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ABSTRACT
Industrial furnaces still play an important role in national economic growth. Owing to
the complexity of the production process, the product yield fluctuates, and cannot
be executed in real time, which has not kept pace with the development of the
intelligent technologies in Industry 4.0. In this study, based on the deep learning
theory and operational data collected from more than one year of actual production
of a lime kiln, we proposed a hybrid deep network model combining a gray relative
correlation, a convolutional neural network and amultilayer perceptronmodel (GCM)
to categorize production processes and predict yield classifications. The results show
that the loss and calculation time of the model based on the screened set of variables
are significantly reduced, and the accuracy is almost unaffected; the GCM model
has the best performance in predicting the yield classification of lime kilns. The
intelligent control strategy for non-fault state is then set according to the predicted
yield classification. Operating parameters are adjusted in a timely manner according
to different priority control sequences to achieve higher yield, ensure high production
efficiency, reduce unnecessary waste, and save energy.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and
Machine Learning, Scientific Computing and Simulation, Neural Networks
Keywords Yield classification prediction, Machine learning, Intelligent control strategy,
Industrial furnace

INTRODUCTION
With the emerging Industry 4.0 revolution, traditional manufacturing is facing the reality
that it is going to have to transform. One of the key reforms inherent in Industry 4.0 is
the use of intelligent technology for intelligent decision making. This is also the traditional
manufacturing industry, especially the high energy consumption industry in urgent need
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of development direction. Among them, industrial furnaces are relatively typical industries
with high energy consumption and relatively low intelligence level. Industrial furnaces
are large energy consumers in China, with the total number reaching more than 200,000
sets, among which fuel furnaces account for 55% of the total number and 92% of energy
consumption, which is 23% of the country’s energy consumption (Chen, Wang & Sun,
2017). The traditional industrial furnace has high energy consumption, low benefits,
significant waste of resources, and environmental pollution, which is inconsistent with the
goals of energy conservation and emission reduction, at the same time, it is not in line with
the development of the inherent needs of Industry 4.0 for intelligent technology.

As traditional industrial furnaces have reached their thermodynamic limits (Lüngen
& Schmöle, 2004), other novel or disruptive technologies are needed. Common energy
conservation measures are based on improving the efficiency of equipment, such as oxygen
blast furnace (Arasto et al., 2014), the flue gas recirculation and supplementary burnout
air (Yan et al., 2021), ‘‘treating waste with waste’’ strategy for desulfurization using electric
arc furnace dust (Jia et al., 2023). In addition, energy conservation measures based on
software improvements such as control methods exist (Obika & Yamamoto, 2018). A series
of studies have emerged in stable equipment owing to a safe operating environment, good
control effects, high return on investment, and easy implementation. Bakdi, Kouadri &
Bensmail (2017) features an adaptive threshold monitoring schemethat uses principal
component analysis to diagnose faults in cement rotary kilns. Yu et al. (2018) developed a
multiobjective operational model using a teaching-learning-based optimization algorithm
for an industrial cracking furnace system, resulting in higher product yields and lower fuel
consumption. A soft sensor model for estimating the rotor deformation of air preheaters
in a thermal power plant boiler is studied, based on a deep learning network combining
stacked auto-encoders with support vector regression (Wang & Liu, 2018). An Internet of
Things-enabled model-based approach was proposed, including a parameter optimization
model and energy-aware incident control strategy (Liu et al., 2020). Wang et al. (2022a)
and Wang et al. (2022b) proposed a novel attention-based dynamic stacked autoencoder
networks for soft sensor modeling to reflect the dynamic historical data information
of the production status under irregular sampling frequency. Wang et al. (2022a) and
Wang et al. (2022b) proposed the multi-label transfer reinforcement learning (ML-TRL)
methods to recognize the compound fault. Song & Liu (2023) combined a pseudo-Siamese
network (PSN) and robustmodel aggregation to propose a federated domain generalization
approach for intelligent fault diagnosis. Li et al. (2023) proposed a deep continual transfer
learning network with dynamic weight aggregation which can effectively handle the
industrial streaming data under different working conditions.

Currently, a part of the control system utilizes an operation optimization and control
algorithm that has self-adaptive, self-learning, and automatic adjustment capabilities.
However, it cannot adequately adapt to dynamic changes in industrial processes, leading to
poor control performance. In particular, industrial processes such as calcination furnaces
are characterized by different time scales, strong nonlinearity, multivariate strong coupling,
unclear mechanisms, and impossible real-time online measurement of yield and quality.
Therefore, the feedback control, operation index target-value range decision, and abnormal
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operation condition diagnosis and treatment of the system are mostly performed by
technical personnel and experts. This type of industrial process is often in a non-optimal
operation state.

In this study, based on the deep learning theory and more than one year of actual
production operational data, we established a gray relative correlation-convolutional
neural network-multilayer perceptron (GCM) model to predict the yield classification
of a sleeve kiln with thermal cycle. Firstly, we use the gray relative correlation degree to
calculate the correlation degree between variables and yield, and select the variables with
a higher correlation degree for model calculation. Then, the preprocessed datasets are fed
into a hybrid deep network model based on the convolutional neural network (CNN)
and multilayer perceptron (MLP) networks to predict yield classifications. We conducted
extensive experiments using five methods on industrial datasets for multiple classification
forecasting to compare the performance of the CNN-MLP model. An Intelligent control
strategy for non-fault state is proposed according to different yield classification. Finally,
by calculating the actual production data fo a lime kiln, the increase of yield is obvious.
Predicting the yield classification by the currentmain state variables can provide technicians
with intuitive and fast prediction results so that technicians or control systems can adjust
the production process in a timely manner to ensure high production efficiency, reduce
unnecessary waste, and save energy.

The remainder of this study is organized as follows: ‘Research Background and Process
Description’ describes the technological process of lime kilns with thermal cycle and
formulates the problem. ‘Modeling Methodology’ describes the data preparation method
and the structure of the gray relative correlation-convolutional neural network-multilayer
perceptron (GCM) model used to predict the yield classifications. ‘Experiments and
discussion’ illustrates the experimental results, and the Intelligent control strategy for
non-fault state is proposed. Then, the increased yield is estimated. Finally, ‘Conclusion’
concludes the article.

RESEARCH BACKGROUND AND PROCESS DESCRIPTION
Research background
With the rise of the Industry 4.0 revolution, the development of modern computer
technology, including artificial intelligence, has made it urgent to establish a technical
foundation for intelligent control to improve the automatic control quality and energy
conservation in large-scale complex system control. As a result, academia and industry
are conducting extensive research on intelligent algorithms and data-driven prediction
models. In particular, several studies have emerged in the field of industry furnace.

Among these studies, research on predicting temperature is relatively common. Su et
al. (2019) used adaptive particle swarm optimization (APSO) to improve the prediction
accuracy and generalization performance of a multi-layer extreme learning machine model
to predict the hot metal temperature in the blast furnace. Zhang et al. (2019) proposed an
ensemble random vector functional link network for shuttle kiln temperature prediction,
while Leon-Medina et al. (2021) used a GRU layer and dense layer to predict temperature
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in a 75 MW electric arc furnace for ferronickel production. Zhang et al. (2021) proposed a
hybrid deep network model for sintering temperature forecasting in a rotary kiln.

Other common research includes the prediction of the component content. Jiang
et al. (2019) proposed a sintering parameter identification model using a nonlinear
autoregressive model with exogenous input (NARX) algorithm. Pham, Ridley & Lazarescu
(2020) presented a material ring detection system in alumina rotary kilns using a feature
extraction method, achieving an accuracy of approximately 96%. Zhou et al. (2020)
developed an improved gated recurrent unit-recurrent neural network (GRU-RNN)
for predicting hot metal silicon content with a 92.4% hit rate.

Some studies have also focused on predicting various states. Wang, Song & Chen
(2017) used deep neural network (DNN) and convolutional neural network (CNN) to
predict combustion state and heat release rate. Kim et al. (2019) developed a multivariate
time-series forecasting algorithm using CNN and long short-term memory (LSTM) to
predict blast furnace opening and closing times with over 90% accuracy. Chen et al.
(2020) established a Time-Between-Failure (TBF) prediction model through a data-driven
approach based proportional hazard deep learning. And a long-short-term memory
(LSTM) network was established to train the TBF prediction model based on the pre-
processed maintenance data. To develop an more excellent quality prediction model for
coal preparation process, Yin et al. (2021) proposed a semi-supervised soft sensor modeling
approach combining Stacked Auto-Encoder with Bidirectional Long Short-TermMemory.
Lee, Bae & Kim (2021) proposed an uncertainty-aware soft sensor that uses Bayesian
recurrent neural networks (RNNs) to increase the reliability of predictive uncertainty.
Miao et al. (2022) used a genetic algorithm to evaluate the environmental impact of
turbine-integrated steam methane reforming. Heat load in blast furnace was predicted
based CNN combined with a bidirectional long short-term memory network (Xu et al.,
2023).

Using intelligent algorithms and computer programs can optimize equipment operation
to improve product output and qualitywhile reducing energy consumption. The integration
of algorithms is a trend in process control, optimization, fault diagnosis, and self-healing
control in the furnace industry. However, most furnace prediction results require expert
interpretation, causing time lag problems that affect yield, quality, and timely loss
prevention and energy consumption reduction.

Process description
This study focuses on a sleeve kiln with a thermal cycle, shown in Fig. 1. Material enters
from the top, passes through preheating, calcination, and cooling zones, and is discharged
from the bottom. Cooling air enters through the ash hole, flows upward, and exits through
the air duct above the upper fire box. The gas exits in two parts, with part discharged from
the chimney and the other entering the heat exchanger to transfer heat to ejection air.
Cooled air is supplied to the lower inner cylinder by a fan, and to the upper inner cylinder
through the top air pipe. Lower distribution pipe collects cooled air and distributes it to
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Figure 1 Structure of sleeve kiln with thermal cycle.
Full-size DOI: 10.7717/peerjcs.1836/fig-1

the burner. Air is preheated to around 150 ◦C when it flows through the lower inner collet
wall.

After the gas is introduced into the main gas pipeline in the kiln area, it is preheated and
transported through the gas pipeline to the lower part of the kiln body’s gas ring. It is then
divided into upper and lower combustion chamber gas branches, which are extracted from
the gas ring. There are six burners on both the upper and lower parts of the kiln body, and
each burner corresponds to a temperature detection device inside the combustion chamber
to monitor the temperature. Other parameters such as flow rate, pressure, temperature,
etc., are collected by corresponding sensors and transmitted, displayed, and stored using the
existing DCS system of the enterprise. This article directly adopts the operation parameters
of the production process of the enterprise.

In addition to the calcination system, other six subsystems include: flue gas system,
exhaust gas system, thermal cycle system, cooling system, dust pelletizing system and
discharge system. The main operating parameters involved in each subsystem are shown
in Table 1.

The manufacturing process is complex, with many variables to monitor. Three
prominent characteristics of the production process are as follows:

Dynamic nonlinearity: The production process involves complex physical and chemical
reactions, heat and mass transfer, multiphase fluid flow, and secondary reactions during
calcination that are difficult to accurately represent in mathematical models.

Guo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1836 5/25

https://peerj.com
https://doi.org/10.7717/peerjcs.1836/fig-1
http://dx.doi.org/10.7717/peerj-cs.1836


Table 1 Classification of main operating parameters.

Classification Operating parameters

Calcination system Upper arch bridge temperature, Lower arch bridge
temperature, Lower combustor temperature, Setting
temperature of upper combustor, Bottom temperature of
upper inner cylinder, Negative pressure of lower combustor

Flue gas system Gas flow rate of upper combustor, Gas flow rate of lower
combustor, Gas flow, Downstream pressure for quick
breaking valve of gas header pipe, Calorific value of gas,
Inlet and outlet pressure of gas booster fan

Exhaust gas system Exhaust gas temperature at kiln top, Fan frequency and
electric current for High-temperature exhaust gas

Thermal cycle system Circulating gas temperature, Drive air loop temperature,
Outlet and inlet temperatures of heat exchanger exhaust
gas, Mixing temperature of exhaust gas, Driving fan flow,
Pressure, Frequency

Cooling system Ring pipe temperature of cooling air , Upper cold flow rate,
Lower cold flow rate, Air flow rate for cooling lime

Dust pelletizing system Dust removal fan pressure, Differential pressure, Dust
removal temperature (inlet)

Discharge system Average temperature of ash discharge, Winch current,
Yield, Hydraumatic oil temperature

Multivariate coupling: During calcination in a sleeve kiln, there are a series of variables
that affect and interact with each other. Finally, all variables affect the output.

Large time lag: The calcination process takes several hours, making it difficult to know
immediately whether the monitored state variables can ensure optimal yield. Furthermore,
the product is the cumulative response of all variables over time.

In this study, we developed a yield classification prediction model, GCM, using
production process parameters in a lime kiln. We used gray relative correlation to identify
the relevant process parameters and used them to determine the input variables for a deep
network model that combines CNN and MLP to predict yield classification. Based on
this model, a Intelligent control strategy for non-fault state was established, with different
control priorities and sequences for different yield operating classes. The technical staff
can adjust the production parameters according to the control sequence to optimize yield,
reduce waste and costs, and improve energy utilization and kiln production benefit.

MODELING METHODOLOGY
The prediction model based on GCM for yield classification is shown in Fig. 2. We first
used gray relative correlation degree to select input variables with high correlation to yield,
to improve calculation speed and reduce costs. Then, we fed the normalized input variables
into the CNN-MLP Net for feature extraction and used sparse categorical cross entropy
function as a loss function for yield classification prediction. The model effectively captures
characteristic information through its three-part structure.
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Figure 2 Algorithm framework based on the GCMmodel.
Full-size DOI: 10.7717/peerjcs.1836/fig-2

Gray relative correlation degree calculation
To reduce the number and cost of calculations, it is necessary to analyze the system factors.
There are many systematic analysis methods in mathematical statistics, such as regression,
variance, and principal component analyses. However, gray correlation analysis method is
applicable to samples with or without obvious rules, and there is usually no discrepancy
between the quantitative and qualitative analysis results (Wei & Gang, 2011).

The gray relative correlation degree is calculated as follows (Liu, 2017):
Assuming that X0= (x0(1),x0(2),...,x0(n)) is system characteristic behavior sequence

and

X1= (x1(1),x1(2),...,x1(n))

······

Xi= (xi(1),xi(2),...,xi(n))

is the sequence of related factors.
If the initial value image is defined as:

X′i=
Xi

xi(1)
=
(
x′i(1),x

′

i(2),...,x
′

i(n)
)
,i= 1,2,...,n−1 (1)

The calculation of the initial zero image X
′0
i (n) of Xi(n) is carried out as follows:

X
′0
i = (x′i(1)−x

′

i(1),x
′

i(2)−x
′

i(1),...,x
′

i(n)−x
′

i(1))=
(
X
′0
i (1),X

′0
i (2),...,X

′0
i (n)

)
(2)

Further, the gray relative correlation degree r0i is computed as follows:

r0i=
1+

∣∣s′0∣∣+ ∣∣s′i∣∣
1+

∣∣s′0∣∣+ ∣∣s′i∣∣+ ∣∣s′i− s′0∣∣ (3)

where

∣∣∣s′0∣∣∣=
∣∣∣∣∣
n−1∑
k=2

x
′0
0 (k)+

1
2
x
′0
0 (n)

∣∣∣∣∣
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∣∣∣s′i∣∣∣=
∣∣∣∣∣
n−1∑
k=2

x
′0
i (k)+

1
2
x
′0
i (n)

∣∣∣∣∣
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k=2
(x
′0
i (k)−x

′0
0 (k))+

1
2
(x
′0
i (n)−x

′0
0 (n))

∣∣∣∣.
Convolutional neural network and multilayer perceptron
A CNN is a structure that combines artificial neural networks and deep learning that
performs well on large-scale datasets (Chen et al., 2018). The main structure of a CNN
includes input, convolutional, pooling, fully connected, and output layers.

The main function of the convolutional layer is to extract features of the input data. The
convolution result sequence c(n) is defined as follows:

c(n)= (F∗G)[n]=
N−1∑
m=0

f(m)g(n−m) (4)

where f(m) is the preprocessed input feature dataset, g(m) is the convolution kernel,
len(f(m))+ len(g(m))−1, N is the length of f(m).

The activation function used the ReLU function (Gamarnik, Kzldag & Zadik, 2022):

Re(x)=max(0,x)=

{
x, x≥ 0
0, x< 0

(5)

Pooling can reduce the dimensions of the input object so that the model can extract more
extensive features. Simultaneously, the input size of the next layer is reduced to reduce
computation. Pooling also prevents overfitting to a certain extent (Boureau, Ponce & Lecun,
2010).

Assuming that the pooling kernel of l layer is denoted by pl ∈RH×Dl
, the maximum

pooling result is

yil+1,d= max
0≤i≤H

clil+1×H+ i,d
l (6)

where 0≤ il+1<Hl+1,0≤ d<Dl+1
=Dl.

MLP is a forward structure artificial neural network. An MLP is made up of multiple
node layers, where each layer is fully connected to the next. It has an input layer, output
layer, and one or more hidden layers.

Assuming that the input layer is represented by vector I, the output of the hidden layer
is

f(W1I+b1) (7)

where W1 is the weight, b1 is the bias, f is the ReLU function.
Finally, the output layer exists. Going from the hidden layer to the output layer is a

multicategory logistic regression, using softmax regression, as expressed below:

Softmax(Zk)=
eZk∑D
d=1eZd

(8)
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where k represents the index of the output neuron being computed, d is the index of all
neurons in the group, and the variable z represents an array of output neurons.

Therefore, the result of the output layer is softmax(W2I1+b2), where I1 represents the
output of the hidden layer, f(W1I+b1).

Objective function and optimization strategy
Sparse categorical cross entropy was adopted in model training to measure the model
prediction effectiveness. This function is computed as follows:

scc
(
Y,Ŷ

)
=−

1
m

m∑
i=1

n∑
j=1

ŷijlog
(
yij
)

(9)

where the real label of the ith sample is yi = (yi1,y
i
2,...,y

i
n), predictive value is

ŷi = (ŷi1,ŷ
i
2,...,ŷ

i
n), n is the number of predicted target classes (Integer codes, such as

1, 2, or 3......).
The adaptive moment estimation (Adam) algorithm was used to optimize the network.

Adam algorithm assimilates the advantages of both the Adaptive Gradient Algorithm
(Adagrad) and the Momentum-based Gradient Descent Algorithm. It utilizes momentum
to accelerate convergence and automatically adjusts the learning rate decay, effectively
addressing sparse gradient issues and mitigating gradient oscillation problems. Due to bias
correction, the learning rate for each iteration falls within a defined range, contributing to
relatively stable parameter updates. We employ the Adaptive Moment Estimation (Adam)
algorithm as the gradient descent optimization method for the network.

The callback function that reduces LR on the plateau was used to optimize training.
It adjusts the learning rate based on the validation set error measurement to achieve
dynamic reduction. The value monitored was val_loss, and scaling was triggered when
model performance did not improve after epochs of patience.

GCM model algorithm flow
The gray relative correlation degree is first used to analyze variables with high correlation
to yield, allowing the variable sequence for modeling to be determined while ignoring
variables with low correlation. This approach increases the efficiency of subsequent feature
extraction, reduces the computational load, and improves the speed of calculation and
prediction.

The data undergoes normalization and standardization processes. Due to the variety of
sample attributes and their varying magnitudes, direct model learning using raw values
may not be very effective. Therefore, data preprocessing becomes necessary. Based on the
characteristics of the original data, the data are normalized to [0,1] by comparing them
with the maximum values of the feature columns. The geometric implication of centering
is that thethe centroid of the sample point cloud is aligned with the origin, resulting in an
offset of the centroid of the sample point cloud. This makes the classification hyperplane
closer to the origin, making the model easier to interpret.

Since the variable data corresponding to different classifications of lime yield have strong
similarity and cross phenomenon, the recognition ability and anti-interference ability of
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the model are required to be higher when extracting characteristic information. While
one of the key features of convolutional operations is the ability to enhance the original
input features while reducing noise. Then, it proceeds to the convolutional layers. The
convolutional layer is used in this article to perform a transformation on the input data
sequence after the gray relative association screening, thereby facilitating the extraction of
essential feature information from the input data. The same convolutional kernel is applied
to each element of the input matrix, ensuring that only one parameter set is learned in
convolutional operations, avoiding separate parameter sets for each element of the same
input matrix. This significantly reduces the memory footprint of the model. The parameter
sharing property of convolutional layers provides translation invariance to the network. In
this article, the motion step of the convolutional kernel is set to 1.

From the perspective of the input dataset for yield classification prediction, the yield
categories aren’t concentrated in a small range. When the Sigmoid function is used
to propagate the gradients, it can easily filter out some important features. In normal
operating data, typical values are ≥0. When values <0 appear, it indicates a malfunction,
which is consistent with the pattern that the ReLU function filters. Moreover, the ReLU
function has a clear advantage in its simplicity of computation.Not only is it straightforward
in forward propagation, but its derivative is also simple (derivative is 1 or 0). Therefore,
within the positive interval range, the vanishing gradient problem is effectively mitigated.
This makes it possible to train deep networks directly in a supervised manner and has
relatively faster computational speed.

After extracting features through convolutional operations, if all the resulting
convolutional features are used as input for the subsequent classification, the computational
load for classificationwill be substantial, which could lead to overfitting. Employing pooling
layers has several advantages: no parameters need to be learned, the number of channels
remains unchanged between input and output data after pooling, and pooling exhibits
is robust to minor deviations in input features. Max pooling also maintains translational
invariance within the dataset. Hence, using max pooling is a reasonable approach. Finally,
the features extracted by MLP are classified to further strengthen the stability of the model
and reduce the loss.

The loss function primarily measures the solution accuracy of the model, where the
deviation between the model result and the actual value is proportional to the loss value.
The optimization objective function is the average of the sum of the loss function values
obtained from each sample. As the target labels of this dataset have been preprocessed
for yield classification prior to model computation, resulting in sparse labels, the Sparse
categorical cross entropy function is employed during model training to measure the
model’s predictive performance. Similar to categorical cross-entropy, the former accepts
sparse labels and is suitable for predicting sparse target values.

The outline of the GCM model for predicting the yield classifications in lime kiln with
thermal cycle is shown in Table 2.
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Table 2 Outline of GCM training for predicting the yield classification in lime kiln with thermal cycle.

Input: system characteristic behavior sequence X0= (X0(1),X0(2),...,X0(n))
Output: yield classification
Gray relative correlation degree calculation: Selecting the variable array r0i with high correlation
degree with yield using Eqs. (1)–(3).
Repeat:

Step1.: Preprocess data sets
Normalize MinMaxScaler (feature range= [0,1]),
add dimension on the third dimension,
divide the training set and test set.

Step2.: Convolutional Layer (CNN)
The first layer: Conv1D (the first time) us-
ing Eq. (4), Conv1D (the second time) using
Eq. (4); MaxPooling using Eq. (6); ReLU function is an activation function
obtained by Eq. (5);
The second and third layers: The structure is the same as that of the first layer,
but the dimensions of the input data are different;
Flatten.

Step3.:Multi-layer perception (MLP)
A total of three hidden layers, using Eq. (7), Dropout

Step4.: Output layer
Use Eq. (8) as activation function to calculate yield classification

Step5.: Define training style and calculate the Loss introduced in Eq. (9);
Loss function using sparse_categorical_cross entropy, optimizer for computing
gradients using Adam.

Until: If Loss <min_lr = 0.001
End.

The callback function:Reduce LR On Plateau. Monitor is ‘val_loss’.

EXPERIMENTS AND DISCUSSION
Experimental data
Data collected in this study are the actual production data of the sleeve lime kilns from
the Jie Neng Company of the Yi * Group in China. The scene of the kiln is shown in
Fig. 3. The data were collected from 12 May, 2019 to 25 July, 2020, hourly each day, with a
total of 57 variables. By calculating the gray relative correlation degree between production
parameters, the relative correlation between each pair of parameters is obtained. The results
of production parameters with a relative correlation degree greater than 50% in terms of
yield are listed in Table 3. It is generally understood that when the relative correlation
degree exceeds 70%, it indicates a stronger correlation.

For measurement accuracy, the measuring elements were evenly distributed at the
corresponding positions, including six upper and six lower arch bridge temperatures, six
circulating gas and six lower combustor temperatures, and three upper inner cylinder
bottom temperatures (these measured variables were averaged before the calculation).
In addition, the actual production data also includes the combustion chamber gas flow,
exhaust gas temperature in and out of the heat exchanger, average discharge temperature,

Guo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1836 11/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1836


Figure 3 Sleeve kiln with thermal cycle from the Jie Neng Company. Photograph by Hua Guo.
Full-size DOI: 10.7717/peerjcs.1836/fig-3

cooling-air flow rate, exhaust gas mixing temperature, exhaust gas temperature at the kiln
top, yield, and limestone weight per cart.

A total of 1,296 amples of measurement variables were analyzed to calculate the gray
relative correlation degree with yield using Eq. (1). Variables with high relative correlation
were chosen for the initial dataset to reduce computation time and cost. The data were
centralized and normalized by scaling the data to [0,1] based on the maximum value of the
feature data column to improve the effectiveness of machine learning.

To enhance the generalization ability of the model, dropout and regularization were
adopted in this study to prevent overfitting. Dropout randomly disregards some neurons
during trainin. This can be combined to formmodels with stronger predictive power. Most
CNN studies that use the ReLU add dropout technology have achieved good classification
performance (Paul, Upadhyay & Padhy, 2022).

Yield classification prediction
Selection of data sets
In actual production, owing to the difference in raw material quantity, fuel quantity,
reaction temperature, and other parameters, the product output difference ismore obvious.
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Table 3 Typical variables of the sleeve kiln with thermal cycle.

Variables Measured
variable

Abbreviation Numerical
example

Unit Gray relative
correlation degree

x1 Upper arch bridge temperature TUAB 231.500 ◦C 0.8609
x2 Lower arch bridge temperature TLAB 173.167 ◦C 0.6885
x3 Circulating gas temperature TCG 747.667 ◦C 0.7838
x4 Lower combustor temperature TLCC 1216.500 ◦C 0.9143
x5 Outlet temperature of heat exchanger exhaust gas TEXGHE 360 ◦C 0.8047
x6 Inlet temperature of heat exchanger exhaust gas TENGHE 615 ◦C 0.7785
x7 Ring pipe temperature of cooling air TCAL 144 ◦C 0.9859
x8 Mixing temperature of exhaust gas TEGM 206 ◦C 0.6957
x9 Exhaust gas temperature at kiln top TEGKT 157 ◦C 0.8715
x10 Average discharge temperature TEC 136 ◦C 0.6986
x11 Upper combustor gas flow rate FUCCG 485 Nm3/h 0.8886
x12 Lower combustor gas flow rate FLCCG 756 Nm3/h 0.9883
x13 Upper cold flow rate FCU 2,946 Nm3/h 0.8414
x14 Lower cold flow rate FCL 10,856 Nm3/h 0.5169
x15 Air flow rate for cooling lime FLCA 9,925 Nm3/h 0.5302
x16 gas flow FG 9,000 Nm3/h 0.6472
x17 Driving fan flow FDF 7,656 Nm3/h 0.8597
x18 Limestone weight per car ILS 108 kg 0.7538
x0 Yield YI 20.83 t/2 h

Table 4 Yield classification and parameter characteristics.

Yield
classification

Yield
characteristics

Parameter
characteristics

YO1 ≥95% YImax Normal, optimal operation, no failure
YO2 YImax ∈(95%, 85%] Small gap between the average value and the optimal

parameter, no failure
YO3 YImax ∈(85%, 75%] Obvious gap between the average value and the optimal

parameter, but no failure occurred
YO4 YImax ∈(75%, 65] Large gap with the average value of the optimal parameter,

In the debugging phase
YO5 YImax ∈(65%, 0] Large gap with the average value of the optimal parameter,

and a fault occurs

Determining whether it is qualified or faulty cannot accurately reflect the actual production
situation.

The majority of the data is relatively concentrated, consistent with situations of normal
production and good or excellent yields. However, the remaining dispersed portion
exhibits several scenarios. Some parameters fall outside the threshold range, others deviate
significantly from the average values, and some parameters are close to the lower threshold.
When analyzing the actual production data, apart from the situations already detected as
faults by the existing control system, the yields could potentially manifest in five scenarios:
zero or extremely low, relatively low, not high, good, and excellent. The yield prediction
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Figure 4 Accuracy and loss for different numbers of measured variables. (A) 57 variables (All measured
variables) (B) 18 variables (ro > 50%) (C) 16 variables (ro > 60%) (D) 12 variables (ro > 75%) (E) nine
variables.

Full-size DOI: 10.7717/peerjcs.1836/fig-4

model in this study divides the yield into five categories according to the actual production
yield as follows in Table 4.

Utilizing actual production operation data, 1,296 sets of measured parameters were
randomly selected as variable samples to validate the effectiveness of the non-optimal
operating condition yield prediction method proposed in this chapter.The measured
variables with relative correlation degree greater than 75% with yield were selected,
including: TUAB, TCG, TLCC, TEXGHE, TENGHE, TCAL, TEGKT, FUCCG, FLCCG, FCU, FDF, ILS.
In the following experiments, we used the random split approach to evaluate different
methods: a total of 1,296 × 12 samples were randomly selected, where 75% were used for
training and the rest for testing.

Comparison for different gray relative correlation degrees
We compared the results of the models using different numbers of measured variables.
All measured variables (57 variables), 18 variables (r0 > 50%), 16 variables (r0 > 60%),
12 variables (r0> 75%), and nine variables (r0> 80%) were selected for computation, as
shown in Table 5. As the number of variables decreased, the computational speed improved
significantly. The loss of the datasets with filtered initial variables was significantly lower
than that of the datasets containing all variables. The change curves are shown in Fig. 4.
As shown in the figure, the model with all measured variables fluctuates more during the
calculation process and is stable for a longer time. The margin of accuracy was small. This
shows that the variable set screened by the gray correlation calculation has little influence
on the accuracy of prediction, whereas the loss and the calculation cost are significantly
reduced, and the efficiency is also improved.

Performance comparison with other methods
To compare the performance of the GCM Net, we conducted extensive experiments in
which five methods were used on industrial datasets for multiple classification forecasting.
The five methods were MLP, RNN, LSTM, GRU, and CNN.

In this study, each model uses a dataset that has been calculated and screened
with a gray relative correlation degree and then preprocessed. All models adopted a
sparse_categorical_crossentropy loss function to describe the solution accuracy of the
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Table 5 Parameters for five yield operating classes and control sequences.

Number of
variables

Gray relative
correlation degrees r0

Loss Accuracy Computation speed
(µs/sample)

57 All variables 0.0630 0.8907 179
18 >50% 0.0315 0.8715 85
16 >60% 0.0366 0.8715 57
12 >75% 0.0359 0.8827 48
9 >80% 0.0434 0.8715 46

problem. We used the Reduce LR on the Plateau callback function to continuously
reduce the learning rate in the training process and obtain the optimal model quicker and
accurately.

The output dimensions of the MLPmodel with three hidden layers were 240, 80, and 20.
For both the LSTM and RNNmodels, there were two hidden layers, and the dimensions of
the tensors were 11. The size of the output array in the LSTMwas (*, 500) and (*, 250). The
size of the output array in the RNN was (*, 880) and (*, 88). For a GRU with one hidden
layer, the size of the output array was (*, 256). We performed dropout after each layer for
the RNN, LSTM, and GRU. The activation functions of the hidden layers in the adopted
ReLU, and the activation function of the output layer used softmax.

As shown in Fig. 5, the performance of the six models in the loss from good to bad
showed the following trend: GCM, CNN, GRU, MLP, RNN, and LSTM. The loss curves
of GCM, CNN, GRU, and MLP were similar. The lowest value was obtained for GCM
(0.0359), followed by CNN (0.0368). However, RNN and LSTM had significantly high
losses and poor performance, where the highest loss was observed for LSTM (1.2365), and
could not easily fit the trend of local changes in the real values. The loss values for each
model are listed in Table 6.

The accuracy rates of the six models compared, from high to low, were in the following
order: GCM, CNN, MLP, LSTM, RNN, and GRU. The highest rates were observed for
GCM and CNN (0.8827) and the lowest for GRU (0.6358). The accuracies of the GCM
and CNN were significantly higher than those of the other four models. GCM and CNN
performed best when comparing the accuracy of the training and prediction sets. These
two models were very similar, and the accuracies of the training and prediction sets were
similar. The predicted value coincided well with the actual value, with a smaller deviation.
Overfitting was not observed. However, the other four models performed significantly
worse.

In terms of model calculation speed, MLP (38 µs/sample) was the fastest among the
six models, because it had the simplest and least calculation amount. This was followed
by CNN (40 µs/sample) and GCM (48 µs/sample); GCM was slightly slower than CNN,
because there were two more hidden layers of MLP. The slowest was RNN (56 µs/sample).

In terms of the stability of the loss calculation, GCM is the best, and the model basically
has no fluctuation after 150 calculations. CNN still shows obvious fluctuations after 400
iterations of model calculation, although it performs slightly better than GCM in other
aspects. The other four models performed the worst.
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Figure 5 Accuracy and loss of different algorithms. (A) MLP (B) RNN (C) LSTM (D) GRU (E) CNN
(F) CNN-MLP.

Full-size DOI: 10.7717/peerjcs.1836/fig-5

It was observed that GCM exhibited the best general performance in predicting the yield
classification of calcined lime kilns by thermal cycling.

The experimental results presented above indicate that both the RNN model and the
LSTM model are ineffective in extracting crucial features for accurate prediction of lime
production yield. Similarly, the MLP and GRU models exhibit only moderate feature
extraction capabilities with unsatisfactory detection and prediction effects. Although their
stability has improved, their generalization performance remains suboptimal. On the
other hand, the CNN and GCM models exhibit superior feature extraction capabilities
when applied to lime production data, yielding optimal identification and prediction
results along with better generalization performance. In particular, the GCM model
outperforms the CNN model in terms of stability. Compared to all of the aforementioned
comparative models, the GCM model proposed in this article significantly reduces loss
and computational cost while improving prediction efficiency. It has higher accuracy rates,
lower losses, superior feature extraction capabilities, better prediction effects, improved
generalization performance, as well as improved stability.The GCM hybrid deep learning
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Table 6 Comparison of experimental results for industrial data based on different commonmodels.

Methods Loss Accuracy Computation speed
(µs/sample)

MLP 0.3229 0.7370 38
RNN 1.1933 0.6772 56
LSTM 1.2365 0.6780 50
GRU 0.3879 0.6358 52
CNN 0.0368 0.8827 40
CNN-MLP 0.0359 0.8827 48

network yield predictionmethod effectively, quickly and stably predicts yield classifications,
while providing a basis for intelligent yield control.

However, during the model training process, the GCM model requires more extensive
debugging of hyperparameters, resulting in increased time consumption. As the dataset size,
feature complexity, and number of network layers and units increase, the time required to
build a well-performing model also increases. In addition, further improvements in model
accuracy may not be achievable.

Non-fault state control strategy and yield increase
Non-fault state control strategy
Lime calcination is a relatively slow production process. Only when there is a fault can the
staff adjust the parameters or operating the actuators in a timely manner. In addition, it is
difficult to make timely operation to control the yield in the face of a variety of parameters
within the threshold range.

Some of the parameters have low relative correlation with the output, or have good
stability in the production process. Meanwhile, in order to improve the operability and
speed of debugging, production process parameters with relative correlation degree of
more than 80% with yield were selected for statistics and comparison. In some cases of
failure, there is no yield, according to the original automatic control system to adjust. This
article will not be discussed.

There are nine kinds of operation parameters whose relative correlation degree with
yield is more than 80%, respectively TUAB, TLCC, TEXGHE, TCAL, TEGKT, FUCCG, FLCCG, FCU
and FDF. We have divided the yield operation into YO1,YO2,YO3,YO4 and YO5 according
to the yield (see Table 7 for specific production ranges). We compared the corresponding
operation parameters according to the yield operating class and characteristics, as shown
in Fig. 6.

From Fig. 6, it can be seen that the following classes have obvious differences with
the optimal average value in different operating conditions: YO4 in TUAB and TEXGHE,
YO3,YO4 in TLCC, FUCCG, FLCCG and FCU, YO2, YO4 in TCAL, TEGKT and FDF.

The maximum, minimum and average values of nine operation parameters for five yield
operating classes are listed in Table 7. And the relative error δi between the average value
of YO2\3\4 and YO1 in each operating condition.
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Table 7 Parameters for 5 yield operating classes and control sequences.

Yield operating class
(Yield range)

Parameter TUAB TLCC TEXGHE TCAL TEGKT FUCCG FLCCG FCU FDF

Minimum value 182.167 780.167 269.000 110.000 111.000 214.000 356.000 2014.000 3583.000

Maximum value 278.000 1363.167 487.000 177.000 226.000 687.000 1186.000 4020.000 8373.000
YO1
(YImax ∈

[95%,100%])
Average value 240.417 1204.232 374.214 137.060 160.785 482.156 711.817 3448.131 6568.884

Minimum value 230.333 1010.833 343.000 111.000 120.000 417.000 522.000 2865.000 6073.000

Maximum value 279.667 2865.833 403.000 163.000 201.000 765.000 1073.000 3782.000 8363.000

Average value 249.496 1221.687 379.710 145.355 172.629 457.258 731.113 3328.435 6912.750

YO2
(YImax ∈

(95%,85%])
δ2 3.776% 1.449% 1.469% 6.052% 7.367% 5.164% 2.711% 3.471% 5.235%

Control priority III Control sequence 5 9 8 2 1 4 7 6 3

Minimum value 238.833 642.167 349.000 120.000 93.000 1.100 152.000 2038.000 3.000

Maximum value 247.333 1228.667 393.000 155.000 209.000 440.000 654.000 3098.000 8408.000

Average value 244.198 1087.222 360.810 142.333 183.238 323.129 486.000 2910.524 6267.190

YO3
YImax ∈

(85%,75%)
δ3 2.203% 11.166% 5.051% 2.205% 6.598% 27.819% 34.435% 12.120% 9.828%

Control priority III Control sequence 9 4 7 8 6 2 1 3 5

Minimum value 153.339 304.287 267.719 67.368 217.614 41.767 158.766 3006.635 208.421

Maximum value 78.333 198.333 131.000 32.000 165.000 1.000 −1.340 17.200 0.000

Average value 249.167 817.000 395.000 220.000 388.000 110.000 199.000 3141.000 11738.000

YO4
(YImax ∈

(75%,0))
δ4 36.220% 74.732% 28.458% 50.848% 35.345% 91.338% 77.696% 12.804% 96.827%

Control priority I Control sequence 6 4 8 5 7 2 3 9 1

YO5
(YI= 0)

Disparity with the optimal parameter average, fault
Operation parameter adjustment by original control system

Notes.
aδi is relative error between the average value and the value of YO1 class.

When the yield operating class is YO2, it is close to the optimum yield. There is a small
difference between the average values of operation conditions and those of YO1, as shown
in Table 7. The control priority is IV and the operating parameters are locally adjusted.
The order of regulation is consistent with δ2, as shown in Table 7.

When the yield operating class is YO3, as shown in Table 7, there is a certain gap with the
optimal yield, and the average value of some operating parameters is significantly different
from that of YO1. At this time, the regulation priority is III, and the regulation order is
consistent with δ3.

When the yield operating class is YO4, the gap with the optimum parameters is
significant, see Table 7. The control priority is II, and the regulation sequence is sorted
according to δ4. Most of the production is in the commissioning stage, and the yield is
small. However, through the control sequence of priority II, a debugging guidance can be
given to the staff, so as to debug the operation condition faster and reduce the waste.

When the yield operating class is YO5, there is no yield. In this case a fault occurs.
The control priority is I. The operating parameters are adjusted according to the original
control system.

In the production process, according to a group of data detected by the system sensor,
the trained yield prediction model is used to calculate the data and predict the yield
classification. The operator or control system can be informed of the yield classification in
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Figure 6 The parameter distribution of different operating conditions corresponding to the yield op-
erating classes.

Full-size DOI: 10.7717/peerjcs.1836/fig-6

this set of parameter states in a timely manner. Then perform corresponding operations
according to different categories. The parameters of YO1 are taken as the expected value
for each controlled quantity and the corresponding actuator is adjusted. Intelligent control
strategy is shown in Fig. 7.

Effect on the yield
The average yield of each operating class and the percentage of the total yield are shown in
Table 8. In situations requiring adjustment, YO2 accounted for 9.79% and YO3 accounted
for 5.04%. In both cases, there was no fault in the production process. It can be adjusted
according to the control priority sequence.

When production is calculated based on 100 days,
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Figure 7 Intelligent control strategy.
Full-size DOI: 10.7717/peerjcs.1836/fig-7

Table 8 The yield of different operation classes.

Yield operating class YO1 YO2 YO3 YO4

Average yield Ya (t/2h) 21.183 19.233 17.932 5.843
Percentage of total yield Yt% 67.80% 9.79% 5.04% 4.40%
Yield increase Yi (t /100 days) 0 229.086 196.602 809.952

The yield increase of YOi class Yi is:

Yi=Yt × (Ya1−Yai)× (24/2)

Considering that the accuracy of the yield prediction model is 88.27%, it is estimated
that the yield can be increased by 1090.699 t/100 days, making minor local adjustments to
the operating parameters. The energy conservation is relatively obvious.

The proposed approach combines a yield prediction model with an intelligent decision
making method. By utilizing a non-optimal yield classification prediction model trained
with actual production data, the variable parameters of the production process can be
predicted. This enables timely knowledge of the yield classifications for a given set of
parameter states, allowing for intelligent decision-making strategies to be implemented
accordingly. Analysis of real production data verifies the feasibility and potential annual
yield increase of this intelligent decision-making method. During the production process,
system sensors collect a set of data that is then used by a trained yield prediction model to
calculate and predict the yield classification. Technicians can promptly identify the yield
classification in this specific set of parameter states and subsequently perform appropriate
regulation and control operations based on different categories. This ensures that the
optimal operational state is achieved as quickly as possible, resulting in increased output
while reducing unit energy consumption.

Guo et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1836 20/25

https://peerj.com
https://doi.org/10.7717/peerjcs.1836/fig-7
http://dx.doi.org/10.7717/peerj-cs.1836


CONCLUSION
In this study, we present a GCM model for predicting yield classification. Based on this,
intelligent control strategy for the production parameter is proposed. By calculating the
actual production data for a lime kiln, it is expected to increase the production by 1090.699
t/100day.

Because there are many variables related to the yield in the production process, which
affect the speed and accuracy of the model calculation, we first use the gray relative
correlation degree to calculate the correlation degree between variables and yield, and
select the variables with a higher correlation degree for model calculation. We compared
the calculations and predictions of the models that included different variables. The
results show that the loss and calculation time of the model based on the screened
variable set were significantly reduced, and the accuracy was almost unaffected. Then,
the preprocessed datasets are fed into a hybrid deep network model based on the CNN
and MLP networks to predict yield classifications. We conducted extensive experiments
using five methods on industrial datasets for multiple classification forecasting to compare
the performance of the CNN-MLP model. The results show that CNN-MLP exhibited
outstanding performance. Given these results, we can conclude that the GCM model
can be applied to yield classification predictions for lime kilns. Then, non-fault state
intelligent control priority is set by predicting the yield classification, and the control
sequence of operating parameters is given according to different conditions. In the case of
no failure or obvious problems, the system or technical staff can decide whether to adjust
the unsatisfactory parameters in time according to the prediction results and parameters of
each production link in the early stage of production. This allows for higher yields can be
achieved to improve production efficiency and reduce unnecessarywaste. Simultaneously, it
contributes to building intelligently controlled production process systems as an important
part of Industry 4.0.

However, there are still some deficiencies in this study and further research is required.
Due to the high similarity of operating parameters corresponding to the output category
and the crossover phenomenon of parameters between categories, finer categorization
has been sacrificed in the pursuit of accurate identification of operating conditions. As a
result, the accuracy of control of adjustment amounts during control cannot be improved.
In future research efforts, we can improve the performance of the recognition model by
considering both the amount of collected running parameters and performing feature
analysis on differential parameters. In addition, an attempt should be made to explore
various deep learning models to improve the accuracy of recognizing yield classification
conditions.

The yield classification prediction method proposed in this article requires the model
to be trained using a substantial amount of production operation parameter data prior to
regulation. Then, real-time production variables are used to predict production conditions
accurately or even in real time. Although our proposed condition detection model does
not have a slow computational speed, it still lags behind somewhat; in addition, actual
production may introduce parameters that have not previously appeared in our model data
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set. Ensuring timely or even real-time accurate feedback on yield and quality is an essential
aspect for future research efforts. In addition, the use of deep learning predictive models
for real-time intelligent online control of capacity and quality is a primary direction for
future investigation.
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