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ABSTRACT
Multi-modal multi-objective problems (MMOPs) have gained much attention during
the last decade. These problems have two or more global or local Pareto optimal
sets (PSs), some of which map to the same Pareto front (PF). This article presents a
new affinity propagation clustering (APC) method based on the Multi-modal multi-
objective differential evolution (MMODE) algorithm, called MMODE_AP, for the suit
of CEC’2020 benchmark functions. First, two adaptive mutation strategies are adopted
to balance exploration and exploitation and improve the diversity in the evolution
process. Then, the affinity propagation clustering method is adopted to define the
crowding degree in decision space (DS) and objective space (OS). Meanwhile, the
non-dominated sorting scheme incorporates a particular crowding distance to truncate
the population during the environmental selection process, which can obtain well-
distributed solutions in both DS and OS. Moreover, the local PF membership of the
solution is defined, and a predefined parameter is introduced to maintain of the local
PSs and solutions around the global PS. Finally, the proposed algorithm is implemented
on the suit of CEC’2020 benchmark functions for comparison with some MMODE
algorithms. According to the experimental study results, the proposed MMODE_AP
algorithm has about 20 better performance results on benchmark functions compared
to its competitors in terms of reciprocal of Pareto sets proximity (rPSP), inverted
generational distances (IGD) in the decision (IGDX) and objective (IGDF). The
proposed algorithm can efficiently achieve the two goals, i.e., the convergence to the
true local and global Pareto fronts along with better distributed Pareto solutions on the
Pareto fronts.

Subjects Artificial Intelligence, Optimization Theory and Computation
Keywords Multi-modal multi-objective optimization, Differential Evolution Algorithm,
Affinity propagation

INTRODUCTION
Most of optimal decision issues in research and application can be summarized as multi-
objective problem (MOP),which is generally formulated as follows (Rao, 1991):

min F(x)= (f1(x),f2(x),...,fm(x))T (1)

where x = (x1,x2,...,xn)T ∈ � is the decision vector of dimension n and � ∈ Rn

is the feasible space. The image set, S = {F(x)|x ∈�}, is called OS. The feasible
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Figure 1 Illustration of a two-objective MMOPwith global Pareto optimal set (PS) and global Pareto
front.

Full-size DOI: 10.7717/peerjcs.1839/fig-1
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Figure 2 Illustration of a two-objective multi-modal multi-objective problem (MMOP) with global
and local PS and PF.

Full-size DOI: 10.7717/peerjcs.1839/fig-2

solutions x1 is dominated by x2 on the condition that fi(x1)≤ fi(x2),∀i=1 ,2,...,m and
∃j ∈ {1,2,...,m},fj(x1)< fj(x2). Furthermore, if a certain solution is not Pareto dominated
by any other solutions, it is called a non-dominated solution. The set of all non-dominated
solutions constitutes a Pareto optimal set (PS) and its image in objective space (OS) forms
the Pareto front.

In recent years, the study on multi-objective evolutionary algorithms (MOEAs) (Deb,
2001) is in the development stage. Many efficient algorithms have been proposed, such
as non-dominated sorting based genetic algorithm (NSGA-II) (Deb et al., 2002), multi-
objective evolutionary algorithm based on decomposition (MOEA/D) (Zhang & Li, 2008),
ε-dominance based multi-objective evolutionary algorithm (ε-MOEA) (Deb, Mohan &
Mishra, 2005), improving the Strength Pareto Evolutionary Algorithm for Multi-objective
Optimization (SPEA2) (Zitzler, Laumanns & Thiele, 2001). However, theseMOEAs focused
on finding the Pareto Front in OS, ignoring the convergence and diversity in decision space
(DS). So, these algorithms are inefficient in solving MMOPs, which have multiple PSs in
DS mapping to the same Pareto front in OS as shown in Figs. 1 and 2. Figure 1 depicts an
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MMOP example, illustrating that the distance between two points is large in the DS while
mapping to the same objective vector.

Many problems in the real world have exhibited multi-modal characteristics, e.g.,
feature selection problems (Yue et al., 2019), the design of space missions (Schutze, Vasile
& Coello, 2011) and imaging problems (Sebag et al., 2005). Obtaining all optimal solutions
is necessary for decision-makers (DMs) to understand the problem entirely. Furthermore,
it can be affected by some constraints that transfer to another solution. Therefore, decision-
makers hope to provide equivalent and diverse solutions formaking decisions when dealing
with MOPs.

To address MMOPs, many researchers have proposed different multi-modal multi-
objective optimization algorithms (Qu, Suganthan & Liang, 2012; Li et al., 2017; Shi et
al., 2019; Maity, Sengupta & Sha, 2019; Li, 2010) and have shown good performance on
benchmark problems. The most representative is the omni-optimizer proposed by Deb &
Tiwari (2005), which extended NSGAII with several techniques, including Latin hypercube
sampling-based population, restricted mating selection and alternative crowding distance
in both DS and OS. In 2016, Liang, Yue & Qu (2016) proposed a modified NSGAII called
DN_NSGAII which adopted the crowding distance (CD) mechanism for forming the
mating pool to enhance the diversity in the DS. Additionally, the CD method was used
to maintain multiple PSs in the DS. However, the CD method is only considered in
the DS without considering the OS. To address the limitations of existing multi-modal
multi-objective particle swarm optimization techniques, Yue, Qu & Liang (2018) proposed
a MO_Ring_PSO_SCD method, which utilized ring-topology to construct a stable niching
to enhance the diversity. Moreover, a comprehensive special crowding distance (SCD) is
designed to describe the crowding degrees considering both DS and OS. Then, Liu, Yen
& Gong (2018) adopted two archive and recombination strategies in TriMOEA-TA&R to
solve MMOP. Zhang et al. (2019) designed a new algorithm, using the clustering method
to search for PSs and maintain the diversity. The proposed algorithm enhance the balance
between exploration and exploitation.

Recently, numerous multi-objective multi-modal evolutionary algorithms (MMEAs)
have been introduced for solving MMOPs. In 2021, Liang et al. (2021a) combined the
clustering method and elite selection mechanism in MMODE. Clustering-based special
crowding distance (CSCD) method is designed to obtain a well-distributed population in
DS andOS.Kahraman et al. (2022)proposed an improvement ofMOAGDE (Duman, Akbel
& Kahraman, 2021) called DSC-MOAGDE. In this method, three spaces were created and
strategies using different reference spaces were designed, which balances the exploitation-
exploration successfully and avoids the issue of premature convergence in both spaces. The
DSC method has been proven to be an effective solution to overcome local solution traps.
In 2022, Gao et al. (2022) proposed a decomposition-based multi-modal multi-objective
evolutionary algorithm MOEA/D-SS, which adopts a density-based estimation strategy for
estimating the number of PSs. MOEA/D-SS can faithfully locate all PSs more accurately.
The environmental selection is developed to adjust sub-population size to maintain the
diversity dynamically. To solve the problem of premature convergence, Keivanian &
Chiong (2022) designed an enhanced ICA variant MOFAEICA to tackle MMOPs that
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adopted two parallel fuzzy reasoning mechanisms. A novel penalized sigma diversity index
is developed for estimating the diversity of solutions in the same rank during Pareto
front approximation. Qu et al. (2022) proposed a grid-guided multi-objective particle
swarm optimizer (GG-MOPSO), which adopted the grid-guided technique to improve the
diversity and search efficiency.

Although there are many MMEAs, most works have the same drawbacks. Most MMEAs
only concentrate on finding a set of trade-off solutions in objective space instead of finding
multiple equivalent solution vectors in decision space. Therefore, balancing the diversity
between DS and OS seems to be a challenge for them. This article proposes a novel MMEA
to deal with these challenges. Further details are provided in the next section.

The main contributions of this work can be enumerated as follows:
(1) MMODE_AP: The differential evolution algorithm, termed as MMODE_AP, to solve

MMOPs is proposed. The affinity propagation clustering technique is designed to
group individuals in the same non-dominated layer into different groups. Based on
this approach, it is more likely to promote algorithm convergence in the optimization
evolution process.

(2) Mutation strategy: Two mutation strategies are customized to bring about priorities
in the solution generation process. Based on the strategy, the exploration and mining
performance are adaptively balanced and the diversity in DS and OS are further
improved.

(3) Comprehensive crowding degree: The CSCD measures the comprehensive crowding
distance of solutions to balance diversity and convergence. The traditional crowding
distance method can be improved by using the comprehensive crowding distance to
reflect the real crowding degree better.

(4) Archive updating: the archive updating approach is designed to balance the convergence
and diversity quality of solutions, in which the quality of the global and local PSs is
controlled by a parameter that can be set by the user. Based on this, the algorithm
can simultaneously identify global and local PSs with high convergence and diversity.
Specifically, when ε = inf , the MMODE_AP degrades into a regular MMEA that
concentrates on global PSs.

PRELIMINARIES OF STUDY
MODE is widely used for solvingMMOPs, which are named asMMEAs. First, the definition
of DE algorithm and APC is presented. The corresponding definitions, including local PS,
global PS, local PF and global PF, can be referred to Li et al. (2022). In a typical MMOP,
only one global PF maps to either a single PS or multiple global PSs, as shown in Fig. 1.
However, in an MMOP with a local Pareto front (MMOPL), there exist local PFs and only
one global PF, as depicted in Fig. 2.

Related studies
The literature shows that numerous researches have been carried out on (i) crowding
distance method, (ii) mutation operator design, and (iii) environmental selection for
better PF sets.
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First, several crowding distance-based methods for selecting non-dominated solutions
have been introduced in the literature. In NSGA-II,Deb et al. (2002) designed the crowding
distance method to truncate the population and find PFs and PSs effectively. As mentioned
in Kahraman et al. (2022), DS, OS and unified space are the main reference spaces in the
crowding distance approach. Therefore, there are three cases to be discussed.

The first case only references the DS. For example, Liang, Yue & Qu (2016) proposed
a modified NSGAII called DN_NSGAII, which employs the CD mechanism in DS. Wu
a, Gong & Wang (2021) introduced a k-means and species-based algorithm (KSDE),
which combines k-means clustering and species-based optimization techniques. In
KSDE, clustering separates the population into sub-regions based on spatial positional
relationships. The crowding factor in KSDE was equal to the population size. A few of
these include evolutionary multi-objective optimization algorithm with a decomposition
strategy in the decision space (EMO-DD) (Yang et al., 2021), a prediction strategy based
on decision variable analysis (DVA) (Zheng et al., 2021), improved artificial electric field
algorithm for multi-objective optimization (Petwal & Rani, 2020), and the evolutionary
algorithm using a convergence penalized density method (CPDEA) (Liu et al., 2020).

The second case only references the OS. For example, Zadeh, Sayadi & Kosari (2019)
presents the EMOPSOalgorithm, an efficientmeta-model-based collaborative optimization
architecture for solving high fidelity multi-objective multidisciplinary design optimization
problems. Star topology was employed in the Pareto-based crowding distance method.
Aiming at the MOP with uncertain parameters, Huang et al. (2022) designed an outlier
removal (OR) mechanism and a new crowding distance in the NSGA-II, the negative
effects of parameter uncertainties are reduced. The new method, OR-NSGA-II, can adapt
to the MOP with parameter uncertainties. A few of these include a reference-point-
based many-objective evolutionary algorithm (NSGA-III) (Deb & Himanshu, 2014), the
multi-objective equilibrium optimizer with exploration exploitation dominance (MOEO-
EED) strategy (Abdel-Basset et al., 2021), multi-constraint multi-objective evolutionary
algorithm (MC/MOEA) (Liagkouras & Metaxiotis, 2021), and guided population archive
whale optimization algorithm (GPAWOA) (Got, Moussaoui & Zouache, 2020).

The third case references both the OS and DS. For example, in the omni-optimizer
algorithm (Deb & Tiwari, 2005), alternative crowding distances in both DS and OS are
embedded to extend NSGAII. Yue, Qu & Liang (2018) modified the crowding distance
in the omni-optimizer and proposed MO_Ring_PSO_SCD, which referenced both DS
and OS adopting ring-topology to construct the stable niching for better explore ability.
In this method, a comprehensive SCD is designed to describe the crowding degrees
considering both DS and OS. Liang et al. (2021a) designed a CSCD method calculating
the comprehensive crowding degree to achieve a evenly distributed population in both
DS and OS. A few of these include a novel MMOEA with dual clustering in the decision
and objective spaces (MMOEA/DC) (Lin et al., 2021), the Multi-modal Multi-objective
Differential Evolution Algorithm Using Improved Crowding Distance (MMODE_ICD)
(Yue et al., 2021), an evolutionary algorithm using a convergence-penalized densitymethod
(CPDEA) (Liu et al., 2020) and a novel multi-modal multi-objective differential evolution
algorithm (MMO_CDE) (Zhou et al., 216).
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Since the crowding-distance calculation is performed in the unified space, both the DS
and OS simultaneously affect the density. Recently, Kahraman et al. (2022) proposed a
crowding distance-based archive handling approach using unified space.

Second, studies are performed to balance exploitation and exploration capabilities by
designing mutation operators. Yue et al. (2021) utilized a differential vector generation
approach during the variation step to balance exploration and exploitation, thereby
enhancing the diversity in both DS and OS. Javadi, Zille & Mostaghim (2021) employed
weighted sum crowding distance and a neighborhood mutation operator to improve the
convergence performance of the NSGA-II. Zhou et al. (216) proposed a neighborhood-
based dual mutation operator by developing two novel mutation operators, which provide
a better balance between exploration and exploitation in locating multiple equivalent
PSs. Liang et al. (2021b) designed a mutation strategy based on variable classification and
elite individuals to improve the performance of offspring by using two different mutation
strategies. To avoid premature convergence, Petwal & Rani (2020) combined bounded
exponential crossover with polynomial mutation. Abdel-Basset et al. (2021) adopted the
Gaussian method to improve mutation strategy.

Third, numerous recent works have been conducted on the environmental selection
process. Wei et al. (2022) designed the environmental selection strategy by combining
non-dominated sorting and hierarchical clustering to choose promising solutions for the
next generation. Zhou et al. (216) developed a neighborhood-based dual mutation (NDM)
strategy and a clustering-based environmental selection (CES) mechanism to maintain
the convergence and diversity of Pareto optimal solutions. Gao et al. (2022) combined
the estimation strategy and the greedy selection in the environmental selection phase to
maintain the population diversity. Das et al. (2023) employed an improved environmental
selection strategy to pick out high-quality solutions and balance convergence and diversity
in solvingMOPs. Li et al. (2021) designed an environmental selection strategy that designed
an operator that removes inefficient solutions to maintain good convergence and diversity
of PSs. Zhang et al. (2022) proposed a two-stage environmental selection strategy to obtain
better convergence of the OS and the distribution of the DS. In addition, several successful
studies on environmental selection mechanisms are a novel constrained many-objective
optimization EA with enhanced mating and environmental selections (CMME) Ming et
al. (2022), a dynamic multi-objective optimal evolutionary algorithm which is based on
environmental selection and transfer learning (DMOEA-ESTL) He, Zheng & Peng (2022),
an MOEA with a flexible reference point for clustering (MOEA/FC) Liu et al. (2021), and
a Multi-modal Multi-Objective differential evolution algorithm using the clustering-based
special crowding distance method and elite selection mechanism (MMODE_CSCD) (Liang
et al., 2021a).

To summarize, to identify global and local PSs that meet user’s preferences in resolving
MMOPs, it is essential to carry out intensive research on the crowding-distance calculation,
mutation operator design and environmental selection in MMEAs. However, compared to
recent studies, there is no universally recognized approach for the above three procedures.
We are confident that the approach introduced in this study can address the current gap
effectively.
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Differential evolution
Differential evolution (DE) is a simple and powerful evolutionary algorithm introduced
by Price & Storn (1997). DE uses a series of operations to generate offspring, such as
mutation and crossover of current population individuals. DE algorithm also has lower
spatial complexity. Because of its excellent characteristics, the DE algorithm is more
conducive to the processing of large-scale, high-complexity optimization problems in
many fields, including computer science, biology, and industry (Cappiello et al., ; Bano,
Bashir & Younas, 2020; Ibrahim et al., 2015; Taha et al., 2023; Chen et al., 2022; Zhang, Yu
& Wu, 2021). The classical DE algorithm (Storn & Price, 1997) contains four main steps
during the optimization process. The algorithmic details of the four steps are outlined in
Algorithm 1.

Algorithm 1 Outline of DE’s main procedure
Step 1. Initialize population P randomly and evaluate the individuals of P .
Step 2. While stopping criterion is not be met, do

2.1 for Pi,i=1 ,2,...,NP in P repeat:
(2.1.1) Create candidate from parent Pi
(2.1.2) Evaluate the candidate
(2.1.3) If the candidate is better, the candidate replaces the parent. Other-
wise, the discarded the candidate.
2.2 Randomly enumerate the individuals in P .

Affinity propagation
The clustering method (Marques & Wu, 2002; Frey & Dueck, ) divides objects into groups
or clusters according to their similarities in some attributes. The general description of
clustering analysis is as follows:

Let X = {x1,x2,...,xN } ∈Rn, xi is a vector of X. Clustering is the process of dividing X
into m non-empty subsets according to some criteria, which satisfies the following three
conditions:

Ci 6=∅,i= 1,2,..,m (2)

∪
m
i=1Ci=X (3)

Ci∩Cj =∅,i 6= j,i,j = 1,2,...,m. (4)

The vectors contained in Ci are more similar to each other. The Ci are called clusters of
X . The typical clustering process includes the following steps: feature selection, proximity
measure, clustering criterion, clustering algorithm, and result validation. The similarity
matrix is denoted by SN×N , and the similarity is measured by the Euclidean distance
between two data points. The elements on the diagonal line of the matrix S(i,i) are
replaced by p(k),k= 1,2,...,N , which affects the final number of clusters. The larger value
of p(k) is associated with the greater probability that this data point will eventually become
a cluster. Therefore, P = [p(1),p(2),...,p(N )] is called the reference degree.
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Figure 3 Message-passing in APC. (A) Sending responsibilities. (B) Sending availabilities.
Full-size DOI: 10.7717/peerjcs.1839/fig-3

In the affinity propagation algorithm, responsibility and availability are two significant
factors to indicate information between points; the former is denoted as responsibility
r(i,k), and the latter is availability a(i,k). The responsibility r(i,k) reflects the accumulated
evidence for how suitable point xk is to serve as the exemplar for point xi, which is illustrated
in Fig. 3A. The availability a(i,k) reflects the accumulated evidence for how appropriate it
would be for point xi to choose point xk as its exemplar, as shown in Fig. 3B. In practice,
the cyclic calculation process of AP algorithm is the process of exchanging massage of
matrix A= [a(i,k)]N×N and matrix R= [r(i,k)]N×N . Initialize the factor a(i,k)= 0. Then,
update the two factors with the following formula:

r(i,k)= s(i,k)−maxk 6=k ′[a(i,k ′)+ s(i,k ′)] (5)

a(i,k)=


min

0,r(k,k)+∑
i′ 6=i

[0,r(i′,k)]

,i 6= k∑
i′ 6=i

max[0,r(i′,k)],i= k
(6)

For the point xi, the value of k that maximizes a(i,k)+r(i,k) can identify point xi as an
exemplar if k = i, otherwise point xi belongs to the cluster that k is the exemplar. The AP
algorithm implements an iterative process searches for clusters until a high-quality set of
exemplars and corresponding clusters are assembled. The procedure of the AP algorithm
is depicted in the following Algorithm 2:

PROPOSED METHOD
Framework of MMODE_AP
The procedure and flow chart of the MMODE_AP algorithm are depicted in Algorithm 3
and Fig. 4, respectively:

Solution generation
Since the differential evolution operator (Price, Storn & Lampinen, 2005) usually
outperforms other mutation operators in single-objective optimization, the MMODE
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Algorithm 2 Outline of AP’s main procedure
Input: DATA: points to be clustered, Gmax : maximum iterative generations
Output: cluster which each data point belongs
Step 1. Initialization: generation counter t = 0; reference degree p(k); simi-
larity matrix S;
Step 2. main loop:

2.1 Calculate matrix A= [a(i,k)]N×N and R= [r(i,k)]N×N
2.2 Update the matrix A and R according to the formula:

r t (i,k)= (1−λ)∗ r t (i,k)+λ∗ r t−1(i,k)
at (i,k)= (1−λ)∗at (i,k)+λ∗at−1(i,k)

2.3 Determine the center of the points
2.4 Distribution of each point
2.5 t = t+1

Step 3. Stop iteration: if t > Gmax , print out the result , otherwise turn to
Step 2.

Algorithm 3Main steps of MMODE_AP
Input: MOPs: Multi-objective optimization problems; n: population size ;
Gmax : Maximum Generation;
Output: A: Archive
1. Generation counter t = 1.
2. Initialization population Pt ={x1,x2,...,xNP}
3. While t <Gmax
4. Set external archive At =∅.
5. Non-dominated sorting on Pt to obtain P∗

6. For each xi ∈ Pt ,i= 1,2,...,n identify an exemplar
7. Generate a new solution offspring OPt = solution generation ( xi) // Al-
gorithm 4
8. Preserve the new solution P ′=OPt ∪P∗

9. Update the population Pt+1 environmental selection ( P ′) // Algorithm
5

10. Update the archive At+1// Algorithm 6
11. End while

algorithm adopts it and uses the following two methods to improve its performance, which
is shown in Algorithm 4.

Firstly, adopt theDE/rand/2 strategy or theDE/current-to-exemplar/1 strategy according
to the random value. If the random value is less than p1, then select five random solutions
from the whole population and utilize the DE/rand/2 strategy to produce a candidate
solution. Otherwise, use the DE/current-to-exemplar/1 strategy with the probability 1−p1,
where p1= 1− Gc−1

maxgen , Gc refers to the current generation number while maxgen refers to

the maximum generation number. These two parameters Gc and Gc−1
maxgen serve the same role

of temperature and cooling schedule came from the method of simulated annealing (SA).
The original DE does not have such a parameter and in many cases it may be considered
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Environmental selection//Algorithm 6

[FrontNo] = ranking (�' = ���⋃�∗)//Ref

[42]

[CSCD]= APC method (�')//Algorithm 3

[��+1]=Pruning (�', FrontNo,CSCD)

Update the archive //Algorithm 7

(i) Obtain the Arcℎive_global

(ii) obtain the Arcℎive_local

(iii) Prune the Arcℎive_local

��+1 = [������_������ ∪ ������_�����]

Archive of non-dominated solutions

�� = � ∄� ≺ �, � ∈ �

�� = �(�) � ∈ ��

Figure 4 The flow chart of MMODE_AP.
Full-size DOI: 10.7717/peerjcs.1839/fig-4

an advantage and thus introduction of such a parameter is to be justified together with
the formula for p1 as other decreasing functions can be used here similar to SA cooling
schedules. Hence, the exploration ability decreases from the initial process of evolution
to the end as p1 decreases from 1 to 0. In the proposed selection mechanism, individuals
to generate difference vectors are selected in two methods adaptively. The first selection
method enhances exploration ability and avoids iterations falling into local optima, the
second method helps improve the convergence and diversity in DS and OS. Therefore, a
probabilistic-based mutation strategy is used for the mutation. Next, repair the candidate
solution to avoid violating the boundary constraints. There are other approaches for
handling boundary constraints in DE. Lampinen (2002) replaced parameter values that
violate boundary constraints with random values generated within the feasible range.
Kozlov, Samsonova & Samsonova (2016) introduce a new parameter to transform y ′i . Here,
we adopted one more convenient way to replace parameter values that violate boundary
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Algorithm 4 Outline of solution generation
Input: parent solution x ; adaptive method parameter p1;
Output: candidate solution y
1. Generate a rand value r
2. If r < p1

Select five different random solutions xr1,xr2,xr3,xr4,xr5 from the
whole population.

Create a candidate solution use DE/rand/2 strategy: yi = xr1 + F ∗ [(xr2 −
xr3)+ (xr4−xr5)]

Else
Create a candidate solution use DE/current-to-exemplar/1 strategy:
yi= xi+F ∗[(xexemplar−xi)+ (xr1−xr2)]

End

3. Repair the candidate solution: y ′i =

{
ai y ′i < ai
bi y ′i > ai
y ′i otherwise

where ai and bii =

1(,2,...,n) is the lower and upper boundaries.

4. Crossover the candidate solution: y
′′

i =

{
y ′i if randj <Cr or j = k
yi otherwise

where j = 1,2,...,n and randj ∈ U [0,1], Cr is crossover rate, k is a random
integer in the range of [1,n ].

Return y
′′

i .

constraints with their upper and lower boundary values. Then, the crossover is used to
mutate the candidate to improve its quality further. In this operator, Cr denotes the
control parameter. Sometimes, the newly produced candidate may violate the boundary
constraints. In such cases, we simply replace them with the closest boundary value.
Moreover, this approach does not require the construction of a new candidate. It is worth
mentioning that the DE’s mutation operation is only included in the MMODE_AP. That
is, the selection operation is redefined in the next part. This design’s purpose is that the
DE mutation operator is invariant of any orthogonal coordinate rotation, which can
solve multi-complicated Pareto sets (PSs) (Li & Zhang, 2009). The reason why these two
mutation strategies are adopted in the solution generation process is that the exploration
and exploitation abilities are balanced, and the diversities inDS andOS are improved. In the
first strategy, the DE/rand/2 approach is used to enhance the exploration ability and avoid
trapping into the local area. In the second strategy, select the one in the first non-dominated
front as the exemplar. xexemplar refers to the learning model selected by non-dominated
sorting methods, intending to achieve a uniform distribution of solutions on PS. Learning
models represent individuals with excellent quality and lowdensity, andwe hope to generate
more excellent solutions around these model individuals. ‘Comprehensive comparison’
demonstrates the efficacy of the suggested adaptive individual selection approach.
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Environmental selection
The environmental selection aims to truncate the population to obtain the best NP
individuals. In MMODE_AP, the truncation, which consists of sorting the individuals with
non-dominated sorting and evaluating the individuals with the crowding distance metric
proposed in NSGA-II, is employed to create a promising population. Algorithm 5 shows
the procedure of environmental selection.

Algorithm 5 Outline of environmental selection
Input: current population P ′

Output: next generation population Pt+1
1. Assign the solutions x ∈ P ′ to fronts F1,F2,...,Fl and calculate the CSCD
using APC method// Algorithm 2

2. Add all individuals in P ′ to Pt+1
3. If |Pt+1|>NP then
4. Iteratively add individuals from Fi to Pt+1. If |F1|+|F2|+...+|Fl−1| = s<
N , |F1|+|F2|+...+|Fl |>N , the next parent population Pt+1 is constructed
from the member of the sets F1,...,Fl−1, and from N−smembers of the set
Fl according to the CSCD.
5. End if
6. Return Pt+1.

Archive update
After the environmental selection strategy, the diversity of the global optimal solution
is maintained. However, the obtained solutions are not satisfactory regarding their
convergence quality. Furthermore, all the local PFs are not completely reversed. The
archive, including Archive_global and Archive_local , is applied to improve the convergence
performance and control the quality of local PFs respectively. Notably, a predefined
parameter is introduced to control the completeness of the local PSs and PFs.

The steps followed by updating the archive are explained in Algorithm 6. The primary
task is to preserve two populations, Archive_global and Archive_local . First, execute non-
dominated sorting on the current Archive At and pick up the non-dominated solutions
to form Archive_global . Then add the remaining solutions into RemainPop and delete the
solutions in RemainPop close to solutions in Archive_global . It is generally considered that
if a point is close to one point in the DS, they are also likely to be near in the OS. Calculate
the distance of all pairs of solutions in the RemainPop. Specifically, the Euclidean distance
is adopted to measure. Moreover, a predefined parameter ε is introduced to calculate
the Pareto domination relationship between solutions. Specifically, we have the following
formula:

Adis= ε∗

( n∏
i=1

(xmax
i −xmin

i )

) 1
n

(7)

Here,Adis represents the average distance of the DS. In the same layer, xj is considered the
neighbor of xi if and only if the distance of xj and xi is smaller than Adis in the DS. Where n
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Algorithm 6 Outline of archive update
Input: current Archive At , Archive max size Asize , predefined parameter ε
Output: next Archive At+1
1. Assign the solutions x ∈At to fronts F1,F2,...,Fmaxf ,Fno= 1,2,...,maxf .
2. Obtain the global PF Archive_global =At (Fno== 1)
3. Assume RemainPop = At (Fno ∼= 1), then the nearest solutions to
Archive_global are deleted and calculate the distance of all pair of solutions
in the RemainPop.
4. Obtain the Pareto domination relationship between pair of solutions
of RemainPop according to ε and calculate the Local PF membership (
LocalM ).
5. Find the index of individual whose LocalM equals zero: index =
At (LocalM == 0), then obtain Archive_local =RemainPop(index).
6. Merge two types archive: At+1= [Archive_global∪Archive_local].
7. If |At+1|>Asize then
8. Prune Archive_local by non_domination sorting.
9. End if
10. Return At+1.

denotes the dimension of the DS. xmax
i and xmin

i denote themaximum andminimum values
of the i_th decision variable of current front, respectively. ε is a domain positive parameter
controlling the average number of neighbors. Specifically, the optimal solutions of local
PSs can not be dominated by any other solutions in the neighbor solutions. Moreover, the
local PF membership is calculated within neighboring solutions. The neighbors of xi are
denoted as Nx . If there is no solution in Nx dominates xi, then xi is a local Pareto optimal
solution of current layer of RemainPop. This way, the solution in the local PS will not be
compared with the solution in the global PSs. Therefore, the local PSs can be found. The
local PF membership of xi is computed as follows:

LocalM =
ni∑
j=1

Bi,j (8)

where Bi,j = 1 if and only if xj ≺ xi and Bi,j = 0; otherwise. ni denotes the number of
neighbors of xi in the set Nx . Based on the definition of local PF, the one whose LocalM
equals 0 can be considered a local Pareto optimal solution. An appropriate value of ε can
balance the quality of the local PF (if it exists) and enhance the efficiency of finding all
local Pareto solutions. It is worth noting that the setting of ε is dispensable on the prior
information about the problem. Actually, ε can serve as an indicator of the difference
between the global and local PFs. If the problem possesses several global and local PS,
we suggest setting ε ∈ [0.01,0.1] according to the experiment results. Otherwise, ε= inf
and MMODE_AP transform into a regular MMEA focusing only on global PS in this
situation. By setting different values of parameter ε, the local PSs and the solutions
surrounding the global PS can be maintained. Notably, if there are acceptable solutions
in At+1 ( |At+1| ≤ Asize), then we return At+1. Otherwise, if we prune Archive_local by
non-domination sorting approach until the population size ofAt+1 is less than the threshold
value Asize . The prune method is consistent with the environmental selection operation.
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Table 1 Features of the CEC 2020 benchmark functions.

Function name F1 F2 F3 F4 F5 F6 N_ops
(N_global + N_local)

MMF1 × ×
√

Convex Nonlinear × 2+0
MMF2 × ×

√
Convex Nonlinear × 2+0

MMF4 × ×
√

Concave Nonlinear × 2+0
MMF5 × ×

√
Convex Nonlinear × 2+0

MMF7 × ×
√

Convex Nonlinear × 2+0
MMF8 × ×

√
Concave Nonlinear × 2+0

MMF10 × ×
√

Convex Linear × 1+0
MMF11 × ×

√
Convex Linear

√
1+0

MMF12 × ×
√

Convex Linear
√

1+0
MMF13 × ×

√
Convex Nonlinear

√
1+0

MMF14
√ √ √

Concave Linear
√

2+0
MMF15

√ √ √
Concave Linear

√
1+0

MMF1_e × ×
√

Convex Nonlinear × 2+0
MMF14_a

√ √ √
Concave Nonlinear

√
2+0

MMF15_a
√ √ √

Concave Nonlinear
√

1+0
MMF10_l × ×

√
Convex Linear × 1+1

MMF11_l × ×
√

Convex Linear
√

1+1
MMF12_l × ×

√
Convex Linear

√
1+1

MMF13_l × ×
√

Convex Nonlinear
√

1+1
MMF15_l

√ √ √
Concave Linear

√
1+1

MMF15_a_l
√ √ √

Concave Nonlinear
√

1+1
MMF16_l 1

√ √ √
Concave Linear

√
2+1

MMF16_l 2
√ √ √

Concave Linear
√

1+2
MMF16_l 3

√ √ √
Concave Linear

√
2+2

Notes.
F1-F6 are respectively scalable number of variables, scalable number of objectives, Pareto optima known, PF geometry, PS geometry and scalable number of PS. N_ops repre-
sents the number of PS to be obtained. N_global and N_local represent the number of global PS and the number of local PSs, respectively.

THE EXPERIMENTAL STUDY
Experimental settings
Benchmark problems
In order to validate the performance of the proposed algorithm, this chapter adopts the
CEC’2020multi-modalmulti-objective optimization benchmark suite to test the algorithm.
This benchmark suite includes 24 test functions with multiple features, as shown in Table 1.
Details about the test suite can be found in the corresponding literature. Consequently,
the experimental conditions for MMEAs were used (Liang et al., 2020). Experimental run
settings are provided below:

• All algorithms run 21 times independently on each benchmark problem.
• The population size is set as 200 * N_ops and N_ops means the number of local and
global PS to be obtained for the problem.
• Maximal fitness evaluations (MaxFEs) was used as the termination criterion. The
MaxFEs value was assigned as 10,000 *N_ops.
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• The experimental environment uses 11thGen Intel(R)Core(TM) i5-11320H@3.20GHz
3.19 GHz; 16 GBmemory;Windows 11 operating system. The algorithm is implemented
in MATLAB R2015a.

The details for each benchmark problem can be referred to (Liang et al., 2020).

Performance metrics
Four performance indicators including rPSP (Yue et al., 2019), 1/HV (Liang et al., 2020),
IGD (Zhou, Zhang & Jin, 2009) in DS (IGDX) and IGD in OS (IGDF) are employed to
discuss the results of the competing algorithms by Liang et al. (2020). Among these four
indicators, rPSP and IGDX measure the extent of spread attained in the obtained optimal
solution in DS, while rHV and IGDF are adopted to examine the population distribution in
OS. Furthermore, a satisfactory IGDX generally has a beneficial IGDF, while a reasonable
IGDF does not mean a favorable IGDX (Liang et al., 2020).

Competitor algorithms
In order to validate the effectiveness of the proposed algorithm, the state-of-the-art
MMEAs, DSC-MOAGDE (Kahraman et al., 2022), MO_PSO_MM (Liang et al., 2018),
MO_Ring_PSO_SCD (Yue, Qu & Liang, 2018), DN-NSGAII (Liang, Yue & Qu, 2016),
Omni_Opt (Deb & Tiwari, 2005), NSGA-II (Deb et al., 2002), and SPEA2 (Zitzler,
Laumanns & Thiele, 2001) are chosen as the comparison algorithms. In order to get
statistically sound conclusions in this comparison, the specific parameter settings in each
algorithm are consistent with the original papers and the actual reference points for both
PFs and PSs are provided in the original papers. Moreover, the Wilcoxon rank-sum test
(Wilcoxon, 1945) with p< 0.05 and the Friedman test (Friedman, 1939) are employed to
compare MMODE_AP with other competitor algorithms. If MMODE_AP performs better
or worse than the competitor algorithm, ‘‘+ ′′ or ‘‘−′′ is labeled respectively. In addition,
if the two algorithms have no obvious difference, ‘‘≈′′ is labeled.

Comprehensive comparison
The performance of the proposed algorithm on test suites is analyzed in this section. The
statistical metric values (i.e.,mean and standard deviation values) are shown in Tables 2–5.
In comparison tables, the best index values are highlighted in bold. In addition, the
average rankings calculated by the Friedman test are shown in Table 6. Due to article
length limitations, the results of a typical approximated set obtained by all algorithms are
provided in the Fig. S1.

The superiority ofMMODE_AP is depicted in the statistical data in Tables 2–6. Statistical
comparison results show that MMODE_AP has the best solution performance for the test
problems used in the experiment. As we know, the smaller the value of rPSP and 1/HV,
the better the convergence and diversity of obtained solutions. Table 2 shows that NSGAII
achieves the best average 1/HV values on ten functions. DSC-MOAGDE and DN-NSGAII
rank second and third on 9 and 8 functions, respectively.MMODE_AP obtains good results,
with a smaller 1/HV than other competitors, but occasionally worse than DN-NSGAII,
DSC-MOAGDE and NSGA-II. For MMF7, MMF11, MMF12 and MMF13 test functions,
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Table 2 Comparison of 1/HVmean and standard deviation obtained by all algorithms for CEC 2020 benchmark problems.

1/HV MMODE_AP DSC-MOAGDE MO_PSO_MM MO_Ring_PSO_SCD DN-NSGAII Omni_Opt NSGAII SPEA2

MMF1 1.1437± 0.0001 1.1446± 0.0003(≈) 1.1438± 0.0002(+) 1.1449± 0.0002(+) 1.1447± 0.0005(+) 1.1440± 0.0005(+) 1.1439± 0.0007(≈) 1.1442± 0.0002(+)

MMF2 1.1495± 0.0010 1.1719± 0.0056(+) 1.1616± 0.0025(+) 1.1686± 0.0026(+) 1.1608± 0.0126(+) 1.1514± 0.0062(≈) 1.1524± 0.0065(≈) 1.1757± 0.0112(+)

MMF4 1.8473± 0.0009 1.8529± 0.0027(+) 1.8487± 0.0005(+) 1.8513± 0.0010(+) 1.8488± 0.0004(+) 1.8476± 0.0002(+) 1.8467± 0.0001(≈) 1.8524± 0.0039(+)

MMF5 1.1437± 0.0002 1.1446± 0.0007(+) 1.1438± 0.0001(≈) 1.1449± 0.0003(+) 1.1443± 0.0005(+) 1.1438± 0.0007(≈) 1.1434± 0.0005(−) 1.1444± 0.0004(+)

MMF7 1.1432± 0.0001 1.1445± 0.0003(+) 1.1434± 0.0001(+) 1.1445± 0.0002(+) 1.1448± 0.0005(+) 1.1438± 0.0002(+) 1.1432± 0.0002(≈) 1.1440± 0.0002(+)

MMF8 2.3704± 0.0014 2.3904± 0.0070(+) 2.3719± 0.0024(≈) 2.3909± 0.0190(+) 2.3673± 0.0010(−) 2.3648± 0.0003(−) 2.3634± 0.0004(-) 2.3851± 0.0122(+)

MMF10 0.0801± 0.0035 0.0775± 0.0003(≈) 0.0780± 0.0002(≈) 0.0795± 0.0003(≈) 0.0829± 0.0027(+) 0.0807± 0.0032(≈) 0.0817± 0.0031(≈) 0.0796± 0.0029(≈)

MMF11 0.0689± 0.0000 0.0689± 0.0000(+) 0.0689± 0.0000(+) 0.0690± 0.0000(+) 0.0689± 0.0000(+) 0.0689± 0.0000(≈) 0.0689± 0.0000(−) 0.0689± 0.0000(+)

MMF12 0.6355± 0.0000 0.6367± 0.0009(+) 0.6368± 0.0006(+) 0.6394± 0.0013(+) 0.6362± 0.0007(+) 0.6633± 0.0627(+) 0.6355± 0.0001(≈) 0.6360± 0.0002(+)

MMF13 0.0542± 0.0000 0.0543± 0.0001(+) 0.0543± 0.0000(+) 0.0544± 0.0000(+) 0.0543± 0.0000(+) 0.0543± 0.0000(+) 0.0542± 0.0000(−) 0.0543± 0.0000(+)

MMF14 0.3420± 0.0219 0.3293± 0.0008(≈) 0.3497± 0.0157(≈) 0.3545± 0.0151(≈) 0.3269± 0.0088(−) 0.3315± 0.0088(≈) 0.3551± 0.0092(≈) 0.3852± 0.0598(≈)

MMF15 0.2509± 0.0092 0.2344± 0.0009(≈) 0.2451± 0.0107(≈) 0.2435± 0.0117(≈) 0.2314± 0.0103(−) 0.2421± 0.0113(≈) 0.2402± 0.0065(−) 0.2490± 0.0314(≈)

MMF1_e 1.1618± 0.0135 1.2147± 0.0008(+) 1.1527± 0.0012(≈) 1.1690± 0.0127(≈) 1.2147± 0.1093(≈) 1.1554± 0.0085(≈) 1.1539± 0.0060(≈) 1.1609± 0.0125(≈)

MMF14_a 0.3579± 0.0166 0.3252± 0.0009(≈) 0.3288± 0.0194(−) 0.3358± 0.0272(−) 0.3179± 0.0111(−) 0.3312± 0.0088(−) 0.3502± 0.0045(≈) 0.3587± 0.0474(≈)

MMF15_a 0.2592± 0.0116 0.2245± 0.0009(≈) 0.2408± 0.0081(−) 0.2408± 0.0099(−) 0.2446± 0.0157(−) 0.2425± 0.0138(−) 0.2396± 0.0099(−) 0.2652± 0.0244(≈)

MMF10_l 0.1051± 0.0050 0.1036± 0.0003(≈) 0.0996± 0.0038(−) 0.1058± 0.0037(≈) 0.1766± 0.0102(≈) 0.1492± 0.0118(≈) 0.1566± 0.0106(≈) 0.2747± 0.0347(−)

MMF11_l 0.0690± 0.0001 0.0688± 0.0000(−) 0.0688± 0.0000(−) 0.0689± 0.0000(−) 0.0688± 0.0000(−) 0.0688± 0.0000(−) 0.0688± 0.0000(−) 0.0688± 0.0000(−)

MMF12_l 0.8975± 0.1014 0.6355± 0.0006(−) 0.6361± 0.0002(−) 0.6371± 0.0005(−) 0.6354± 0.0000(−) 0.6353± 0.0000(−) 0.6352± 0.0000(−) 0.6354± 0.0001(−)

MMF13_l 0.0549± 0.0002 0.0542± 0.0009(−) 0.0542± 0.0000(−) 0.0543± 0.0000(−) 0.0542± 0.0000(−) 0.0542± 0.0000(−) 0.0542± 0.0000(−) 0.0542± 0.0000(−)

MMF15_l 0.2639± 0.0125 0.2253± 0.0009(−) 0.2346± 0.0050(−) 0.2315± 0.0065(−) 0.2328± 0.0086(−) 0.2313± 0.0041(−) 0.2372± 0.0039(−) 0.2716± 0.0386(≈)

MMF15_a_l 0.2578± 0.0092 0.2223± 0.0009(−) 0.2308± 0.0076(−) 0.2357± 0.0059(−) 0.2339± 0.0116(−) 0.2295± 0.0040(−) 0.2361± 0.0025(−) 0.2683± 0.0253(≈)

MMF16_l 1 0.2466± 0.0138 0.2259± 0.0034(−) 0.2319± 0.0049(−) 0.2328± 0.0130(−) 0.2209± 0.0038(−) 0.2284± 0.0048(−) 0.2352± 0.0020(−) 0.2440± 0.0205(≈)

MMF16_l 2 0.2591± 0.0109 0.2250± 0.0008(−) 0.2308± 0.0050(−) 0.2300± 0.0075(−) 0.2251± 0.0040(−) 0.2295± 0.0045(−) 0.2349± 0.0027(−) 0.2598± 0.0165(≈)

MMF16_l 3 0.2485± 0.0080 0.2255± 0.0009(≈) 0.2299± 0.0032(−) 0.2302± 0.0074(−) 0.2226± 0.0041(−) 0.2265± 0.0018(−) 0.2344± 0.0030(−) 0.2530± 0.0199(≈)

+ 9/24 7/24 9/24 9/24 5/24 0/24 9/24

≈ 8/24 6/24 5/24 2/24 8/24 10/24 11/24

− 7/24 11/24 10/24 13/24 11/24 14/24 4/24

Notes.
Bold numbers indicate the best result in the row of data.
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Table 3 Comparison of 1/PSPmean and standard deviation obtained by all algorithms for CEC 2020 benchmark problems.

rpsp MMODE_AP DSC-MOAGDE MO_PSO_MM MO_Ring_PSO_SCD DN-NSGAII Omni_Opt NSGAII SPEA2

MMF1 0.0248± 0.0011 0.0278± 0.0022(+) 0.0237± 0.0012(≈) 0.0293± 0.0011(+) 0.0597± 0.0093(+) 0.0498± 0.0087(+) 0.0717± 0.0118(+) 0.0352± 0.0033(+)

MMF2 0.0241± 0.0134 0.0301± 0.0076(≈) 0.0172± 0.0024(≈) 0.0258± 0.0050(+) 0.0554± 0.0204(+) 0.0781± 0.0624(+) 0.0581± 0.0346(+) 0.0535± 0.0291(+)

MMF4 0.0135± 0.0008 0.0156± 0.0008(+) 0.0135± 0.0009(≈) 0.0159± 0.0005(+) 0.0425± 0.0072(+) 0.0487± 0.0123(+) 0.0862± 0.0257(+) 0.0298± 0.0113(+)

MMF5 0.0447± 0.0013 0.0518± 0.0033(+) 0.0457± 0.0018(≈) 0.0541± 0.0031(+) 0.1193± 0.0132(+) 0.1151± 0.0103(+) 0.1430± 0.0183(+) 0.0678± 0.0092(+)

MMF7 0.0156± 0.0027 0.0155± 0.0005(≈) 0.0124± 0.0004(−) 0.0158± 0.0006(≈) 0.0269± 0.0061(+) 0.0243± 0.0043(+) 0.0476± 0.0080(+) 0.0216± 0.0061(+)

MMF8 0.0349± 0.0021 0.0600± 0.0117(+) 0.0332± 0.0017(−) 0.0414± 0.0025(+) 0.1201± 0.0384(+) 0.1295± 0.0394(+) 1.6484± 1.8638(+) 1.2735± 1.3402(+)

MMF10 0.0959± 0.1454 0.0201± 0.0052(≈) 0.0045± 0.0023(≈) 0.0239± 0.0050(≈) 0.1986± 0.1186(+) 0.1177± 0.1256(≈) 0.1592± 0.1411(+) 0.0802± 0.1250(+)

MMF11 0.0042± 0.0003 0.0042± 0.0003(+) 0.0038± 0.0002(−) 0.0054± 0.0003(+) 0.0045± 0.0003(≈) 0.0043± 0.0002(≈) 0.0034± 0.0004(−) 0.0033± 0.0006(−)

MMF12 0.0018± 0.0001 0.0033± 0.0004(+) 0.0023± 0.0004(+) 0.0041± 0.0006(+) 0.0022± 0.0002(+) 0.0075± 0.0124(+) 0.0018± 0.0004(≈) 0.0017± 0.0004(≈)

MMF13 0.0272± 0.0011 0.0327± 0.0015(+) 0.0297± 0.0014(+) 0.0355± 0.0011(+) 0.0710± 0.0088(+) 0.0695± 0.0101(+) 0.1248± 0.0781(+) 0.1518± 0.1098(+)

MMF14 0.0465± 0.0022 0.0452± 0.0009(+) 0.0473± 0.0017(≈) 0.0463± 0.0015(≈) 0.0882± 0.0097(+) 0.0798± 0.0039(+) 0.0949± 0.0081(+) 0.2363± 0.0529(+)

MMF15 0.0508± 0.0014 0.0485± 0.0006(≈) 0.0497± 0.0009(≈) 0.0519± 0.0025(≈) 0.0797± 0.0055(+) 0.0674± 0.0043(+) 0.0796± 0.0136(+) 0.1068± 0.0215(+)

MMF1_e 0.9836± 0.6899 0.4986± 0.0519(−) 0.3027± 0.0628(−) 0.3954± 0.1566(≈) 0.9277± 0.2830(≈) 2.5675± 1.8265(+) 1.6827± 0.9162(≈) 4.6551± 2.2512(+)

MMF14_a 0.0531± 0.0019 0.0545± 0.0019(+) 0.0517± 0.0016(≈) 0.0527± 0.0014(≈) 0.1057± 0.0051(+) 0.0977± 0.0045(+) 0.1189± 0.0133(+) 0.3918± 0.1910(+)

MMF15_a 0.0598± 0.0034 0.0574± 0.0033(≈) 0.0549± 0.0020(−) 0.0560± 0.0014(−) 0.1073± 0.0092(+) 0.0911± 0.0081(+) 0.1053± 0.0121(+) 0.1994± 0.0497(+)

MMF10_l 0.0632± 0.0378 5.162± 0.0002(+) 0.6252± 0.9481(+) 0.1723± 0.0066(+) 4.4681± 3.4762(+) 3.3254± 3.3817(+) 6.3526± 5.3786(+) 8.2239± 3.3197(+)

MMF11_l 0.0690± 0.0452 0.9266± 0.7406(+) 1.5151± 0.5473(+) 0.4573± 0.4560(+) 1.9395± 0.1703(+) 2.1166± 0.1041(+) 2.9124± 0.8436(+) 3.6882± 1.3752(+)

MMF12_l 0.0203± 0.0144 2.3497± 0.1521(+) 1.2775± 0.5153(+) 0.8244± 0.5110(+) 2.4742± 0.2300(+) 2.6015± 0.1466(+) 6.6292± 4.7300(+) 4.1364± 1.9745(+)

MMF13_l 0.0876± 0.0128 0.3635± 0.0939(+) 0.5017± 0.0700(+) 0.2956± 0.0425(+) 0.5906± 0.0203(+) 0.5856± 0.0134(+) 0.6898± 0.1075(+) 0.7406± 0.1775(+)

MMF15_l 0.0822± 0.0075 0.1557± 0.0156(+) 0.1534± 0.0211(+) 0.1468± 0.0080(+) 0.3163± 0.1312(+) 0.3479± 0.1303(+) 0.4381± 0.1780(+) 0.3791± 0.1041(+)

MMF15_a_l 0.1023± 0.0121 0.1706± 0.0112(+) 0.1625± 0.0132(+) 0.1609± 0.0088(+) 0.2180± 0.0356(+) 0.2431± 0.0355(+) 0.2665± 0.0329(+) 0.2776± 0.0368(+)

MMF16_l 1 0.0755± 0.0060 0.1182± 0.0008(+) 0.1101± 0.0083(+) 0.1034± 0.0063(+) 0.1974± 0.0302(+) 0.2053± 0.0290(+) 0.1996± 0.0334(+) 0.2269± 0.0345(+)

MMF16_l 2 0.1018± 0.0123 0.1954± 0.0262(+) 0.2035± 0.0308(+) 0.1852± 0.0131(+) 0.4457± 0.1234(+) 0.4571± 0.1632(+) 0.6643± 0.2413(+) 0.4667± 0.1873(+)

MMF16_l 3 0.0885± 0.0073 0.1391± 0.0075(+) 0.1470± 0.0139(+) 0.1392± 0.0133(+) 0.2738± 0.0487(+) 0.2653± 0.0411(+) 0.2887± 0.0500(+) 0.2716± 0.0666(+)

+ 18/24 11/24 17/24 22/24 22/24 21/24 22/24

≈ 5/24 8/24 6/24 2/24 2/24 2/24 1/24

− 1/24 5/24 1/24 0/24 0/24 1/24 1/24

Notes.
Bold numbers indicate the best result in the row of data.

MMODE_AP yield equal mean 1/HV values compared with the winner algorithms.
Based on archive update and environmental selection mechanism, MMODE_AP achieves
an excellent approximation to the true PF on most of these MMOPs. However, it is
difficult to obtain a better approximation to the true PS and true PF simultaneously.
That is, the number of the best mean 1/HV values obtained by MMODE_AP is less
than other algorithms. The reason might be that MMODE_AP is focused on solving
MMOP with the local Pareto front. Table 3 shows that MMODE_AP achieves competitive
performance compared to its competitors regarding rPSP. Especially, its performance
on functions with multiple PFs is outstanding. Accordingly, the results show that the
performance of MMODE_AP whose framework embedding the AP approach is excellent
in terms of convergence. Compared with DN-NSGAII and NSGA-II, MMODE_AP has
a narrow advantage in some instances. Table 4 shows that MMODE_AP obtains better
results, with the smaller IGDX compared with some state-of-the-art algorithms on the test
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Table 4 Comparison of IGDXmean and standard deviation obtained by all algorithms for CEC 2020 benchmark problems.

IGDX MMODE_AP DSC-MOAGDE MO_PSO_MM MO_Ring_PSO_SCD DN-NSGAII Omni_Opt NSGAII SPEA2

MMF1 0.0247± 0.0011 0.0274± 0.0021(+) 0.0236± 0.0012(-) 0.0292± 0.0010(+) 0.0593± 0.0092 (+) 0.0494± 0.0087(+) 0.0707± 0.0115(+) 0.0350± 0.0032(+)

MMF2 0.0241± 0.0134 0.0293± 0.0023(+) 0.0166± 0.0022(≈) 0.0245± 0.0043 (+) 0.0511± 0.0167 (+) 0.0705± 0.0518(+) 0.0550± 0.0309(+) 0.0505± 0.0248(+)

MMF4 0.0135± 0.0008 0.0155± 0.0009(+) 0.0135± 0.0009(≈) 0.0158± 0.0005(+) 0.0424± 0.0072(+) 0.0486± 0.0123(+) 0.0853± 0.0258(+) 0.0297± 0.0113(+)

MMF5 0.0445± 0.0013 0.0512± 0.0032(+) 0.0456± 0.0018(≈) 0.0540± 0.0031(+) 0.1183± 0.0134(+) 0.1141± 0.0104(+) 0.1414± 0.0176(+) 0.0673± 0.0090(+)

MMF7 0.0154± 0.0025 0.0155± 0.0005(≈) 0.0124± 0.0004(−) 0.0158± 0.0006(≈) 0.0266± 0.0060(+) 0.0242± 0.0043(+) 0.0469± 0.0078(+) 0.0214± 0.0060(+)

MMF8 0.0345± 0.0019 0.0491± 0.0175(+) 0.0330± 0.0017(≈) 0.0410± 0.0024(+) 0.1184± 0.0380(+) 0.1269± 0.0388(+) 0.9033± 0.6981(+) 0.7683± 0.5483(+)

MMF10 0.0931± 0.1445 0.0025± 0.0002(−) 0.0045± 0.0023(≈) 0.0235± 0.0050(≈) 0.1936± 0.1208(+) 0.1145± 0.1244(≈) 0.1550± 0.1401(+) 0.0766± 0.1245(+)

MMF11 0.0042± 0.0003 0.0042± 0.0009(+) 0.0038± 0.0002(−) 0.0054± 0.0003(+) 0.0045± 0.0003(≈) 0.0043± 0.0002(≈) 0.0034± 0.0004(−) 0.0033± 0.0006(−)

MMF12 0.0018± 0.0001 0.0039± 0.0005(+) 0.0023± 0.0004(+) 0.0041± 0.0006(+) 0.0022± 0.0002(+) 0.0075± 0.0124(+) 0.0018± 0.0004(≈) 0.0017± 0.0004(≈)

MMF13 0.0270± 0.0010 0.0320± 0.0027(+) 0.0294± 0.0014(+) 0.0353± 0.0011(+) 0.0694± 0.0079(+) 0.0685± 0.0099(+) 0.0939± 0.0307(+) 0.0976± 0.0360(+)

MMF14 0.0465± 0.0022 0.0455± 0.0063(+) 0.0473± 0.0017(≈) 0.0463± 0.0015(≈) 0.0882± 0.0097(+) 0.0798± 0.0039(+) 0.0949± 0.0081(+) 0.2313± 0.0503(+)

MMF15 0.0508± 0.0014 0.0482± 0.0017(≈) 0.0497± 0.0009(≈) 0.0519± 0.0025(≈) 0.0797± 0.0055(+) 0.0674± 0.0043(+) 0.0794± 0.0134(+) 0.1030± 0.0180(+)

MMF1_e 0.7103± 0.4414 0.4850± 0.0426(−) 0.2863± 0.0485(−) 0.3527± 0.1149(≈) 0.7098± 0.1579(≈) 1.4092± 0.7136(+) 1.1505± 0.4701(+) 1.9979± 0.5509(+)

MMF14_a 0.0531± 0.0019 0.0546± 0.0018(+) 0.0517± 0.0016(≈) 0.0526± 0.0014(≈) 0.1057± 0.0051(+) 0.0977± 0.0045(+) 0.1188± 0.0133(+) 0.2744± 0.0857(+)

MMF15_a 0.0596± 0.0034 0.0573± 0.0032(≈) 0.0547± 0.0020(−) 0.0558± 0.0014(−) 0.1073± 0.0092(+) 0.0910± 0.0081(+) 0.1053± 0.0121(+) 0.1675± 0.0285(+)

MMF10_l 0.0629± 0.0377 0.1820± 0.0168(+) 0.1700± 0.0162(+) 0.1663± 0.0023(+) 0.1767± 0.0335(+) 0.1622± 0.0386(+) 0.1931± 0.0370(+) 0.2046± 0.0058(+)

MMF11_l 0.0690± 0.0452 0.2207± 0.0270(+) 0.2407± 0.0178(+) 0.2058± 0.0253(+) 0.2501± 0.0002(+) 0.2502± 0.0002(+) 0.2507± 0.0005(+) 0.2508± 0.0005(+)

MMF12_l 0.0203± 0.0144 0.2602± 0.0354(+) 0.2282± 0.0334(+) 0.2122± 0.0397(+) 0.2464± 0.0004(+) 0.2462± 0.0002(+) 0.2470± 0.0004(+) 0.2453± 0.0028(+)

MMF13_l 0.0817± 0.0119 0.2270± 0.0144(+) 0.2485± 0.0112(+) 0.2330± 0.0157(+) 0.2798± 0.0093(+) 0.2765± 0.0058(+) 0.2971± 0.0144(+) 0.3035± 0.0195(+)

MMF15_l 0.0822± 0.0075 0.1506± 0.0156(+) 0.1534± 0.0211(+) 0.1468± 0.0080(+) 0.2341± 0.0284(+) 0.2451± 0.0197(+) 0.2594± 0.0168(+) 0.2712± 0.0196(+)

MMF15_a_l 0.1021± 0.0120 0.1628± 0.0106(+) 0.1605± 0.0129(+) 0.1592± 0.0080(+) 0.2037± 0.0187(+) 0.2138± 0.0133(+) 0.2288± 0.0104(+) 0.2377± 0.0169(+)

MMF16_l 1 0.0755± 0.0060 0.1156± 0.0078(+) 0.1101± 0.0083(+) 0.1034± 0.0063(+) 0.1725± 0.0064(+) 0.1696± 0.0076(+) 0.1767± 0.0074(+) 0.2030± 0.0130(+)

MMF16_l 2 0.1018± 0.0123 0.1903± 0.0266(+) 0.2035± 0.0307(+) 0.1852± 0.0131(+) 0.3129± 0.0183(+) 0.3108± 0.0170(+) 0.3273± 0.0235(+) 0.3171± 0.0318(+)

MMF16_l 3 0.0885± 0.0073 0.1408± 0.0073(+) 0.1462± 0.0128(+) 0.1390± 0.0130(+) 0.2143± 0.0113(+) 0.2123± 0.0060(+) 0.2252± 0.0104(+) 0.2322± 0.0227(+)

+ 19/24 11/24 17/24 22/24 22/24 22/24 22/24

≈ 3/24 8/24 6/24 2/24 2/24 1/24 1/24

− 2/24 5/24 1/24 0/24 0/24 1/24 1/24

Notes.
Bold numbers indicate the best result in the row of data.

problems. In particular, MMODE_APwins 12 instances over 24 test suites. From the tables,
MMODE_AP and MO_PSO_MM algorithms have demonstrated significant superiority
over other existing algorithms, whose highlighted mean value is the most. MMODE_AP
obtained one order of magnitude better than the traditional migration algorithm in terms
of IGDF in solving most MMOPLs (MMOP with a local Pareto front). DN-NSGAII and
Omni-optimizer performed poorly on any of the 24 benchmark problems, although they
are specially designed for MMOPs. Table 5 lists the mean and standard deviation IGDF
results of the competitor algorithms. Intuitively, MMODE_AP wins 18 instances over
24 test problems. MMODE_AP has a great superior performance over competitors on
the benchmarks. Note that for some instances, such as MMF5, MMF8, MMF10, MMF15
and MMF15_a, there is no substantial variation between the MMODE_AP and winner
algorithms. Similar to that of IGDX, MMODE_AP obtained one order of magnitude better
than the traditional migration algorithm in terms of IGDF in solving most MMOPLs.
Tables 3–5 shows that MMODE_AP performs similarly to competitor algorithms for
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Table 5 Comparison of IGDFmean and standard deviation obtained by all algorithms for CEC 2020 benchmark problems.

IGDF MMODE_AP DSC-MOAGDE MO_PSO_MM MO_Ring_PSO_SCD DN-NSGAII Omni_Opt NSGAII SPEA2

MMF1 0.0014± 0.0001 0.0019± 0.0001(+) 0.0015± 0.0000(+) 0.0021± 0.0001(+) 0.0020± 0.0002(+) 0.0017± 0.0002(+) 0.0015± 0.0002(≈) 0.0017± 0.0001(+)

MMF2 0.0039± 0.0004 0.0136± 0.0018(+) 0.0092± 0.0009(+) 0.0137± 0.0017(+) 0.0124± 0.0106(+) 0.0056± 0.0034(≈) 0.0063± 0.0045(≈) 0.0172± 0.0060(+)

MMF4 0.0012± 0.0001 0.0018± 0.0001(+) 0.0014± 0.0001(+) 0.0018± 0.0001(+) 0.0016± 0.0001(+) 0.0014± 0.0001(+) 0.0012± 0.0001(≈) 0.0017± 0.0001(+)

MMF5 0.0014± 0.0001 0.0018± 0.0001(+) 0.0015± 0.0000(≈) 0.0020± 0.0001(+) 0.0018± 0.0001(+) 0.0015± 0.0002(≈) 0.0013± 0.0001(−) 0.0017± 0.0001(+)

MMF7 0.0012± 0.0000 0.0018± 0.0009(+) 0.0013± 0.0000(+) 0.0018± 0.0001(+) 0.0019± 0.0001(+) 0.0015± 0.0000(+) 0.0013± 0.0001(+) 0.0017± 0.0001(+)

MMF8 0.0025± 0.0003 0.0028± 0.0003(+) 0.0022± 0.0001(−) 0.0029± 0.0002(+) 0.0019± 0.0002(−) 0.0016± 0.0001(−) 0.0013± 0.0000(−) 0.0017± 0.0001(−)

MMF10 0.0917± 0.1209 0.0973± 0.0152(≈) 0.0232± 0.0073(≈) 0.0938± 0.0109(≈) 0.2178± 0.0714(≈) 0.1134± 0.1079(≈) 0.1530± 0.1189(≈) 0.0911± 0.1035(≈)

MMF11 0.0111± 0.0009 0.0162± 0.0010(+) 0.0114± 0.0012(≈) 0.0174± 0.0017(+) 0.0138± 0.0018(+) 0.0120± 0.0014(≈) 0.0111± 0.0008(≈) 0.0136± 0.0011(+)

MMF12 0.0021± 0.0001 0.0039± 0.0007(+) 0.0040± 0.0003(+) 0.0071± 0.0007(+) 0.0031± 0.0005(+) 0.0078± 0.0127(+) 0.0022± 0.0002(+) 0.0027± 0.0002(+)

MMF13 0.0134± 0.0005 0.0275± 0.0032(+) 0.0177± 0.0017(+) 0.0312± 0.0032(+) 0.0218± 0.0034(+) 0.0158± 0.0015(+) 0.0137± 0.0008(≈) 0.0173± 0.0011(+)

MMF14 0.0634± 0.0013 0.0665± 0.0017(+) 0.0667± 0.0011(+) 0.0694± 0.0021(+) 0.0958± 0.0040(+) 0.0847± 0.0033(+) 0.0976± 0.0032(+) 0.1819± 0.0322(+)

MMF15 0.1019± 0.0032 0.0971± 0.0022(−) 0.1022± 0.0030(≈) 0.1074± 0.0035(+) 0.1606± 0.0083(+) 0.1354± 0.0086(+) 0.1445± 0.0162(+) 0.2343± 0.0578(+)

MMF1_e 0.0044± 0.0017 0.0088± 0.0009(+) 0.0056± 0.0006(+) 0.0074± 0.0008(+) 0.0096± 0.0076(+) 0.0087± 0.0073(≈) 0.0071± 0.0039(≈) 0.0121± 0.0097(+)

MMF14_a 0.0627± 0.0017 0.0671± 0.0019(+) 0.0649± 0.0016(+) 0.0682± 0.0023(+) 0.1056± 0.0069(+) 0.0886± 0.0032(+) 0.1040± 0.0096(+) 0.2093± 0.0214(+)

MMF15_a 0.1051± 0.0050 0.1006± 0.0053(≈) 0.0996± 0.0038(−) 0.1058± 0.0037(≈) 0.1766± 0.0102(+) 0.1492± 0.0118(+) 0.1566± 0.0106(+) 0.2747± 0.0347(+)

MMF10_l 0.0752± 0.0342 0.1902± 0.0091(+) 0.1596± 0.0150(+) 0.1802± 0.0121(+) 0.1938± 0.0206(+) 0.1702± 0.0328(+) 0.2002± 0.0401(+) 0.2115± 0.0300(+)

MMF11_l 0.0503± 0.0067 0.0906± 0.0082(+) 0.0903± 0.0015(+) 0.0803± 0.0054(+) 0.0923± 0.0005(+) 0.0919± 0.0005(+) 0.0915± 0.0002(+) 0.0932± 0.0006(+)

MMF12_l 0.0166± 0.0029 0.0729± 0.0096(+) 0.0794± 0.0089(+) 0.0629± 0.0117(+) 0.0824± 0.0001(+) 0.0822± 0.0001(+) 0.0822± 0.0001(+) 0.0772± 0.0128(+)

MMF13_l 0.0354± 0.0085 0.1104± 0.0233(+) 0.1138± 0.0275(+) 0.0882± 0.0143(+) 0.1482± 0.0032(+) 0.1453± 0.0007(+) 0.1443± 0.0006(+) 0.1475± 0.0015(+)

MMF15_l 0.1431± 0.0042 0.1721± 0.0037(+) 0.1634± 0.0035(+) 0.1668± 0.0042(+) 0.2034± 0.0074(+) 0.1918± 0.0072(+) 0.2044± 0.0087(+) 0.2691± 0.0160(+)

MMF15_a_l 0.1475± 0.0048 0.1632± 0.0037(+) 0.1631± 0.0026(+) 0.1657± 0.0019(+) 0.2162± 0.0067(+) 0.1962± 0.0064(+) 0.2060± 0.0089(+) 0.2819± 0.0234(+)

MMF16_l 1 0.1122± 0.0030 0.1363± 0.0048(+) 0.1269± 0.0019(+) 0.1289± 0.0027(+) 0.1581± 0.0044(+) 0.1529± 0.0034(+) 0.1620± 0.0077(+) 0.2411± 0.0183(+)

MMF16_l 2 0.1562± 0.0078 0.1996± 0.0055(+) 0.1992± 0.0040(+) 0.1992± 0.0033(+) 0.2359± 0.0045(+) 0.2293± 0.0073(+) 0.2465± 0.0080(+) 0.2933± 0.0230(+)

MMF16_l 3 0.1296± 0.0028 0.1597± 0.0032(+) 0.1616± 0.0025(+) 0.1590± 0.0033(+) 0.1892± 0.0045(+) 0.1850± 0.0058(+) 0.1981± 0.0076(+) 0.2549± 0.0168(+)

+ 21/24 18/24 22/24 22/24 18/24 15/24 22/24

≈ 2/24 4/24 2/24 1/24 5/24 7/24 1/24

− 1/24 2/24 0/24 1/24 1/24 2/24 1/24

Notes.
Bold numbers indicate the best result in the row of data.

normal MMOPs but significantly better for MMOPLs. In summary, MMODE_AP is
competitive for MMOPLs and competent for normal MMOPs. Moreover, the Friedman
test results are shown in Table 6, which shows that MMODE_AP obtains the best result
on rpsp, IGDX and IGDF indicators. In terms of 1/HV, NSGAII achieved a better ranking
than MO_Ring_PSO_SCD and SPEA2. This finding makes the 1/HV metric controversial
as studies have reported MO_Ring_PSO_SCD and SPEA2 to be more comparative than
NSGAII (Shang et al., 2020; While et al., 2006). Moreover, the 1/PSP, IGDX, and IGDF
metrics give more consistent results than the 1/HV metric. In summary, comprehensive
results reveal that the best comprehensive result is achieved byMO_PSO_MM, followed by
MMODE_AP and DSC-MOAGDE. This indicated that the top three algorithms performed
competitively.

Now, we discuss the performance of MMODE_AP. The most outstanding difference
occurs with the results for MMF15_l on three objectives. Figs. S2 and S3 shows the
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Table 6 The Friedman test results including the score and ranking of each algorithm on four performance metrics.

Algorithm 1/HV Score
(ranking)

rpsp Score
(ranking)

IGDX Score
(ranking)

IGDF Score
(ranking)

Comprehensive
result
Score (ranking)

MMODE_AP 4.7083(6) 2.0833(1) 2.0417(1) 1.4583(1) 2.2500(2)
DSC-MOAGDE 3.4167(1) 3.3333(4) 3.4583(4) 4.5417(3) 3.0000(3)
MO_PSO_MM 3.6250(2) 2.4583(2) 2.5833(2) 2.9583(2) 2.0000(1)
MO_Ring_PSO_SCD 5.9167(7) 3.1250(3) 3.1667(3) 4.9167(5) 4.7500(5)
DN-NSGAII 4.0833(5) 5.8750(5) 5.9583(6) 6.4167(7) 6.0000(6)
Omni_Opt 3.7917(3) 5.9167(6) 5.6667(5) 4.6667(4) 4.5000(4)
NSGAII 3.9583(4) 6.8333(8) 6.7500(8) 4.6667(4) 6.2500(7)
SPEA2 6.5000(8) 6.3750(7) 6.3750(7) 6.3750(6) 7.2500(8)

Table 7 Comparison results of four indicators’ mean value of MMF15_l benchmark.

MMF15_l MMODE_AP DSC-MOAGD MO_PSO_MM MO_Ring_PSO_SCD DN_NSGAII Omni_Opt NSGAII SPEA2

rHV 0.2666 0.2457 0.242 0.2389 0.2293 0.2305 0.2333 0.2368
rPSP 0.0892 0.1537 0.1441 0.1377 0.3698 0.3664 0.4705 0.4411
IGDX 0.0892 0.1537 0.1441 0.1377 0.2429 0.2474 0.2507 0.2808
IGDF 0.1478 0.1641 0.163 0.1662 0.2085 0.1959 0.2057 0.2689

Notes.
Bold numbers indicate the best result in the row of data.

distribution of the obtained solutions in the OS and DS on the MMF15_l benchmark,
which has a global PF corresponding to one PS and a local PF corresponding to one
PS. Notably, DSC-MOAGDE is considered the latest effective algorithm that can solve
MMOP. As the figures illustrate, MMODE_AP shows significantly better performance
compared with DSC-MOAGDE. Meanwhile, SPEA2 loses one PS and can find only a single
non-uniform distribution PS. Table 7 shows the four indicators obtained by MMODE_AP
on MMF15_l instances and the best values are highlighted in bold. From this table, we
can observe that MMODE_AP performs best regarding rPSP, IGDX and IGDF indicators.
However, other algorithms have worse rHV results than DN_NSGAII. It is reasonable to
conclude that MMODE_AP locates all PSs with good convergence and overlap ratio, unlike
most competitor algorithms that only detect one PS.

Due to article length limitations, the final approximated set for two (three) objectives
of the test suite of CEC’2020 are not presented. For more information, please refer to
Fig. S1. The visual comparisons show that the optimal solutions yielded by MMODE_AP
successfully approximate the whole PFs. Especially for the top ten benchmarks, we can
observe that the objective points generated by MMODE_AP distribute alone the PFs well
on two- or three-dimensional space from Fig. S1. To summarize, MMODE_AP shows the
superiority of balancing the convergence and diversity of solutions.
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(a) (b)

Figure 5 The IGDX and IGDF of MMODE_AP with different epsilon. (A) IGDX. (B) IGDF.
Full-size DOI: 10.7717/peerjcs.1839/fig-5

Parameter analysis
In the Archive update strategy, ε is an important parameter that may affect the
results of MMODE_AP. Improper parameter settings may lead to significant
performance deterioration. In this section, the effect of the parameter on the
performance of MMODE_AP is analyzed by performing relevant experiments on three
representative functions (MMF5, MMF1_e, and MMF15_l). First, ε is empirically set as{
0.01,0.02,0.05,0.1,0.2,0.5,1,2,5,10,inf

}
. Figure 5 presents the average values calculated

over the 3 test problems for each indicator (i.e., IGDX and IGDF). From Fig. 5A, we can
observe that a good average IGDX is obtained when the parameter value is in [0.01,0.2].
For the MMF1_e test problem, the results are clearly bad when ε is too large. In Fig. 5B, the
IGDF value remains constant for theMMF5 andMMF15_l test problems as ε increases. For
the MMF1_e test problem, the IGDF values are fluctuating. Based on the above discussion,
the performance of MMODE_AP is favorable when ε ∈ [0.01,0.1]. However, limitations
also exist in this experiment. For example, the parameter range for obtaining satisfactory
results is wide. Therefore, it increases the cost of time for decision-makers.

Analysis of the effectiveness of the proposed solution generation
To verify the effectiveness of the proposed selection mechanism, MMODE_AP with
different p1 are compared. The results on MMF3 are taken as an example and they are
similar to the other test functions. The obtained PSs with median 1/PSP in the 21 times
of these parameters are shown in Fig. 6. The Fig. 6A denotes the parameter p1 selected a
linear decreasing function. Figure 6B denotes the parameter p1 selected a constant 1, which
presents the DE/rand/2 strategy is adopted only. The Fig. 6C denotes the parameter p1
selected a constant 0.5. Figure 6D denotes the parameter p1 is a constant 0, which presents
the DE/current-to-exemplar/1 strategy is adopted only. As shown in Figs. 6B–6D, the
population doesn’t converge to the true PSs well. The obtained PSs of MMF3 are complete
as shown in Fig. 6A. Overall, the the proposed selection mechanism is effective.
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(a) (b)

(c) (d)

Figure 6 The obtained PSs of MMODE_AP with different p1. (A) p_1: a linear decreasing function. (B)
p1= 1. (C) p1= 0.5. (D) p1= 0.

Full-size DOI: 10.7717/peerjcs.1839/fig-6

CONCLUSION
In order to enhance the exploration and exploitation of MMODE, this article proposes an
improved MMODE named MMODE_AP to solve MMOPs. In MMODE_AP, the affinity
propagation clustering method groups individuals in non-dominated layers into different
classes, allowing individuals and their neighbors to be grouped in the same Pareto set.
Based on this method, the convergence of this algorithm can be accelerated in the process
of optimization evolution. Then, two mutation strategies are adopted in the solution
generation process. Based on the strategy, not only the exploration and exploitation
performance are balanced but also the diversities in DS and OS are improved. Moreover,
the CSCD is employed to create a promising generation in environmental selection. The
comprehensive CD can reflect the actual crowding degree accurately. Additionally, an
archive updating approach is designed to balance the convergence and diversity quality of
solutions, in which a predefined parameter is designed to control the completeness of the
local and local PFs. To demonstrate the potential benefit of the novel algorithm, a series
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of comprehensive experiments on CEC’2020 multi-modal multi-objective benchmark
instances are conducted. Here is a summary of the pros and cons of the suggested approach:

The proposed method has several advantages. Thanks to the implementation of the APC
technique, the local and global PS (PF) can be well maintained. However, some limitations
are also found in the experiment. For example, the performance of MMODE_AP in OS
needs further improvements as it loses to competitors in terms of HV metric. Except
for benchmark suites, developing potential multi-objective real-world test problems
that contain multi-modal challenges for researchers is also essential. In future work,
the implementation of the algorithm is to be discussed, including the potential for
parallelization and optimization. Furthermore, more efficient maintenance mechanisms
of local PSs need to be studied.
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