 0:90� 0:03 0:71� 0:07 28:76� 2:03 0:92� 0:02 0:77� 0:05 28:87� 2:06 0:92� 0:02 0:86� 0:03

DIP+TV 25:84� 2:21 0:79� 0:08 0:50� 0:12 27:36� 1:83 0:85� 0:05 0:65� 0:07 28:55� 1:78 0:90� 0:03 0:79� 0:06 28:82� 1:76 0:91� 0:02 0:89� 0:02

FBP+U-Net 30:48� 1:80 0:93� 0:02 0:81� 0:05 31:27� 1:79 0:94� 0:01 0:83� 0:05 31:90� 1:85 0:95� 0:01 0:86� 0:03 32:21� 1:89 0:95� 0:01 0:90� 0:01

Proj2Proj 28:12� 1:70 0:91� 0:02 0:81� 0:04 28:36� 1:76 0:92� 0:01 0:85� 0:02 28:54� 1:85 0:92� 0:01 0:87� 0:02 28:63� 1:85 0:93� 0:01 0:92� 0:01
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Shepp–Logan phantom given in Fig. 2. Our proposed Proj2Proj method gave superior
results in both suppressing background noise and recovering the morphological structures.

Table 2 summarizes the quantitative performance of reconstruction methods with
64-view CT projections from human CT dataset at different noise levels. Proj2Proj method
gave better performance than the state-of-the-art regularized iterative methods and DIP
+TV. Since FBP+U-Net was trained in a supervised setting on the human CT data, it
produced higher metrics in terms of the PSNR and SSIM. It should be emphasized that
these metrics totally rely on the perfectness of ground truth images. However, in terms of
LPIPS values, Proj2Proj produced similar results with FBP+U-Net.

The reconstruction of human CT image results were given in Figs. 4 and 5 with different
noise levels. When the reconstruction quality of all methods was compared, a strong

Figure 2 Shepp–Logan phantom reconstruction results from 64-view projections with 37 dB noise
level: (A) ground truth, (B) FBP, (C) SART, (D) SART+TV, (E) SART+BM3D (r ¼ 0:35), (F)
SART+BM3D (r ¼ 0:20), (G) DIP+TV, (H) FBP+U-Net, (I) Proj2Proj trained on ellipses dataset.

Full-size DOI: 10.7717/peerj-cs.1849/fig-2

Figure 3 Ellipses image reconstruction results from 64-view projections with 33 dB noise level: (A)
ground truth, (B) FBP, (C) SART, (D) SART+TV, (E) SART+BM3D (r ¼ 0:35), (F) SART+BM3D
(r ¼ 0:20), (G) DIP+TV, (H) FBP+U-Net, (I) Proj2Proj trained on ellipses dataset. Image source
credit: Ellipses dataset, https://github.com/jleuschn/dival/tree/master/dival/datasets.

Full-size DOI: 10.7717/peerj-cs.1849/fig-3
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Table 2 The human CT dataset results for 64 projections with the noise level 30 to 40 dB SNR.

30 dB SNR 33 dB SNR 37 dB SNR 40 dB SNR

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

FBP 15:03� 1:16 0:30� 0:02 0:27� 0:02 17:51� 0:95 0:36� 0:02 0:28� 0:02 20:28� 0:63 0:44� 0:02 0:31� 0:01 21:84� 0:57 0:50� 0:02 0:34� 0:01

SART 22:20� 1:03 0:51� 0:04 0:67� 0:09 24:29� 0:79 0:62� 0:04 0:68� 0:08 26:41� 0:69 0:73� 0:03 0:69� 0:04 27:44� 0:78 0:78� 0:03 0:71� 0:05

SART+TV 25:95� 0:80 0:84� 0:01 0:66� 0:07 26:02� 0:81 0:85� 0:01 0:72� 0:05 26:04� 0:82 0:86� 0:01 0:79� 0:03 26:05� 0:82 0:87� 0:01 0:84� 0:02

BM3D 0.35 28:29� 0:93 0:92� 0:01 0:75� 0:06 28:38� 0:96 0:92� 0:01 0:79� 0:05 28:44� 0:98 0:93� 0:01 0:82� 0:04 28:45� 0:99 0:93� 0:01 0:86� 0:02

BM3D 0.20 28:80� 0:96 0:91� 0:01 0:75� 0:06 29:13� 0:98 0:93� 0:01 0:79� 0:05 29:25� 1:02 0:93� 0:01 0:82� 0:04 29:27� 1:03 0:93� 0:01 0:86� 0:02

DIP+TV 25:49� 0:69 0:86� 0:03 0:79� 0:05 26:14� 0:84 0:89� 0:02 0:81� 0:04 26:40� 0:89 0:91� 0:01 0:84� 0:04 26:45� 0:91 0:91� 0:01 0:85� 0:03

FBP+U-Net 34:07� 1:01 0:97� 0:01 0:87� 0:02 35:09� 1:07 0:97� 0:01 0:89� 0:03 36:14� 1:13 0:98� 0:01 0:93� 0:01 36:65� 1:20 0:98� 0:01 0:95� 0:01

Proj2Proj 26:00� 0:77 0:90� 0:01 0:84� 0:03 26:10� 0:81 0:90� 0:01 0:88� 0:02 26:16� 0:83 0:91� 0:01 0:91� 0:01 26:21� 0:85 0:91� 0:01 0:94� 0:02

Figure 5 Human CT image reconstruction results from 64-view 37 dB SNR noise level: (A) ground
truth, (B) FBP, (C) SART, (D) SART+TV, (E) SART+BM3D (r ¼ 0:35), (F) SART+BM3D
(r ¼ 0:20), (G) DIP+TV, (H) FBP+U-Net, (I) Proj2Proj trained on human CT dataset. Image
source credit: Yang et al. (2018). Full-size DOI: 10.7717/peerj-cs.1849/fig-5

Figure 4 Human CT image reconstruction results from 64-view with 33 dB SNR noise level: (A)
ground truth, (B) FBP, (C) SART, (D) SART+TV, (E) SART+BM3D (r ¼ 0:35), (F) SART+BM3D
(r ¼ 0:20), (G) DIP+TV, (H) FBP+U-Net, (I) Proj2Proj trained on human CT dataset. Image
source credit: Yang et al. (2018). Full-size DOI: 10.7717/peerj-cs.1849/fig-4
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analogy was observed with those obtained from Shepp-Logan and ellipses dataset. In Fig. 4,
streak artifact is observed in the image (i). Since FBP method is used as the initial
reconstruction for our method, the structured artifact that arises from the initial
reconstructor (FBP) is prolonged by the proposed network. The noise level also plays an
important role in the formation of structural artifacts. The noise level in Fig. 4 is higher
than the one in Fig. 5 which adversely affects the reconstruction quality of FBP the most.
As a result, the image (i) reconstructed by Proj2Proj in Fig. 5 does not have similar
artifacts.

Figures 6 and 7 show the 1-D intensity profiles passing through the dashed line from the
reconstructed images which enables us to see how smoothly the intensities change. As the
numerical and visual evaluation suffers from poor results, FBP, iterative, and regularized
reconstruction methods are not given in the comparisons except for SART+BM3D with
r ¼ 0:20. The black line represents the 1-D intensity of ground truth and other methods
while the red line is a copy of ground truth to show how well the reconstruction methods
fit over the ground truth. In Fig. 6, SART+BM3D shows an over-smoothing through the
line while DIP+TV shows undesired spikes along the same line. Proj2Proj and FBP+U-Net
have similar line intensity profiles but Proj2Proj has slightly sharper edges than FBP+U-
Net. In Fig. 7, a similar analogy is observed with SART+BM3D and DIP+TVmethods. The
ground truth image in Fig. 7 is the one reconstructed with normal-dose taken from the

Figure 6 The 1-D profiles of the reconstructions from left to right: ground truth, SART+BM3D
(r ¼ 0:20), DIP+TV, FBP+U-Net, proposed Proj2Proj method. Image source credit: Yang et al.
(2018). Full-size DOI: 10.7717/peerj-cs.1849/fig-6

Figure 7 The 1-D profiles of the reconstructions from left to right: ground truth, SART+BM3D
(r ¼ 0:20), DIP+TV, FBP+U-Net, proposed Proj2Proj method. Image source credit: Yang et al.
(2018). Full-size DOI: 10.7717/peerj-cs.1849/fig-7

Unal et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1849 11/16

http://dx.doi.org/10.7717/peerj-cs.1849/fig-6
http://dx.doi.org/10.7717/peerj-cs.1849/fig-7
http://dx.doi.org/10.7717/peerj-cs.1849
https://peerj.com/computer-science/


dataset and thus it consists of small minor spikes throughout the line which can be
considered as the noise by its nature. FBP+U-Net here smooths out these spikes and
creates a smoother image however in our proposed Proj2Proj method, it is evident that the
small spikes are also preserved.

Another parameter that should be considered is the reconstruction time given in
Table 3. Although the training times are quite long for the self-supervised method, the
reconstruction times on the trained neural networks are very short thanks to modern
computer technology.

DISCUSSION
Widely used image quality measurement metrics, SSIM and PSNR, have some limitations
such as smoothness-biased and pixel-to-pixel difference measurement rather than
focusing on perceptual similarity. Besides, in CT imaging, the reference images obtained
from normal-dose CT scans contain noise and artifacts by its nature. The supervised
method learns a mapping from low-dose to normal-dose images including all these
imperfections as well. This might lead the supervised method to generate very high PSNR
and SSIM scores even though it may not give the best reconstruction quality. Recently a
new approach was proposed (Zhang et al., 2018) to measure the similarity between two
images which outperformed traditional metrics when we compare them with human
preference. For CT reconstruction problem, the perceptual difference is more important
than pixel-to-pixel differences. Therefore LPIPS metrics were also added to the
quantitative results.

One of the challenges of our proposed training method is the convergence of the
network weights to an identity function. To overcome this problem, our method uses the
Jth invariance method proposed in the Noise2Self (Batson & Royer, 2019) study, which
performs a pixel-based denoising assuming the independence of inter-pixel noise. In a low-
dose CT image, noise cannot be modeled independently on a pixel-by-pixel basis due to
the back projection operator. Therefore, the Jth invariance method was applied in the
projection domain. When the self-supervision principle was also tested in the image
domain, the network converged to an identity function, which led the network to produce
a result almost identical to the output of the FBP operator.

One of the questions that may arise is why noise reduction is done in the image domain.
Although there are studies that eliminate noise in the sinogram domain (Lee et al., 2019;
Anirudh et al., 2018), CNN neural networks are generally designed for natural images, and
sinogram images have different characteristics from natural images. Besides, DIP study
(Ulyanov, Vedaldi & Lempitsky, 2018) proposes an unsupervised method for image
domain inverse problems by exploiting the structure of Deep CNNs.

Table 3 The execution times of the reconstructions in seconds.

FBP SART SART+TV SART+BM3D DIP+TV FBP+U-Net Proj2Proj

0.38 34.16 36.91 41.95 320.20 1.21 1.27
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Another discussion regarding the implementation of the proposed method might be
choosing FBP as the initial reconstruction method. FBP, the most conventional
reconstruction method, is used in FBP+U-Net (Jin et al., 2017), and a very similar
architecture with FBP+U-Net was chosen for a fair comparison. On the other hand,
iterative or regularized iterative methods for the initial reconstruction might help to obtain
improved results. Among various supervised low-dose CT reconstruction methods, FBP
+U-Net was found one of the best and fairest candidates to be used in the comparisons
considering its network architecture and reconstruction approach.

Clinical applicability, which is one of the biggest factors in measuring the success of a
reconstruction method, increases when all details can be reconstructed and structural
details can be easily examined by radiologists. In our study, the deep lesion (Yan et al.,
2017) dataset was selected as medical CT data and we aimed to predict the lesion detection
performance of reconstruction methods. In addition to the superiority of the Proj2Proj
method in quantitative analysis, the fact that it is clearly more successful than the other
methods in the recovery of fine details, which shows its clinical applicability potential.

CONCLUSION
In this study, it was shown that low-dose CT reconstruction problem can be tackled by
defining a training scheme to use low-dose projections as their own training targets even if
the low-dose/normal-dose pairs of large datasets are not available. Even though traditional
metrics might favor other methods depending on test setups and noise levels, considering
detailed visual assessments including 1-D profiles and a novel deep CNN based quality
assessment metric which evaluates the clinical usability of the results the best compared to
the other metrics, Proj2Proj method is the most favorable one among all others including a
well-known supervised method, FBP+U-net. It has great potential in other medical
imaging problems where the same limitations exist and the assumptions used in this study
are valid. As an advanced stage of this study, the method can be adapted to other imaging
modalities.
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