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ABSTRACT
System security for web-based applications is paramount, and for the avoidance
of possible cyberattacks it is important to detect vulnerable JavaScript functions.
Developers and security analysts have long relied upon static analysis to investigate
vulnerabilities and faults within programs. Static analysis tools are used for analyzing a
program’s source code and identifying sections of code that need to be further examined
by a human analyst. This article suggests a new approach for identifying vulnerable code
in JavaScript programs by using ensemble of convolutional neural networks (CNNs)
models. These models use vulnerable information and code features to detect related
vulnerable code. For identifying different vulnerabilities in JavaScript functions, an
approach has been tested which involves the stacking of CNNs with misbalancing,
random under sampler, and random over sampler. Our approach uses these CNNs
to detect vulnerable code and improve upon current techniques’ limitations. Previous
research has introduced several approaches to identify vulnerable code in JavaScript
programs, but often have their own limitations such as low accuracy rates and high
false-positive or false-negative results. Our approach addresses this by using the power
of convolutional neural networks and is proven to be highly effective in the detection of
vulnerable functions that could be used by cybercriminals. The stacked CNN approach
has an approximately 98% accuracy, proving its robustness and usability in real-world
scenarios. To evaluate its efficacy, the proposed method is trained using publicly
available JavaScript blocks, and the results are assessed using various performance
metrics. The research offers a valuable insight into better ways to protect web-based
applications and systems from potential threats, leading to a safer online environment
for all.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Security and Privacy,
Software Engineering, Neural Networks
Keywords Vulnerable Javascript functions detection, Code security, Security of web applications,
JavaScript engine vulnerability, Cross-site scripting detection, Stacking convolutional neural
networks (CNNs), Transfer CNN learning

INTRODUCTION
JavaScript is a commonly employed tool on web pages to enhance their dynamic
functionality (https://developer.mozilla.org/en-US/docs/Web/JavaScript). In a study
conducted by Bichhawat et al. (2014), it was discovered that JavaScript is utilized in
more than 95% of websites for front-end web development. However, malicious actors
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Figure 1 XSS filters.
Full-size DOI: 10.7717/peerjcs.1838/fig-1

Figure 2 SQL injection.
Full-size DOI: 10.7717/peerjcs.1838/fig-2

frequently take advantage of JavaScript’s dynamic capabilities to infect users’ computers
andmobile devices (Zhou & Evans, 2015). According to the Internet Security Threat Report
of 2018, one in ten assessed URLs was identified as dangerous, with one in sixteen being
classified as highly alarming. A substantial portion of this harmful software uses JavaScript
scripting. For instance, one form of JavaScript-based attack is FormJacking, which focuses
on e-commerce websites’ checkout pages to steal user information and credit card details.
On average, FormJacking (Tanaka & Kashima, 2019) attacks compromised approximately
4,800 websites per month in 2018. Multiple malicious JavaScript-based attacks are in
existence, including XSS, drive-by download assaults, and distributed denial-of-service
(DDoS) attacks (Sachin & Chiplunkar, 2012).

Most common JavaScript vulnerabilities
In website design, JavaScript is the most popular programming language. JavaScript is
used on 95% of websites, and by 67% of professional developers, a Stack Overflow poll
found (Hollander, 2023). Examples of most common JavaScript vulnerabilities are buffer
overflows, format string vulnerabilities, XSS filters as shown in Fig. 1, SQL injection flaws
as shown in Fig. 2 and HTTP secure cookies as shown in Fig. 3.
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Figure 3 HTTP secure cookies.
Full-size DOI: 10.7717/peerjcs.1838/fig-3

Cross-site scripting
OWASP OWA (Open Worldwide Application Security Project (OWASP), 2023) identifies
cross-site scripting (XSS) as a prevalent security concern in web applications. This type
of attack occurs when a malicious actor injects malicious code into the client-side of an
application. It often happens when an application incorporates data from web pages,
whether unexpected or user-provided, without the necessary filtration or verification. For
instance, one can employ XSS filters in an express application via NPM packages.

The basic framework of JavaScript engine vulnerability detection
Incorrect logical reasoning by developers in the design and implementation phase increases
the security risk due to the subsequent similarities between the mechanisms of JavaScript
engine vulnerabilities and conventional software vulnerabilities. Although the JavaScript
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engine operates as a high-level language interpretation tool, there are differences between
this and typical applications since it adheres to particular language traits which have the
abilities of custom JavaScript functions to accept variable parameter types. To improve
performance Shrivastava et al. (2016), self-modification of the virtual function table pointer
within a specific class can be used during execution, as well as optimizing JIT (Just-In-Time)
code. Current methods to detect JavaScript engine vulnerabilities fall into two categories.
The first relies on static analysis to determine specific vulnerability types, while the second
group uses fuzzing to dynamically reveal vulnerabilities. However, there are three main
issues that require focuswithin the framework for detecting JavaScript engine vulnerabilities
using both detection methods. These issues include the selection of the detection stage, the
creation of detection samples, and the delicate between efficiency and accuracy. Researchers
must invest much time and effort to understand the way in which these issues influence
and constrain each other.

Selection of the detection stage. Within the static system analysis process, selecting the
detection phase is an important stage. The execution phases of the JavaScript engine
includes primarily input gathering, code compilation to produce byte code, optimization,
interpretation, and execution. Complementary approaches are required to identify any
possible issues for JavaScript engine interpretation and execution sets. After the engine’s
on-the-fly compilation and byte code generation, the produced code is optimized and
executed during the compilation process. The machine’s efficiency and speed relies upon
this phase. In this stage, because of the JavaScript language’s high-level language features,
the logic of optimizing the generated bytecode is complicated, and carries a high risk of
problems.

Detection sample generation. In order to identify JavaScript engine vulnerabilities via
fuzzing, generating detection samples is required. Effective sample generation improves
the likelihood of running the application in a unique state. Simple black-box testing involves
generating independent instances with random data, a technique first developed in 1981
(Ntafos, 1981). One downside of black-box fuzzing is that, because of the randomness of the
inputs, the program executes primarily within the code interval that handles the provided
information. Conversely, the QuickFuzz (Grieco, Ceresa & Buiras, 2016) framework verifies
sample validity using a grammar check tool prior to incorporating them into the detection
process, ensuring that the corpus is accurately constructed. PEACH (Eddington, 2011)
customizes PeachPit files in accordancewith the tested program’s sample input, partitioning
the fields and contents that necessitate random generation.

Efficiency and accuracy. When using static vulnerability detection tools that are targeted
towards the engine code, an experienced security investigator will spend a large amount
of time reading and comprehending the code. This process requires unique insight into
the execution flow of the entire engine and potential vulnerabilities. The quality of
vulnerability detection by using fuzz testing is reliant upon efficiency and accuracy as
key indicators of system quality. In the JavaScript engine, the input is usually received
by reading a text file from a disc. However, disc operational efficiency for reading and
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writing files is low compared to memory operations. Therefore, it is essential to effectively
manage disc operations so that fuzzing efficiency is improved. In the target code, LibFuzzer
(Serebryany, 2016) includes a sanitization function as a startupmechanism, which facilitates
parallelization of fuzzing testing by generating multiple instances of fuzzing tests operating
in their respective levels. To improve fuzzing instance duplications, Wen Xu introduced a
unique system call mechanism based on AFL and LibFuzzer (Xu et al., 2017) and a dual file
system to utilize the speed of a RAM-based temporary file system, resulting in productivity
increases. To improve efficiency, many commercial organizations implement their fuzzing
frameworks on massively parallelized clusters, examples of which include prominent
examples including OSS-Fuzzer (Mike Aizatsky & Whittaker, 2023) and Google’s Cluster-
Fuzzer (Google, 2023). We suggest a unique method to identify vulnerabilities in JavaScript
programs by using a Stacking of ConvolutionalNeural Networksmodels, includingVGG16,
VGG19, AlexNet, ResNet and LSTM. This methodology is applied to the three datasets: the
Snyk platform (Viszkok, Hegedus & Ferenc, 2021), the Node Security Project (Ferenc et al.,
2019), and the Apache Tomcat dataset (Apache Software Foundation, 2023). This approach
detects related vulnerable code based on both vulnerable information and code features.

An outline of vulnerabilities contained within JavaScript
Webbrowsers on themostwidely used operating systems such asWindows, Linux, Android,
and iOS often suffer from vulnerabilities within their JavaScript engines (Alfadel et al.,
2021). Recently, this has increased with the discovery of several high-severity vulnerabilities
in these engines. In 2016, 27 high-severity vulnerabilities were found, followed by 69 in 2017,
and 55 in 2018. These critical flaws can compromise the engine’s previously secure memory
state. Exploiting these vulnerabilities allows the attacker tomanipulate data and gain control
of the program’s execution flow, potentially allowing them to take over the entire system.
Becausemany software applications now integrate JavaScript engines, network information
system security is threatened by these vulnerabilities. JavaScript engine vulnerabilities are
known for their intricate analysis, debugging challenges, and the devastating impact they
can have in cyberattacks. Identifying JavaScript engine vulnerabilities can be addressed via
two methods: static code analysis and dynamic program performance. Static code analysis
examines and assesses the logical issues often found in JavaScript engine code. The dynamic
program execution detection method detects unusual program behavior by changing the
program input to reveal loopholes.

Architecture of JavaScript engines
JavaScript engines operate in real-time and are written in languages such as C/C++, for
example, with multiple high-level language interpreters. Several of the applications that
support JavaScript language interfaces, such as Adobe Reader, Node.js, PDFium, and
Windows Defender, also carry JavaScript engines and are also used in web browsers. A
JavaScript engine is comprised of three components: a compilation framework, a virtual
machine framework, and a runtime environment (Fig. 4). The virtual machine controls
variables in the language, the runtime environment provides runtime services, and the
compilation framework converts JavaScript code from a high-level language into byte code
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Figure 4 JavaScript engine architecture.
Full-size DOI: 10.7717/peerjcs.1838/fig-4

or machine-native instructions which are then directly executed on the CPU (Decan, Mens
& Constantinou, 2018).

JavaScript engine type information
When the program executes, the engine uses type information and variable space. The
prototype object, which the ’type’ variable refers to, is preserved in the structure, and is
based on the prototype inheritance. This object can be compared to a property collection
that is comprised of key-value pairs, which are located in the same memory space and store
data addresses, offset positions, or pointers to the object’s location. An item’s components
are usually stored linearly in memory. For instance, 1.array =[];2. array[0] =‘‘value1’’; 3.
Array [100]=‘‘value100’’. For each line of code, the array is stored in a sparse mode. These
arrays only require a few index values when accessing specific indexed items. So instead,
they use an additional mapping in the index backing store to locate the portion at the
relevant subscript. In addition to these storage structures, there are collections that can be
optimized for data storage. To conserve memory, a set of 32-bit integers can be retained in
their native form. The JavaScript engine defines various index types to differentiate between
different types of array items stored in memory (Smailbegovic, Gaydadjiev & Vassiliadis,
2005).

Vulnerability detection in JavaScript engines
Central to JavaScript engine vulnerability detection is the searching of input spaces of
user-mode applications for an input that is capable of activating the vulnerabilities in a
program. When the input has been received, the detection program records the read/write
actions to memory, in addition to the engine’s protective system during execution. The
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ASAN (Address-Sanitizer) is usually added during compilation. During program execution,
this compiler detects and adds in-time faults in memory operations. After an exception by
the crash catcher is received (Hallaraker & Vigna, 2005), the input data is saved. Next, the
engine separates its vulnerability identification into two categories: static analysis approach
and fuzzing method. The static analysis method is characterized by accuracy and the basic
vulnerability generation process. However, the evaluation needs significant quantities of
energy and is inefficient. The fuzzing method can better focus on automating the actual
process and minimizing the need for manual analysis (Xu, Zhang & Zhu, 2013; Takanen et
al., 2018). This article’s central contributions are:

• To provide a new stacking formal model that incorporates CNN architectures for the
identification of JavaScript vulnerability functions.
• To perform vulnerability functions by investigating the application of static and process
metric characteristics from JavaScript programs to CNN architectural models. The is
the first known attempt to determine vulnerabilities by leveraging software that uses
stacking of CNNs.
• To propose a multi-class system that combines various training and testing datasets to
find all types of vulnerabilities.
• To produce comprehensive comparative research that use modern categorization
methods for assessing the proposed approach.

This article addresses the following research questions:
RQ1: Can insecure JavaScript functions be located with the use of machine learning

algorithms?
RQ2: How effective are the various deep learning architectures at identifying

vulnerabilities, compared to each other?
RQ3: How effective is stacking different deep learning architectures, compared to other

deep learning models?
RQ4: When using stacked CNN architectures, how do different classes of susceptible

JavaScript methods perform?
This article is structured as follows: ‘Prior research’ highlights the background of

the study. ‘Proposed Method’ describes previous works. ‘Experiments’ proposes a new
method for detecting vulnerability JavaScript functions. ‘Discussion of challenges using
deep learning’ evaluates and compares our proposed method and reports the results.
‘Discussion of challenges using deep learning’ discusses challenges using deep learning.
‘Threat to validity’ presents the threat to validity. ‘Conclusions’ gives the conclusion of the
research.

PRIOR RESEARCH
The JavaScript engine is a critical part of the browser, and acts as a virtual machine that
executes JavaScript scripts. It is known for its intricate functional design, robust logic, and
substantial quantity of code. Developing code with a comprehensive security system is very
challenging to engine engineers. Applications that use JavaScript engines can face runtime
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errors or possible crashes that result from design flaws and incorrect implementation,
whilst others might be vulnerable to malicious exploitation by remote attackers.

JavaScript vulnerability detection methods have previous focused mainly on NPM
package metadata. Alfadel et al. (2021) analyzed 2,904 open-source JavaScript from
GitHub projects that were Dependable members and found that 65.42% of pull requests
for security-related code are usually authorized and integrated within a one-day time
period. Comprehensive analysis has found seven main reasons why Dependable security
pull requests were not combined, and these are primarily concerned with concurrent
improvements to the relevant dependencies than with a Dependable’s shortcomings.

Chinthanet et al. (2021) conducted an empirical analysis to ascertain the possibility
of delays between the susceptible release and the repairing releases(package-side fixing
releases). An initial analysis of 231 package side fixing releases of GitHub NPM projects
revealed that up to 85.72% of the packaged commits are unrelated to a patch, so a fixing
release is not often solely distributed.

Over a 6-year period, Decan, Mens & Constantinou (2018) empirically researched 400
vulnerability reports in the NPMdependent network, which has more than 610 k JavaScript
packages. They explored how and when vulnerabilities are identified and addressed.

Duan et al. (2020) proposed a comparison approach to evaluate the security and
functional capabilities for interpreted languages of package managers. To investigate
registry misuse, for example static, metadata, and dynamic analysis, they used well
established software analytic methods based on a qualitative evaluation.

Zerouali et al. (2019) investigated the impact of vulnerabilities in NPM JavaScript
packages within Docker images. The analysis was based on 1,099 security reports gathered
from NPM and 961 images from three official Node.js repository sites. To assess NPM user
security, package dependencies were examined, as well as the maintainers responsible for
these packages, and the disclosure of security vulnerabilities. Zimmermann et al. (2019)
investigated the idea that third-party dependencies could potentially facilitate the execution
of unsafe or vulnerable programs. Their research revealed that even a single package could
wield a substantial influence on the ecosystem.

Kluban, Mannan & Youssef (2022) developed a model for identifying vulnerabilities
in real-world applications by using methods such as textual similarity and weak pattern
recognition. This framework was built using a substantial dataset comprised of 1,360
confirmed insecure JavaScript processes obtained from the VulnCode-DB project and the
Snyk vulnerability database.

To identify vulnerable routines,Ferenc et al. (2019) evaluated static codemetrics gathered
from static analyzers, including the quantity of code lines, nesting level, code complexity,
etc. The highest performance achievement reached 0.7, which was measured by the F1
score. The authors concluded that the results can be improved by combining additional
metrics with static source code measurements. Mosolygó et al. (2021) designed a method
for assessing the vulnerability of a function using vector representations of tokenized code
lines.

Jain, Tomar & Sahu (2012) created a set of attacks including password capture, phishing,
click-jacking, and cookie theft to understand the effect of vulnerable JavaScript code on
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a web page. Therefore, to detect vulnerable JavaScript code, regular expression-based
matching mechanisms have been developed.

Song et al. (2020) recommended using a deep learning-based method to detect possible
malicious code in JavaScript functions, and developed conceptual slices and the Program
Dependency Graph (PDG) which maintain detailed semantic content and rapidly translate
it into vectors to extract semantic features from JavaScript programs. Previous research
has identified JavaScript vulnerabilities, although earlier research on JavaScript uses NPM
package metadata-focused vulnerability detection approaches at the package level. This
article presents a unique method for detecting JavaScript program vulnerabilities by
employing several convolutional neural network models to discover related vulnerable
code based on vulnerable data and code attributes.

Alazab et al. (2022) proposed an IDS designed to identify obfuscated JavaScript. This
IDS uses a combination of features andmachine learning methods to effectively distinguish
between harmless and malicious JavaScript code. It also provides a unique set of features
to identify obfuscation in JavaScript, as obfuscation is a widely used way to circumnavigate
the usual systems to detect malware.

The proposed method was tested on JavaScript obfuscation attacks, with promising
results. The IDS based on the chosen aspects reached a 94% detection rate for malicious
samples, and for benign samples it was 81% within a feature vector dimension of 60.

Bajantri & Shariff (2023) compared Code BERT-based embedding with other
mainstream embedding approaches, including Word2Vec, Glove, and Fast Text. The
findings reveal that in downstream vulnerability detection tasks Code BERT-based
embedding outperforms other methods. To improve efficiency further and to help the
model learn susceptible code patterns in C, it is recommended to include synthetic
vulnerable functions and perform fine-tuning using both real-world and synthetic data.
The evaluation results shows that the updated Code BERT model exceeds various state-of-
the-art identification techniques on the datasets used in the study.

Lin et al. (2023) developed an approach known as VulEye, which is a Graph Neural
Network vulnerability detection method that is designed for PHP applications. The
objective of VulEye is to assist security researchers to rapidly identify vulnerabilities in
PHP projects. This involves building a Program Dependence Graph (PDG) from the PHP
source codes and then slicing the PDG with sensitive functions to create Sub-Dependence
Graphs (SDGs). This facilitates the detection of vulnerabilities in PHP.

Nilavarasan & Balachander (2023) addressed the XSS vulnerability, also known as cross-
site scripting, which is a significant flaw inmodern internet applications. The aim is to detect
web attacks, and the study therefore investigates using deep learning techniques, particularly
convolutional neural networks (CNNs), which are beneficial for XSS classification as a
result of their architecture, which needs less pre-processing for extracting features. Here,
the CNN method was used for categorizing and identifying XSS scripts as either benign
or malicious, using the XSS script characters to create features. The results reveal that
the respective values of accuracy, precision, and recall are 97.95%, 99.30%, and 96.66%
respectively. This research only detects XSS vulnerabilities in JavaScript.
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Liu et al. (2023) introduced a network vulnerability detection model based on
multi-feature fusion-based neural MFXSS, which identifies cross-site scripting (XSS)
vulnerabilities in the JavaScript source code of websites. This approach involves combining
the code control flow graph (CFG) and the abstract syntax tree (AST) to transform
the input data into code and graph string structures. To extract and merge logical call
features and contextual execution relationship features from the source code, the model
uses convolutional neural network graphs, bidirectional recurrent neural networks, and
weighted aggregation. These combined feature vectors are then used for detecting and
predicting JavaScript XSS vulnerabilities. The experiment included the design of multiple
control experiments to optimize construction of the model, resulting in accuracy rates of
99.7% and 98.6% in standard and variant datasets, respectively. This research only detects
XSS vulnerabilities within JavaScript.

Chen et al. (2023) introduced a vulnerable source code dataset, which was built by
crawling security issuewebsites, extracting vulnerability-fixing commits, and corresponding
source codes from other projects. The dataset was comprised of 18,945 vulnerable functions
across 150 Common Weakness Enumerations (CWEs) and 330,492 non-vulnerable
functions which were extracted from 7,514 commits. This dataset covers more projects
than all preceding datasets combined.

By combining the new and preceding datasets, the researchers analyzed the challenges
and potential research avenues for using deep learning in software vulnerability detection.
Eleven model architectures that belong to 4 families were examined, and deep learning
was determined to not yet be ready for vulnerability detection; this is because of high false
positive rates, low F1-scores, and difficulties in detecting complex CWEs. They note the
issue of generalization when using deep learning models and recommend increasing the
amount of training data, which might not improve performance but could improve the
ability of the model to generalize to unseen projects.

Cheshkov, Zadorozhny & Levichev (2023) evaluated ChatGPT-3 models for detecting
vulnerabilities in code. The was conducted on real-world datasets using multi-label
and binary classifications focused on vulnerabilities in CWE. The decision to evaluate
these models was based on their good performance on other code-based tasks, including
understanding code at a high level and solving programming challenges. Yet, the researchers
discovered that in code vulnerability detection the ChatGPT model performed no better
than a dummy classifier for both the multi-label and binary classification tasks. This
indicates that the ChatGPT model may be unsuitable for this task.

PROPOSED METHOD
This article employs the benefits of a well-established deep-learning algorithm to determine
JavaScript capabilities with potential security vulnerabilities. Figure 5 shows the proposed
method , and is comprised of two key processes: dataset preprocessing and creating a deep
learning model.

Stacking multiple 1D CNN models like VGG16, VGG19, AlexNet, ResNet, and LSTM
models in order to detect JavaScript features involves combining the deep learning model
capabilities with analysis of JavaScript code.
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Figure 5 Workflow of the proposed vulnerability performance prediction framework.
Full-size DOI: 10.7717/peerjcs.1838/fig-5

A JavaScript vulnerability detection framework
Data preparation
Two datasets in this study are from the Node Security Project (Ferenc et al., 2019) and the
Snyk platform (Viszkok, Hegedus & Ferenc, 2021) with different source code metric sets,
including static source code metrics and process source code metrics. The dataset and
features were the same as those used by Viszkok, Hegedus & Ferenc (2021) and Gyimesi
(2017). To establish process metrics, they incorporated this technique into QualityGate,
a software quality tracking tool that can rapidly browse through thousands of program
versions. The platform a project’s git version control as input data and performs a static
evaluation, stores the results in an internal graph structure, and then computes process
metrics. To calculate procedure metrics up to a specific commit hash, the versioning
system URL for each project is required. The process metrics are then updated based on the
previous values and the most recent contribution for each program revision. To determine
the process metrics, an analysis of the original database is conducted, the required project
information acquired, and QualityGate used to incorporate process metrics for each
function into the original dataset.

Extract features
The JavaScript code is tokenized into different tokens: words, symbols, and operators in
the code. A parser is the used to generate an abstract syntax tree (AST) representation
of the code. The tree captures the code’s structural information. Static features are then
extracted, as displayed in Tables 1 and 2. Next, the process source code features include
dynamic attributes which require code execution to collect the relevant information, as
shown in Table 3. Each code sample is executed within a controlled environment, with
behavior closely monitored. This execution provides dynamic detail, such as APIs, data
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flows, and runtime errors. The static and process features results are then combined into
an individual feature vector for each code sample.

Normalization and preprocessing
The static and process features vectors are then normalized to ensure their consistency on
a scale. The dataset is then divided into training, validation, and testing sets.

Preprocessing for CNN models
The feature vectors are resized to consistent input sizes as required by the models (e.g.,
224 × 224 pixels). The values are normalized to the range expected by the models (usually
between 0 and 1).

Training CNN models
We train each deep learning model (VGG16, VGG19, AlexNet, ResNet, and LSTM) using
the prepared data. Each output layer is adjusted to match either the multi-classes or the
binary classification task (vulnerable or non-vulnerable). Table 4 provide overviews of the
hyperparameters and architectural details for 1D versions of VGG16, VGG19, AlexNet,
ResNet, and 1D LSTM networks, which are usually employed for sequential data analysis.

Stacked models
Similar to bagging and boosting methods, a stacked model integrates the predictions from
the five models on the same dataset (VGG16, VGG19, AlexNet, ResNet, and LSTM). The
complete architecture of the stacked model is shown in Fig. 5. The models at Level 0
(BaseModels), are built using predictions from models trained on the training data. There
is a model at Level 1 that determines the optimum approach for combining base model
predictions. This meta-model is trained using non-sample data from underlying model
extrapolations. Thus, data that was not used to build the base models is introduced to
them, predictions are generated which, with the corresponding projected outputs, form the
input–output pairs of the training dataset used for training the meta-model. For regression,
categorization, and classification-like models, the base model outputs are the input. This
output adopts different forms, including actual data values, probabilities, probability-like
values, or class labels. A dedicated testing dataset is used to evaluate the stacked model, and
its performance is assessed based on static and process metrics. The best-performing model
is used for real world JavaScript vulnerability detection, which increases web application
security.

Overview of deep learning models
Two deep-learning models were used to detect JavaScript function vulnerabilities: the
VGG16 model, the VGG19 model, and the Alexnet model.

VGG16 model
Simonyan & Zisserman (2014) and Sherstinsky (2020) at the University of Oxford
introduced the VGG16 model, which is a CNN architecture. Even though the model’s
concept was first indicated in 2013, it was only in 2014 (Thite, 2023) that it was officially
submitted for the ILSVRC ImageNet Challenge. VGG16 is a very effective model for
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Table 1 Static metrics (Ferenc et al., 2019; Viszkok, Hegedus & Ferenc, 2021).

Metric Description

CC Number of Clone Coverage
CCL Number of Clone Classes
CCO Number of Clone Complexity
CI Number of Clone Instances
CLC Number of Clone Line Coverage
LDC Number of Lines of Duplicated Code
McCC and CYCL Number of Cyclomatic Complexity
NL Number of Nesting Level
NLE Number of Nesting Level without else-if
CD Number of Comment Density
TCD Total Comment Density
CLOC Number of Comment Lines of Code
TCLOC Total Comment Lines of Code
DLOC Number of Documentation Lines of Code
LLOC Number of Logical Lines of Code
TLLOC Total of Logical Lines of Code
LOC Number of Lines of Code
TLOC Total Lines of Code
NOS Number of Statements
TNOS Total Number of Statements
NUMPAR and PARAMS Number of Parameters
HOR D Number of Distinct Halstead Operators
HOR T Number of Total Halstead Operators
HON D Number of Distinct Halstead Operands
HON T Number of Total Halstead Operands
HLEN Halstead Length
HVOC Halstead Vocabulary Size
HDIFF Halstead Difficulty
HVOL Halstead Volume
HEFF Halstead Effort
HBUGS Number of Halstead Bugs
HTIME Halstead Time
CYCL_DENS Cyclomatic Density
WarningInfo ESLint Info priority Warnings
WarningMinor ESLint Minor priority Warnings
WarningMajor ESLint Major priority Warnings
WarningCritical ESLint Critical priority Warnings
WarningBlocker ESLint Blocker priority Warnings
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Table 2 List of static source code metrics (Ganesh, Palma & Olsson, 2022).

Metric Description

anonymousClassesQty Number of anonymous classes in a class.
anonymousClassesQty Number of anonymous classes in a class.
assignmentsQty Number of times of use of each variable inside each class.
CBO Coupling Between Objects. The number of dependencies in

a class.
comparisonsQty Represent the class’s comparison operators.
defaultFieldsQty Number of default field types.
DIT Inheritance Tree Depth. Number of Parents in a class.
fieldQty Number of use of each local field inside each class
finalFieldsQty Number of fields of final types.
HasJavadoc If the source code has JavaDoc or not.
innerClassesQty Number of inner classes in a class.
lambdsQty Number of lambda expressions in a class.
LCC Loose Class Cohesion.
LCOM Lack of Cohesion of Methods
LOC Number of Lines of Code.
logStatementsQty Count of log statements in a class.
loopQty Number of loops in a class.
mathOperationsQty Represent the number of arithmetic symbols in a class.
maxNestedBlocksQty Max Nested Blocks.
Method Invocations Number of directly invoked methods
NoSI Number of Static Invocations.
numbersQty Number of numeric literals in a class.
paranthesizedExpsQty Number of parenthesized expressions in a class.
privateMethodsQty If a class is private.
protectedFieldsQty Number of fields of protected types.
protectedMethodsQty If a class is protected.
returnQty Number of return statements in a class.
RFC Response for a Class. The number of unique method

invocations in a class.
stringLiteralsQty Number of string literals in a class.
synchronizedMethodsQty Number of synchronized methods in a class.
TCC Tight Class Cohesion.
totalFieldsQty Number of total fields.
totalMethodsQty Number of Methods.
tryCatchQty Number of the try and catch statements used in a class.
uniqueWordsQty Number of unique words in a class.
variablesQty Number of variables in a class.
visibleMethodsQty Number of Visible Methods.
WMC Weight Method Class.
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Table 3 Process metrics (Viszkok, Hegedus & Ferenc, 2021).

Metric Description

AVGNOAL Average Number of New Lines
AVGNODL Average Number Of Omitted Lines
AVGNOEMT Average Number Of Elements Modified Together
AVGNOML Average Number of Changed Lines
AVGTBC Average Time Between Changes
CChurn Sum of lines added minus lines Omitted
MNOAL Maximum Number of New Lines
MNODL Maximum Number of Omitted Lines
MNOEMT Maximum Number of Elements Changed Together
MNOML Maximum Number of Changed Lines
NOADD Number of Additions
NOCC Number of Contributor Changes
NOCHG Number of Changes
NOContr Number of Contributors
NODEL Number of Deletions
NOMOD Number of Modifications
SOADD Sum of New Lines
SODEL Sum of Omitted Lines
SOMOD Sum of Changed Lines

Table 4 Hyberparameters of CNN architectures.

Parameter Value

Batch size Dataset size
Number of Convolutional Layers VGG16 has 13, VGG19 has 16, AlexNet 5 convlutional

layers and ResNet can have a varying number of layers.
LSTM uses sequential data.

Learning rate θ 0.001
Regularization srength β 0.001
Input shape 128
epoch 1,000
Activation function ReLU, softmax, and sigmoid
Momentum 0.9
Optimizer SGD(lr=learning_rate, momentum=momentum)
Loss function categorical_crossentropy and binary_crossentropy

document classification. This study uses the VGG16 model by training it from scratch, and
refers to training the model on the datasets that begin with randomly initialized weights.
This approach necessitates a large quantity of labeled data and computational resources
to train the model. In this study the model’s output uses an MLP classifier after training
holistic features with these trained weights. The final classification was obtained from the
sigmoid classifier.
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VGG19 model
According to Simonyan & Zisserman (2014), VGG19 is a variant of the VGG model and
has 19 layers (16 convolution layers, three fully linked layers, five MaxPool layers, and one
SoftMax layer). VGG19 was trained using the basic model and by training VGG19 from
scratch. The model outputs were then merged in an MLP classifier to produce the final
classification from the sigmoid classifier.

Alexnet model
Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton (Gershgorn, 2017) developed the
CNN, an AlexNet architecture. The initial five layers of AlexNet were comprised of
convolutional layers, and then by max-pooling layers, and the final 3 layers are fully
connected layers. The network used the non-saturating ReLU activation function, which
outperformed tanh and sigmoid in regard to training performance. To train the base model
this research used trained weights from scratch with AlexNet. All of the model’s outputs
were then combined in an MLP classifier. A sigmoid classifier was used to obtain the final
classification.

While AlexNet was mainly intended for image classification, it does have other uses,
including vulnerability code analysis. However, coding vulnerability detection differs from
image classification, and the architecture needs to be appropriately modified. To modify
AlexNet for vulnerability code analysis, the input data has to be preprocessed to represent
code snippets. The architecture must also be modified to consider programming language
specifics and the sequential flow of code.

To improve its performance when analyzing vulnerability code, recurrent neural
networks (RNNs) can be included in the design of AlexNet. RNNs can help to capture
temporal dependencies in code and are can be used for sequential data. Moreover,
convolutional neural networks can be used to extract features from the code snippets.
Overall, AlexNet can be a starting point for vulnerability code analysis, but requires
significant modification to be successful. Other architectures such as LSTM and GRU may
have greater relevance to this type of analysis.

Residual neural netowrk (ResNet) model
Residual neural networks (ResNets) (Targ, Almeida & Lyman, 2016) have widely used due
to their ability to solve complex image classification tasks. However, they can also be used
for other purposes, such as vulnerability code analysis whereby, ResNets can be trained
to detect common coding mistakes that can lead to security vulnerabilities. The objective
would be to create a ResNet that could accurately identify potential code vulnerabilities in
order to help defeat cyber threats.

Long short-term memory (LSTM) model
Long short-term memory (LSTM) is a recurrent neural network (RNN) architecture
(Graves, 2012; Sherstinsky, 2020) often used in natural language processing (NLP)
applications such as sentiment analysis and language translation. LSTM networks handle
sequential data, so their use in time series research and forecasting is very useful.
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Table 5 Datasets details.

Dataset Total of
functions

Vulnerability Non-vulnerability

Ferenc et al.’s dataset (Ferenc et al., 2019) 12,125 1,496 10,629
Viszkok et al.’s dataset (Viszkok, Hegedus & Ferenc, 2021) 8,038 960 7,078
Apache Tomcat Dataset (Ganesh, Palma & Olsson, 2022) 10,204 1,719 8,485

LSTMmodels can detect patterns in code which may indicate vulnerabilities in terms of
security code analysis. The model can categorize new code segments as either susceptible or
nonvulnerable after training on a dataset of known vulnerabilities and non-vulnerabilities.

An advantage to using LSTMmodels for vulnerability code analysis is that they canhandle
long-term dependencies, so during classification the model can consider the context of the
code snippet. This can produce more accurate results compared to traditional machine
learning models that do not consider the data’s sequential nature.

LSTMmodels have potential for vulnerability code analysis and can improve the efficacy
of vulnerability detection and mitigation efforts.

EXPERIMENTS
Dataset description
This research used publicly available datasets, including the Apache Tomcat dataset (Apache
Software Foundation, 2023), shown in Table 5, and datasets from the Node Security
Project (Ferenc et al., 2019) and the Snyk platform (Ferenc et al., 2019). Figure 6 shows
the distribution of Apache Tomcat vulnerabilities, with Denial of Service (Nsrav, 2023
(accessed May 6, 2023), Remote Code Execution (Hurley et al., 2005), and Information
Disclosure (Harley, 2022 (accessed July 14, 2022) being prominent vulnerabilities. Figure 7
shows 4 severity levels: Low, Moderate, Important, and High. To analyze the impact of
vulnerabilities, we used Java classes inApacheTomcat that are affected by the vulnerabilities.
The dataset is comprised of static source code metrics as predictors or features, together
with an extension that incorporates 19 different process metrics, as shown in Table 3. The
metrics for the functions were calculated and entered into the final dataset that utilize
two tools: escomplex (Sachin & Chiplunkar, 2012) and OpenStaticAnalyzer (OSA). The
calculated metrics are listed in Tables 1 and 3.

Performance measures
We used the standard performance measure, which is popular in vulnerable JavaScript
code detection. The measures are precision, recall, F1-score, and accuracy. The definition
of precision is the number of correctly classified vulnerable JavaScript function out of total
JavaScript functions extracted, and is therefore computed as

Precision=
TP

TP+FP
. (1)

Here, TP is true positives, i.e., the amount of JavaScript functions classified as vulnerability
functions, while FP refers to false positives, i.e., the number of non-vulnerability functions
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Figure 6 Types of security vulnerabilities in Apache Tomcat (Ganesh, Palma & Olsson, 2022).
Full-size DOI: 10.7717/peerjcs.1838/fig-6

Figure 7 The severity of the vulnerability in Apache Tomcat (Ganesh, Palma & Olsson, 2022).
Full-size DOI: 10.7717/peerjcs.1838/fig-7

determined as vulnerability functions. Recall is the ratio between predicted JavaScript
functions that are actual vulnerability functions, and total true vulnerability functions:

Recall =
TP

TP+FN
. (2)

Here, FN is False Negatives, i.e., the number of vulnerability functions classified as non-
vulnerability functions. TN means True Negatives, i.e., the number of non-vulnerability
functions determined as non-vulnerability functions. The f1- score combines the precision
and recall:

f 1− score=
2×Precision×Recall
Precision+Recall

. (3)

Finally, accuracy is the fraction of the vulnerability functions that are classified correctly:

Accuracy =
TP+TN

TP+TN +FN +FP
. (4)
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Evaluation
Research questions
This article address four research questions, alongside analysis of the results to support the
findings using Ferenc et al.’s (2019) dataset and the Apache Tomcat dataset.

RQ1. Canmachine learning algorithms identify poor JavaScript functions? (A
number of machine learning classifiers’ potency. This study examines how well various
machine learning classifiers perform in the detection of software vulnerabilities, including
Decision Tree (CART) (Lewis, 2000), logistic regression (LR) (Hosmer Jr, Lemeshow &
Sturdivant, 2013), Naive Bayes (Rish, 2001), XGboost (Chen & Guestrin, 2016), Bagging
(Breiman, 1996), Random Forest (RF) (Breiman, 2001), k-nearest neighbors (KNN) (Fix,
1985), support vector machine (SVM) (Hearst et al., 1998), and Stacking.

The performance of these classifiers across three datasets was assessed, with each
comprised of three scenarios: an imbalanced case, an under-sampled case, and an
oversampled case. For each dataset and scenario, comprehensive training and testing
of multiple classifiers was carried out to evaluate their efficacy. To do this, a collection
of code samples were categorized as either vulnerable or non-vulnerable. The creation of
training and testing sets involved a random division of the dataset, with 67% allocated to
the training set and 33% to the testing set for each of the three datasets and cases. After
training the classifiers on the training set, their performance was assessed using the testing
set, using standard evaluation metrics like precision, recall, and F1-score.

The results reveal that, across all three datasets and cases, some of the classifiers
perform better in detecting code vulnerabilities. Specifically, it was discovered that
the XGboost, Bagging, RF and stacking classifiers consistently outperformed the other
classifiers. Regarding imbalance, the Cart and KNN classifiers performed comparably well
as shown in Figs. 8, 9 and 10, and it was also observed that oversampling improves the
performance of the classifiers, while under sampling can reduce performance as shown in
Figs. 8, 9 and 10.

The Apache Tomcat dataset results show that of all the classifiers the Stacking classifier
was the highest performing, with an f1-score of 99.58% and an accuracy of 99.58%. The RF
classifier achieved an F1-score of 99.57% and an accuracy of 99.56%. The accuracies of the
Bagging, XGboost, Cart, and KNN classifiers were 99.51%, 99.50%, 99.30%, and 97.39%,
respectively, also show relatively high performance.

This study reveals the importance of choosing a relevant machine learning classifier to
identify software vulnerability code. Moreover, the findings indicate that incorporating
oversampling techniques improves classifier performance. It is recommended to use
XGboost, Random Forest (RF), and stacking classifiers for software vulnerability code
identification. However, to achieve optimal performance, other classifiers may require
fine-tuning.

RQ2: Compared to each other, how effective are the deep learning architectures at
identifying vulnerabilities? (The Effectiveness of Various Deep Learning Architectures)
The performance of various CNN architectures was examined, including VGG16, VGG19,
AlexNet, ResNet, and LSTM, in the detection of vulnerable code. To conduct these
assessments, three distinct datasets were used, each featuring three scenarios of class

Sheneamer (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1838 19/38

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1838


Figure 8 Ferenc et al.’s (2019) dataset results using machine learning.
Full-size DOI: 10.7717/peerjcs.1838/fig-8

imbalance, random under-sampling, and random over-sampling. The datasets used were
Ferenc et al.’s (2019) dataset, Viszkok et al.’s dataset, and the Apache Tomcat dataset,
all of which are used widely in vulnerability code detection. For each dataset, the data
was preprocessed to account for three cases of class imbalance, employing random
under-sampling and random over-sampling techniques. This allowed an assessment
of the effectiveness of CNN models in classifying vulnerable code. Subsequently, the CNN
models were trained and tested using standard parameter settings specific to each dataset.

The findings indicate that in the context of vulnerability software detection, the Stacking
and VGG16 architectures perform best. In particular, in Ferenc et al.’s (2019) dataset
for the imbalanced dataset scenario, they achieved accuracies of 93.53% and 91.23%, as
shown in Figs. 11 and 12. Conversely, in the random under-sampler dataset scenario,
Stacking and the AlexNet architecture outperformed other models, achieving accuracies of
81.48% and 81.38%. In addition, for the random over-sampler dataset case in Ferenc et al.’s
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Figure 9 Viszkok et al.’s dataset (Viszkok, Hegedus & Ferenc, 2021) results using machine learning.
Full-size DOI: 10.7717/peerjcs.1838/fig-9

(2019) dataset, the Stacking and VGG19 architectures had better performance, achieving
accuracies of 94.44% and 94.10%.

For Viszkok et al.’s dataset (Viszkok, Hegedus & Ferenc, 2021), as shown in Figs. 13 and
14, the VGG19 achieved 90.08% accuracy for the imbalance dataset case, 78.95% accuracy
for the random under sampler cases, and 94.10% accuracy for the random over sampler
cases. For Viszkok et al.’s dataset, the VGG19 achieved accuracy for imbalance dataset
cases, accuracy for random under sampler cases, and accuracy for random over sampler
cases.

For the Apache Tomcat dataset as shown in Figs. 15 and 16, the VGG19 architecture
achieved 97% accuracy for imbalance dataset cases, 92.69% accuracy for random under
sampler cases, and 98.80 accuracy for randomover sampler cases. VGG16, AlexNet, ResNet,
and LSTM models performed moderately well in our experimentation for specific cases
of dataset pre-processing. It is recommended that on a complex dataset environment the
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Figure 10 Apache Tomcat dataset results using machine learning.
Full-size DOI: 10.7717/peerjcs.1838/fig-10

VGG19 architecture should be used for vulnerability code detection, and models such as
VGG16, AlexNet, ResNet, and LSTM for specific cases to achieve higher accuracy.

RQ3: Compared to other deep learning architectures, how does the performance of
stacking the various deep learning architectures? (Performance of Stacking of different
CNNArchitectures) In order to evaluate performance, a comparative analysis was
performed by running all CNN classifiers, including the stacked CNN architectures,
on two separate occasions. The candidate models were trained, tested, and executed
through data splitting, which involved dividing the dataset to construct the model and
estimate its parameters in the learning phase. For model evaluation, a distinct and entirely
new dataset was used, ensuring that the ratio between vulnerability and non-vulnerability
classes stayed consistent with the overall dataset.
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Figure 11 Ferenc et al.’s (2019) dataset results using five deep learning architectures.
Full-size DOI: 10.7717/peerjcs.1838/fig-11
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Figure 12 Ferenc et al.’s (2019) dataset results using deep learning architectures.
Full-size DOI: 10.7717/peerjcs.1838/fig-12

Figures 12, 14 and 16 provide a comparison of the CNN classifiers using static and
process metrics on the dataset. Amongst all the CNN classifiers, the results demonstrate
that the stacked CNN architecture consistently achieves improved outcomes.

In terms of performance, it was found that stacking CNN architectures outperformed
VGG16, VGG19, AlexNet, ResNet, and LSTM architectures. However, CNN performs
surprisingly poorly in this scenario. Although 100 features were used in this study, it is
possible that small dataset is the cause of the experiment’s poor performance. Generally,
the deep learning model automatically extracts features; in this scenario, feature extraction
was carried out independently. This might contribute to the poor performance. However,
in each of the six small datasets, XGboost performs significantly better.

RQ4: How does CNN architecture stacking perform for multi-classes of vulnerable
JavaScript functions? (Performance of Stacking of different CNNArchitectures for
various types of vulnerable JavaScript functions)

Good performance of stacking different CNN architectures can be achieved for
multi-class classification. This is the first known attempt to try and detect different
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Figure 13 Viszkok et al.’s dataset (Viszkok, Hegedus & Ferenc, 2021) results using five deep learning
architectures.

Full-size DOI: 10.7717/peerjcs.1838/fig-13
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Figure 14 Viszkok et al.’s dataset (Viszkok, Hegedus & Ferenc, 2021) results using deep learning archi-
tectures.

Full-size DOI: 10.7717/peerjcs.1838/fig-14

types of code vulnerabilities, instead of binary code vulnerabilities, using deep learning
approaches. The dataset, such as in Table 6 used for vulnerability code detection is
comprised of code fragments with different programming constructs. The dataset includes
7 classes, such as 230,094 non-vulnerability functions, 9,952 pointer usage vulnerabilities,
10,440 input validation bypass vulnerabilities, 13,603 vulnerabilities associated with the
exposure of sensitive information, 7,285 API function call vulnerabilities, 3,475 array usage
vulnerabilities and 10,926 arithmetic expression vulnerabilities.

Using combined models enables takes advantage of the strengths in each architecture,
resulting in an overall performance enhancement. However, the effectiveness of this
approach depends on a number of factors, including the specific architectures chosen,
the dataset’s characteristics, and the hyperparameters assigned to each model. Before they
are combined, the performance of each model was individually assessed. The evaluation
involves dividing the dataset into 67% training and 33% testing sets, ensuring reliable
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Figure 15 Apache Tomcat dataset results using five deep learning architectures.
Full-size DOI: 10.7717/peerjcs.1838/fig-15
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Figure 16 Apache Tomcat dataset results using deep learning architectures.
Full-size DOI: 10.7717/peerjcs.1838/fig-16

evaluation. Furthermore, the stacking procedure’s hyperparameters were optimized to
improve performance.

Figure 17 shows that the stacking CNN architectures VOLUME 4, 2016 performed
better than the VGG16, VGG19, AlexNet, ResNet and LSTM architectures. Stacking CNN
architectures achieved 73.17% f1-score, 72.97% precision, 73.51% recall and 71.55%
accuracy scores. AlexNet achieved the second highest accuracy, at 71.30% and VGG16
achieved 68.31% accuracy. Lower precision was achieved by the other CNN classifiers,
recall, f1-score, and accuracy scores rather than the stacking CNN classifiers, AlexNet and
VGG16 classifiers.

Performance comparison with other State-of-the-art approaches
A performance of a proposed stacked CNN model was performed in JavaScript and its
vulnerabilities compared to other state-of-the-art methods in a similar class as shown in
Tables 7, 8 and 9.

A comparative analysis of various vulnerability JavaScript code detection approaches
using machine learning models was also conducted with individual CNN models such as
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Table 6 Types of vulnerabilities (multi-classes) dataset (Ganesh, Ohlsson & Palma, 2021).

Dataset Total of
functions

Pointer
usage

Input
validation
bypass

Exposure
of sensitive
information

API
function
call

Array
usage

Arithmetic
expression

Non-Vulnerability

Multi-classes’s dataset 285,775 9,952 10,440 13,603 7,285 3,475 10,926 230,094

Figure 17 Multi-classes dataset results using five deep learning architectures.
Full-size DOI: 10.7717/peerjcs.1838/fig-17

Table 7 Evaluation results of software metrics-based models according Ferenc et al.’s (2019) dataset
using only static metrics.

Approach Precision (%) Recall (%) f1-score (%)

DNNs 87.34 59.96 71.11
DNNc 91.06 57.89 70.78
RF 93.11 57.82 71.34
KNN 90.88 65.91 76.40
Linear regression 84.31 15.44 26.10
Logistic regression 75.30 21.19 33.07
SVM 95.29 51.40 66.78
Tree 73.66 69.72 71.63
Bayes 22.38 11.70 15.36
Our stacking CNN classifiers 87.52 80.57 83.55
Our Stacking CNN classifiers(RUS) 81.59 81.48 81.46
Our stacking CNN classifiers(ROS) 94.46 94.44 94.44

Notes.
The bold values are the best results among other classifiers.
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Table 8 Evaluation results of software metrics-based models according to Viszkok et al.’s dataset
(Viszkok, Hegedus & Ferenc, 2021) using both process and static metrics.

Approach Precision (%) Recall (%) F1-score (%)

SDNN 94.2 69.3 80.8
CDNN 93.1 71.4 80.8
RF 96.7 72.8 83.1
KNN 97.0 63.9 77.0
Linear regression 91.0 28.5 43.5
Logistic regression 82.4 34.6 48.7
SVM 96.8 57.1 71.8
DT 90.9 75.3 82.4
NB 27.8 12.0 16.7
Our Stacking CNN classifiers 88.84 86.05 87.37
Our stacking CNN classifiers(RUS) 87.38 87.38 87.38
Our stacking CNN classifiers(ROS) 97.06 97.05 97.05

Notes.
The bold values are the best results among other classifiers.

Table 9 Stacking classifier performance in Apache Tomcat (undersampled).

Approach Classes Accuracy Precision Recall F1-Score

Stacking machine learning classifier
(Ganesh, Palma & Olsson, 2022)

Vulnerable 77 41.5 87.2 56.24

Severity 66.5 66.5 66.5 66.5
Title 10.6 10.6 10.6 10.6

Our approach
(stacking CNN classifiers)

Vulnerable 97.71 96.13 95.67 95.90

Severity 94.72 79.96 71.92 73.95
Title 93.14 52.30 52.22 49.08

Our approach
(stacking CNN classifiers) (RUS)

Vulnerable 94.04 93.09 93.04 94.04

Severity 73.05 72.62 73.05 72.52
Title 74.24 60.13 59.91 57.30

Notes.
The bold values are the best results among other classifiers.

VGG16, VGG19, AlexNet, ResNet and LSTM. The framework was also compared using
stacking CNN classifiers with individual CNN models. The experiments were carried out
on distinct datasets: Ferenc et al.’s (2019) dataset, Viszkok et al.’s dataset (Viszkok, Hegedus
& Ferenc, 2021), and the Apache Tomcat dataset, which included diverse vulnerability
types. To ensure an appropriate data distribution, the dataset was divided into training,
validation, and test sets, comprising 70%, 15%, and 15%of the samples, respectively.During
evaluation, metrics such as accuracy, precision, recall, and F1-score were used for assessing
detection approach activity. Ference et al.’s imbalanced dataset results using static metrics
shows that the stacking CNN deep learning approach achieved an F1-score of 83.55%,
precision of 87.52% and recall of 80.57% which is an improvement on state-of-the-art
approaches based on F1-score as shown in Table 7. The stacking CNN deep learning with
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random under sampler approach achieved an F1-score of 81.46%, precision of 81.48% and
recall of 81.59%. The stacking CNN with random over sampler achieved an F1-score of
94.44%, precision of 94.46% and recall of 94.44%. The SVM classifier achieved a recall of
95.29% which based on precision is the best approach; however, it achieved an F1-score of
66.78% which is worse that the approach based on the F1-score and recall.

The assessment of Viszkok, Hegedus & Ferenc’s (2021) imbalanced dataset considers
both process and static metrics, revealing the impressive performance of the stacking CNN
deep learning approach, which achieved an F1-score of 87.37%, precision of 88.84%, and
recall of 86.05%. These results improve upon other methods, as shown in Table 8. The
highest accuracy, precision, recall and F1-score results for each class is shown in bold. In
addition, the stacking CNN deep learning with random under-sampling approach had
an F1-score, precision, and recall of 87.38%. Conversely, the stacking CNN with random
over-sampler approach demonstrated exceptional performance, achieving an F1-score of
97.05%, precision of 97.06%, and recall of 97.05%. These findings confirm the stacking
CNN with random over-sampler approach as the highest achieving of all the methods,
with the highest F1-score, whereas, the stacking CNN deep learning and stacking CNN
random under-sampler approaches also outperformed other methods. However, the
linear regression algorithm displayed the lowest performance metrics. The stacking CNN
random under-sampler approach fell in between, with slightly better performance than
the CNN deep learning approach but not reaching the level of the stacking CNN random
over-sampler approach. The findings reveal the effectiveness of the stacking CNN with
random over sampler approach for vulnerability JavaScript code detection. The results are
promising and indicate the potential for this approach to efficiently identify vulnerabilities
in real-world applications.

The performance of the approach with stacking machine learning classifiers was
compared using the Apache Tomcat dataset, which is comprised of three categories of
vulnerability types: Vulnerable, Severity, and Title, as shown in Table 8 . When evaluating
the vulnerable class, the stacking CNN deep learning model with random under sampler
achieved an F1-score of 94.04%. For the Severity class, this approach achieved an F1-score
of 72.52%, and for the Title class, it achieved a score of 57.3%. Whereas the stacking CNN
deep learning model without random under sampler achieved an F1-score of 95.90%
for the vulnerable class, 73.95% for the Severity class, and 49.08% for the Title class.
Comparatively, the stacking machine learning classifiers (Ganesh, Palma & Olsson, 2022)
achieved lower performance scores. In particular, for the vulnerable class they achieved an
F1-score of 56.24%, for the Severity class, they achieved 66.50%, and for the Title class,
they scored 10.60%. Based on these results, this approach excels in vulnerability software
detection across different classes (Vulnerable, Severity, Title) using the Apache Tomcat
dataset.

DISCUSSION OF CHALLENGES USING DEEP LEARNING
This section discusses the challenges and solved gaps in the use of deep learning in order
to detect vulnerability JavaScript. Detecting JavaScript vulnerabilities using deep learning
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techniques like stacked convolutional neural networks (CNNs) is an advanced and evolving
field. Although such approaches are promising, there are several knowledge gaps that were
addressed. A significant challenge in using deep learning for vulnerability detection is
the lack of availability of labeled data, therefore different vulnerability JavaScripts were
combined. Many security datasets have class imbalance issues where most data points
represent benign code, therefore, under sampling and oversampling data algorithms
were used. In addition, deep learning models can effectively generalize across different
frameworks and libraries. Models can struggle to adapt to variations in code structure and
patterns. Vulnerability detectionmodels, including CNNs, can also be subject to adversarial
attacks. Further research is required to make these models more robust against attacks
designed to evade detection such as ensemble or stacked CNNs. Combining stacked CNNs
with other machine learning techniques, such as ensemble methods, could also potentially
improve detection performance and robustness. An assessment of the real-world impact of
using deep learning and stacked CNNs for JavaScript vulnerability detection was conducted
in terms of reducing vulnerabilities in web applications and preventing cyberattacks.

THREAT TO VALIDITY
The data collection process could be potentially inaccurate as it relied on a manual
evaluation of additional candidate commits gained from issue comments (Viszkok, Hegedus
& Ferenc, 2021).

The results may vary depending on the features used for the analysis. If these features
cannot capture the essential characteristics of JavaScript code, then the approach may not
detect some vulnerabilities or could result in false positives. The training dataset’s quality
and quantity might impact on the performance of the model. A small or skewed dataset
may not sufficiently represent the various vulnerabilities discovered in JavaScript code. The
datasets used are enough for model building, and were combined with different datasets
for JavaScript to construct a model to identify various types of JavaScript functions that are
vulnerable. This is the first known application of stacking CNNs to identify various types
of vulnerable JavaScript functions. The programming methodologies or technologies that
create JavaScript code may potentially have an effect on the performance of the algorithm.
For example, the features that performed well for older versions of JavaScript may be
irrelevant to the newer versions, or new vulnerabilities or coding practices may emerge
that the model does not capture.

According to privacy issues, we can use blockchain code (Alamer, 2024) and Hakak et
al. (2021) to solve the privacy for vulnerability JavaScript and use a federated learning (FL)
system Alamer (2023) which is considered as a decentralized ML/DL paradigm that allows
IoT devices to train their data locally and only share their trained model with the CC-server
without it participating in their source data, thus offering a more privacy-conscious
approach.
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CONCLUSIONS
Web-based system security for web applications has recently become more important
because of the increase in cyberattacks. The security of these systems could be at risk from
weaknesses in JavaScript functionalities. Thus, further research has gone into developing
methods to find and identify vulnerabilities. One of these techniques involves stacking
convolutional neural networks with a random under sampler and random over sampler
in one dimension (1D). This is a proven method for identifying vulnerable JavaScript
functions. Using CNNs with a 1D random under sampler and random over sampler has
significantly increased the classification accuracy of vulnerable functions.

An objective of this study was to assess the performance of various machine learning
classifiers to identify software vulnerability code, considering different dataset scenarios,
including imbalanced, under-sampled, and over-sampled cases. Comprehensive training
and testing across multiple classifiers was conducted using a diverse collection of code
samples classified as either vulnerable or nonvulnerable.

These findings highlight the effectiveness of different classifiers in this important task.
Notably, Xg-Boost, Bagging, Random Forest (RF), and stacking classifiers demonstrated
better performance for all three datasets and cases. In addition, it is significant to select the
correct CNN architecture based on dataset characteristics and class distribution. Stacking,
VGG16, VGG19, and AlexNet architectures consistently showed their effectiveness across
various scenarios, demonstrating their potential for improving vulnerability software
detection.

This study contributes to the field of software security and the detection of vulnerability
code, laying the foundation for selecting appropriate CNN models and preprocessing
techniques in real-world applications. There is also the potential for further refinement
and exploration of these models, which could improve accuracy and dependability in
the identification of software vulnerabilities. One question demonstrates the benefits of
utilizing stacking CNN architectures in the context of vulnerability code detection. When
individual CNN models encounter limitations in situations that involve relatively small
datasets and challenges in feature extraction, ensemble methods present a promising
answer. Additional research, adjustment, and the examination of hybrid models, which
may offer ways by which to enhance the accuracy of vulnerability detection.

The final question demonstrates the potential of using a combination of diverse CNN
architectures for multi-class code vulnerability detection. This adds to the research field
by demonstrating the effectiveness of deep learning techniques in addressing a complex
problem space with real-world implications. Future research could potentially refine this
approach, increasing the accuracy and dependability of code vulnerability detection in
dynamic and evolving software environments.

The stacked CNN method achieved a detection rate of 98%, highlighting the method’s
efficacy in identifying vulnerable JavaScript methods. To marks the first known endeavor
of its kind to leverage deep learning techniques for the identification of various code
vulnerabilities. This research identifies susceptible JavaScript functions by using a
combination of CNNs with a 1D random under-sampler and random over-sampler,
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offering essential insights into improving the security of web-based applications and
systems against potential threats. By detecting vulnerabilities before they can be exploited
by criminals, the risks associated with cyber-attacks can be mitigated and sensitive data
protected from potential compromise.
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