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ABSTRACT
Reliable point cloud data (PCD) generated by LiDAR are crucial to perceiving
surroundings when autonomous driving systems are a concern. However, adverse
weather conditions can impact the detection range of LiDAR, resulting in a significant
amount of noisy data that substantially deteriorates the quality of PCD. Point cloud
denoising algorithms used for challengingweather conditions suffer frompoor accuracy
and slow inferences. The manuscript proposes a Series Attention Fusion Denoised
Network (SAFDN) based on a semantic segmentation model in real-time, called PP-
LiteSeg. The proposed approach provides two key components to the model. The
insufficient feature extraction issue in the general-purpose segmentation models is first
addressed when dealing with objects with more noise, so the WeatherBlock module is
introduced to replace the original layer used for feature extraction. Hence, this module
employs dilated convolutions to enhance the receptive field and extract multi-scale
features by combining various convolutional kernels. The Series Attention Fusion
Module (SAFM) is presented as the second component of the model to tackle the
problem of low segmentation accuracy in rainy and foggy weather conditions. The
SAFM sequentially applies channel and spatial attention mechanisms to enhance
the model’s sensitivity to crucial features. Furthermore, weighted feature fusion is
employed to enhance the model’s efficiency in integrating low-level and high-level
feature information configurations. Experimental evaluations were conducted on the
publicly available DENSE dataset. The results demonstrate that the improved model
achieved an 11.1% increase in denoising accuracy measured byMIOU and an inference
speed of 205.06 FPS when compared to the PP-LiteSeg model. As a result, the noise
recognition accuracy and denoising capability in real-time are enhanced.

Subjects Adaptive and Self-Organizing Systems, Algorithms and Analysis of Algorithms,
Autonomous Systems, Computer Vision, Data Science
Keywords LiDAR, Point cloud denoising, Semantic segmentation, Autonomous driving

INTRODUCTION
High-precision LiDAR is often used to complement cameras, radar, ultrasonic
sensors, and other devices to enhance the perception and understanding of
surroundings in autonomous driving. Despite its high precision, noise is generated
when functioning and sometimes fails to capture surroundings in real traffic
scenes effectively. The point cloud noise (PCN) refers to the invalid points in the
collected point cloud data (PCD) in LiDAR. The primary sources of PCN in LiDAR
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can be attributed to several factors: (1) Adverse weather conditions, such as rain
(Kutila et al., 2018), fog (Bijelic, Gruber & Ritter, 2018), and snow (Charron, Phillips &
Waslander, 2018; Heinzler et al., 2019), can cause undesirable missing and scattered points
due to laser reflection, refraction, and absorption. (2) Interference occurs between multiple
LiDAR sensors, where a LiDAR sensor may receive pulses from other LiDAR sensors, which
can lead to target loss or incorrect detection (Kim et al., 2015; Hebel et al., 2018). Fersch et
al. (2016) researched LiDAR sensors with small apertures. The impact of rain is more severe
with increased rainfall, and non-uniform heavy precipitation can cause the LiDAR point
cloud to form clustered blocks, which may be misidentified as obstacles. Zhang et al. (2023)
suggested that adverse weather conditions have long been a significant obstacle preventing
autonomous vehicles from achieving Level 4 autonomy or higher, highlighting the severe
impact caused by such conditions. Undoubtedly, noise or interference can increase the risk
of traffic accidents, posing a threat to the safety of individuals on the road. These noises
also affect other downstream perception algorithms, such as object detection (Kilic et al.,
2021) and point cloud semantic segmentation (Wang et al., 2018).

Therefore, ensuring that autonomous vehicles can obtain reliable perception data
for downstream sensing tasks in adverse weather conditions is of utmost importance.
Real-time and efficient point cloud segmentation and denoising algorithms are needed.
Among available ones, conventional sparse PCD approaches (Charron, Phillips &
Waslander, 2018; Rusu & Cousins, 2011; Kurup & Bos, 2021; Park, Park & Kim, 2020) have
demonstrated a certain level of effectiveness in denoising implementations. As deep
learning algorithms advance, trained networks outperform conventional methods in terms
of both segmentation quality and real-time performance. Common point cloud semantic
segmentation methods include point-based approaches (Seppänen, Ojala & Tammi, 2022)
and projection-based methods (Heinzler et al., 2020). When a spherical projection is used
to transform 3D data into 2D images, a matured 2D real-time lightweight semantic
segmentation network can also be applied to point cloud segmentation. Among these, the
PP-LiteSeg network (Peng et al., 2022), known for its outstanding performance in image
segmentation, employs novel modules like the Flexible and Lightweight Decoder (FLD)
and Simple Pyramid Pooling Module (SPPM) to enhance segmentation accuracy while
maintaining a competitive inference speed.

However, despite its exceptional inference speed, the segmentation performance of this
model on datasets used for PCD is subpar. This could be attributed to the model’s lack of
adaptability to PCD’s highly asymmetric aspect ratios and themore abstract and ambiguous
noise characteristics when adverse weather conditions are observed. Thus, the article
proposed an improved model based on PP-LiteSeg for PCD in adverse weather conditions.
This model enhanced segmentation and PCD accuracy while balancing denoising accuracy
and real-time performance. The experiments demonstrated that the proposed model
outperformed WeatherNet (Heinzler et al., 2020) as well as leading semantic segmentation
networks used for general purposes (Wu et al., 2018; Milioto et al., 2019) and exhibited
strong generalization capabilities across various scenarios.

The contributions of the article can be summarized as follows:
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1. An improved model is suggested based on PP-LiteSeg: A multi-scale initial feature
extraction layer called WeatherBlock is proposed by addressing the extremely
asymmetric aspect ratio of PCD and the more abstract nature of noise objects.
This layer leverages dilated convolutions by stacking different convolution kernels
to extract multi-scale features, enhancing the model’s feature extraction capability.
To further improve the fusion of low-level and high-level features and enhance
denoising accuracy, the Series Attention Fusion Module (SAFM) is presented. The
SAFM sequentially employs channel and spatial attention mechanisms to enhance the
feature representation and achieve a better fusion of abstract features.

2. Comprehensive experiments are run: The publicly available DENSE dataset is tested
extensively, and the proposed model is compared with other models used for filtering
adverse weather conditions and leading generic semantic segmentation networks.
Through these experiments, we evaluated the proposed model’s denoising accuracy
and real-time performance.

3. Ablation studies are conducted: The proposed enhancements were tested in ablation
experiments, providing a more objective evaluation of the effectiveness of each
improved component.
The objective is to advance the field of PCD in adverse weather conditions, providing a

model that demonstrates improved accuracy while increasing real-time performance.
The rest of the article is presented as follows: the related work is presented in ‘Related

Work’. ‘Materials and Methods’ presents the fundamental material and methods and
the proposed network. The experiments and their corresponding results are presented
in ‘Experimental Results and Discussion’. The research is concluded in ‘Conclusions and
Future Research’.

RELATED WORK
Conventional approaches
Conventional filtering approaches for PCD are typically based on spatial domains or
statistical distributions. The Radius Outlier Removal (ROR) and Statistical Outlier Removal
(SOR) algorithms proposed in Rusu & Cousins (2011) are well-known methods. The ROR
algorithm identifies data points as outliers based on a radius value. If the distance between
a data point and other points exceeds a radius threshold, the data point is considered
an outlier and is removed. On the other hand, the SOR algorithm utilizes statistical
characteristics of data points to identify outliers. It calculates the average distance and
standard deviation between a data point and its neighbors and then uses a specific threshold
to determine whether it is an outlier or not. However, due to the varying density of LiDAR
PCD, such fixed radius thresholds may lead to removing genuine distant points, making
them impractical for adverse weather denoising operations. Charron, Phillips & Waslander
(2018) proposed the Enhanced Dynamic Radius Outlier Removal (DROR) algorithm,
which employs a dynamically adjustable radius based on the data point distribution.
This adaptive approach allows the algorithm to handle LiDAR PCD’s density changes
better, resulting in improved performance. Kurup & Bos (2021) introduced the Dynamic
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Statistical Outlier Removal (DSOR) algorithm, which implements dynamic parameters to
determine outlier points instead of conventional fixed thresholds. It calculates a dynamic
threshold based on the mean and standard deviation of the data points, allowing the
threshold to be adaptively adjusted based on the distribution of the data. Park, Park &
Kim (2020) presented the Low-Intensity Outlier Removal (LIOR) algorithm, designed to
remove outlier points caused by snow coverage in LiDAR PCD. This algorithm filters
intensity values in the PCD based on an intensity threshold and employs the ROR filter
to retain low-intensity points. Conventional filtering algorithms utilize spatial-domain
information to remove noisy points. Although some algorithms can adaptively adjust
certain thresholds, they still have limitations based on the distribution, and their denoising
speed is generally slow.

Trained approaches
Trained approaches, particularly those based on neural networks, have made significant
strides in semantic segmentation applied to PCD. These approaches are tailored for general
segmentation tasks, and they can be trained to segment highly abstract shapes, including
noise patterns caused by rain and fog (Seppänen, Ojala & Tammi, 2022). Successful
methods employ voxelization techniques, such as VoxNet, designed by Maturana &
Scherer (2015). These address the irregular structure of 3D PCD and achieve commendable
results in the semantic segmentation tasks of PCD. However, their sparse nature can
lead to subpar segmentation results when, for example, dealing with rain and fog noise. In
addition, deep learning models operate entirely on PCD, such as PointNet (Qi et al., 2017a)
and PointNet++ (Qi et al., 2017b). These models treat PCD as unordered sets of points
and directly process their features, resulting in excellent performance in classification and
segmentation tasks. However, using the original data points as input in these models can
lead to high computational complexity and relatively lower real-time performance.

Furthermore, instead of point-based segmentation approaches, projection-based
methods offer increased efficiency and improved real-time performance. The spherical
projection method leverages the generation principle of LiDAR PCD (Wu et al., 2018),
mapping each 3D point to a corresponding pixel on a 2D image. Employing this approach
naturally transforms sparse and unstructured point clouds into dense and structured
image data. Wu et al. (2018) introduced SqueezeSeg, which applies the lightweight
SqueezeNet (Iandola et al., 2016) semantic segmentation network for segmentation
operations and then reversely maps the segmentation results back to 3D space. Subsequent
models like SqueezeSegV2 (Wu et al., 2019) and SqueezeSegV3 (Xu et al., 2020) incorporate
the aggregated spatial-domain context and adaptive convolution modules, reducing
interference caused by data distribution features and missing points. Milioto et al. (2019)
proposed the fast RangeNet++, where designing a post-processing algorithm based on fast
k-nearest neighbor search methods improves segmentation results. Piewak et al. (2019)
introduced LiLaNet, which consists of continuous LiLaBlock units and delivers good
segmentation performance but exhibits high computational complexity.

There are only a few studies on PCD networks used for adverse weather conditions.
Heinzler et al. (2020) proposed WeatherNet, a projection-based method for noise
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segmentation caused by rain and fog. When compared to leading general segmentation
networks, their approach has fewer trainable parameters while achieving higher denoising
performance and stability. However, the model has more continuous branching structures,
leading to a slower inference speed. Seppänen, Ojala & Tammi (2022) introduced
4DenoiseNet, which utilizes a new k-nearest neighbor search convolution on continuous
point clouds, incorporating temporal-dimension information to improve denoising
performance for snow. However, its limitation lies in the requirement for PCDs with
temporal continuity.

Semantic segmentation networks have been extensively validated and shown to be
versatile. Therefore, it is feasible to train real-time lightweight semantic segmentation
models with superior performance to segment images to determine noise caused by
adverse weather conditions. Among them, the PP-LiteSeg model (Peng et al., 2022)
incorporates novel modules such as the Flexible and Lightweight Decoder (FLD) and
Simple Pyramid Pooling Module (SPPM) to enhance image segmentation accuracy, and
it exhibits advantages in terms of operating speed when compared to real-time semantic
segmentation models. However, its direct application to PCD tasks yields subpar results.
To better adapt to PCD tasks under adverse weather conditions, the article introduces two
improvement strategies to the initial feature extraction layer and feature fusion module
built upon PP-LiteSeg. These strategies effectively enhance the segmentation accuracy of
noisy points, striking a balance between real-time performance and denoising precision.

MATERIALS AND METHODS
Dataset
The DENSE dataset is a collaborative effort between Mercedes-Benz, Algolux, Ulm
University, and Princeton University (Gruber et al., 2019). The dataset specifically focuses
on adverse weather conditions and is the first large-scale multi-modal dataset. The
research primarily utilized a subset of the DENSE dataset known as ‘‘Point Cloud
Denoising’’ (Heinzler et al., 2020). This subset is specially curated for the challenging
task of denoising LiDAR point clouds in adverse weather conditions. As depicted in Fig. 1,
the dataset includes four real-world scenarios: (Fig. 1A) pedestrian crossing, (Fig. 1B)
construction area, (Fig. 1C) highway, and (Fig. 1D) pedestrian zone. Each scenario is
represented under various visibility levels in different weather conditions (day/night)
with clear weather, rain, and fog. The PCD dataset consists of approximately 72,800 PCD
samples with a resolution of 2× 32× 400. The dataset includes four semantic classes
for labeling: ‘‘valid point’’ (representing points unaffected by adverse weather), ‘‘fog’’
(indicating points affected by fog clutter), ‘‘rain’’ (representing points affected by rain
clutter), and ‘‘invalid point’’ (points labeled as invalid for other reasons). To enhance
the generalization capability and robustness of the model, we applied data augmentation
techniques, including horizontal flipping.

Point cloud denoising method based on improved PP-LiteSeg
To better adapt the model to the PCD task, an improved model based on PP-LiteSeg is
proposed. Firstly, we enhanced the model’s competency to fuse high-level and low-level
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Figure 1 Static setups in the climate chamber representing four complex and realistic traffic scenar-
ios. (A) pedestrian crossing, (B) construction area, (C) highway and (D) pedestrian zone. Image source:
DENSE dataset, Gruber et al. (2019).

Full-size DOI: 10.7717/peerjcs.1832/fig-1

features by employing spatial and channel attention mechanisms. Secondly, we enhanced
the initial feature extraction layer to improve themodel’s feature extraction ability, enabling
it to capture abstract features of rain and fog-related noisy data and address point clouds’
extremely asymmetric aspect ratio. The following sections will provide detailed information
on these improvements.

Overall architecture of the PP-LiteSeg model
PP-LiteSeg (Peng et al., 2022) is a versatile, efficient, and real-time semantic segmentation
model with an overall architecture, as illustrated in Fig. 2. It follows a typical encoder–
decoder structure, composed of three main components: an encoder based on the efficient
STDCSeg backbone feature extraction network (Fan et al., 2021), a Simple Pyramid Pooling
Module (SPPM), and a lightweight decoder with the Unified Attention Fusion Module
(UAFM). We employed the images generated from the spherical projection of the PCD
as inputs to the model, encompassing information from both the distance and intensity
channels similar to the data creation process outlined in Wu et al. (2018). The encoder
employs the STDCSeg backbone feature extraction network to output abstract high-level
feature maps at a lower computational cost. The SPPM aggregates semantic information
from multiple scales to extract and fuse context information. It utilizes addition to replace
the original cascaded calculations, simplifying the computational complexity. Then, It feeds
the fused composite feature maps into the decoder. The decoder incorporates two SAFM
(Series Attention Fusion Module) blocks and a segmentation head. It progressively fuses
multi-level features containing low-level and high-level feature information. It employs
upsampling operations to restore the feature maps to the original resolution, resulting in
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Figure 2 Architecture of PP-LiteSeg.
Full-size DOI: 10.7717/peerjcs.1832/fig-2

the output of the predicted segmentation outcomes. The output comprises four channels,
each corresponding to the segmentation results of the four classes in the dataset.

The encoder in Fig. 2 consists of multiple STDCmodules organized into different stages.
STDC (Fan et al., 2021), while extracting low-level detailed features, employs a lightweight
design by gradually reducing the number of feature channels as the network deepens.
Moreover, the output of the STDCmodule comprises multiple feature maps, enabling it to
extract multi-scale features with fewer parameters. However, the initial feature extraction
layers in Stages 1 and 2 consist of two 3 × 3 convolutional kernels, which may exhibit
limited feature extraction capabilities when dealing with input tensors characterized by
low resolution and highly asymmetric aspect ratios. The innovative Unified Attention
Fusion Module (UAFM) in a PP-LiteSeg is designed to merge the details from lower layers
with the semantic information of higher layers, as depicted in Fig. 3A. The UAFM initially
upsamples the feature maps (Fup) from the deep modules in the decoder to match the
size of the corresponding feature maps in the encoder (Flow). Hence, attention modules
take Fup and Flow as inputs, generating attention weights (α). These weights are then used
to fuse Fup and Flow through element-wise multiplication (Mul operation). Finally, the
weighted features are element-wise added, resulting in the output of the fused features.
The above process can be described in Eq. (1):

Fup=Upsample
(
Fhigh

)
α=Attention

(
Fup,Fhigh

)
Fout = Fup ·α+Flow ·(1−α)

(1)

The attention module, as illustrated in Fig. 3B, can be considered a plugin. The spatial
attention module initially computes the average and maximum values along the channel
dimension to generate four features. Then, a concatenate operation is performed, followed
by a convolutional operation, and the sigmoid function is applied to obtain the attention
weight. The channel attention module utilizes average pooling and max pooling operations
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Figure 3 (A) The framework of the Unified Attention FusionModule (UAFM). (B) Spatial attention
module and channel attentionmodule for plugins. The UAFM applies plugins to generate weights α for
fusing the low-level and high-level features.

Full-size DOI: 10.7717/peerjcs.1832/fig-3

to compress the spatial dimension of the input features. Similarly, a convolutional operation
is performed after the concatenate operation, and the Sigmoid function is applied to obtain
the attention weight.

The improved PP-LiteSeg model
Although the PP-LiteSeg performs better in general segmentation tasks, its direct
application to PCD under adverse weather conditions yields suboptimal results. It tends
to misinterpret or introduce confusion when dealing with noise caused by rain and
fog conditions. To address these issues, the article proposes an enhanced model based
on PP-LiteSeg, which is referred to as the Series Attention Fusion Denoised Network
(SAFDN). This architecture, as depicted in Fig. 4, incorporates the Series Attention Fusion
Module (SAFM) and the WeatherBlock module.

We enhanced the structure of the UAFM, inspired by the work of Woo et al. (2018), as
illustrated in Fig. 5. Specifically, we sequentially applied attention mechanisms along the
channel and spatial dimensions. This strategy guides the neural network to focus more
effectively on semantic categories relevant to the segmentation task, such as rain and
fog-related noisy data, enhancing responsiveness to crucial features. The improved module
enriches the fusion representation of low-level and high-level features without significantly
lowering the network’s operational speed, thus enhancing denoising performance. The
channel attention module in the diagram outputs weight αc , while the spatial attention
module outputs weight αs. The computational flow is akin to the original UAFM structure,
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Figure 4 Architecture of the improved PP-LiteSeg.

Full-size DOI: 10.7717/peerjcs.1832/fig-4

 

Figure 5 Structure of the series attention fusionmodule (SAFM).
Full-size DOI: 10.7717/peerjcs.1832/fig-5

and this process can be expressed using Eq. (2).

Fup=Upsample
(
Fhigh

)
αc =Attentionc

(
Fup,Flow

)
F ′up= Fup ·αc ,F ′low = Flow ·(1−αc)

αs=Attentions
(
F ′up,F

′

low

)
Fout = F ′up ·αs+F

′

low ·(1−αs)

(2)

where the attention function applies the two modules in Fig. 3B.
Wedesigned an enhancedmulti-scale initial feature extraction layer calledWeatherBlock,

inspired by both LiLaBlock (Piewak et al., 2019) and WeatherNet (Heinzler et al., 2020),
to address the challenges posed by low-resolution LiDAR point cloud images and input
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Figure 6 Structure ofWeatherBlock in the initial feature extraction layer.
Full-size DOI: 10.7717/peerjcs.1832/fig-6

tensors with imbalanced aspect ratios as shown in Fig. 6 in the encoder. To handle various
aspect ratios of relevant objects more effectively, this module applies parallel convolutions
with kernel sizes of 7 × 3, 3 × 7, and 3 × 3, respectively, thus increasing the network’s
adaptability to different scales. Due to the different receptive fields in these branches,
multi-scale information is incorporated. In the Conv 7 × 3 convolution module, we
additionally introduced dilated convolutions. This augmentation provides more spatial
proximity information without significantly increasing the number of parameters. To
balance computational complexity and feature extraction capability, we reduced the channel
numbers and performed downsampling on the intermediate feature maps, reducing the
number of the parameters and computational burden of this layer. Subsequently, we
employed the concatenate operation to fuse information from the four intermediate
feature maps, restoring the feature map to the original channel size. Both Stages 1 and 2
share the same structure; however, Stage 2 outputs a downsampled feature map, reducing
the width of the feature map to half of the input. Additionally, each convolution is followed
by a Rectified Linear Unit (ReLU) layer to represent non-linear relations. Finally, we
incorporated Dropout layers with a dropout rate of 0.5 in each layer to prevent overfitting,
enhancing the model’s generalization capability.

Performance evaluation
We employed Intersection over Union (IOU) and Mean Intersection over Union (MIOU)
as performance evaluation metrics for the trained model, focusing solely on the categories
of valid points and noise points, respectively. These metrics are defined by Eqs. (3) and (4).

IOU =
TP

TP+FP+FN
(3)

MIOU =
1

k+1

k∑
i=0

IOUk (4)
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where TP represents true positives, which are correctly classified as valid or noise points; FP
represents false positives, incorrectly classified as valid or noise points; and FN represents
false negatives, indicating points that should have been classified as valid or noise but
actually were not.

In addition, the model’s parameter size, floating-point operation numbers (FLOPs or
GFLOPs), and inference speed (FPS) were implemented to assess the size and real-time
performance of the model.

Experimental preparation
The research maintained identical configurations, parameter settings, and datasets used for
all models to ensure the comparability of the denoising results across different models. To
mitigate the impact of inter-sample correlations within the same scene, we selected data
from scenarios Fig. 1C and Fig. 1D for training, data from scenario (Fig. 1B) for validation,
and data from scenario (Fig. 1A) for testing, respectively. The data distribution for
training, validation, and testing was approximately set to 60%, 15%, and 25%, respectively.
Additionally, data augmentation was run by employing horizontal flipping. All experiments
were conducted on an Ubuntu 22.04 system with an Intel(R) Core CPU i5-9400F @ 2.90
GHz and an NVIDIA GeForce GTX 1660 SUPER.

The experiments utilized the standard cross-entropy loss function, employing the Adam
optimizer for parameter updates. A batch size of 16 was set, and the initial learning rate
was chosen 1× e−4, with a decay factor of 0.90 after each epoch. The recommended
default values for the Adam optimizer were specifically, β1= 0.9, β2= 0.999, and ε= 10−8,
respectively employed (Kingma & Ba, 2014).

EXPERIMENTAL RESULTS AND DISCUSSION
To evaluate the effectiveness of the proposed method, comprehensive experiments
were conducted on the publicly available DENSE dataset. These experiments included
comparative analyses with WeatherNet and advanced general-purpose semantic
segmentation networks used for adverse weather denoising. Additionally, ablation
experiments were performed to assess the individual contributions of the proposed
modules.

Quantitative results
We employed the same training methodology to compare the improved model with
leading semantic segmentation models. The comparison included popular models such as
WeatherNet, SqueezeSeg, RangeNet21, LiLaNet, and the baseline of PP-LiteSeg, where the
spatial attention module is utilized in the UAFM of PP-LiteSeg. The experimental results
are summarized in Table 1.

Table 1 presents the performance comparison of the proposed SAFDNmodel with other
models in the MIOU (Mean Intersection over Union), showing that SAFDN achieved the
highest MIOU score, demonstrating superior denoising effectiveness. Specifically, when
compared to the mentioned models, the MIOU score of SAFDN outperformed that of the
other models by 3.0%, 20.2%, 11.1%, 7.8%, and 4.3%, respectively.

Zhang and Ling (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1832 11/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1832


Table 1 Performance comparison of the different models.

Model GFLOPs Parameters/M Inference speed/FPS IOU/% MIOU/%

Valid Fog Rain

WeatherNet (Heinzler et al., 2020) 18.42 1.53 59.69 93.2 83.6 92.3 89.7
SqueezeSeg (Wu et al., 2018) 1.25 0.90 109.46 93.5 54.4 69.50 72.5
RangeNet21 (Milioto et al., 2019) 59.30 38.28 56.45 86.7 80.9 87.0 84.9
LiLaNet (Piewak et al., 2019) 71.88 7.84 20.87 91.6 84.9 88.6 88.4
PP-LiteSeg (Peng et al., 2022) 4.11 3.53 229.25 92.1 72.9 79.6 81.6
SAFDN (ours) 8.14 3.60 205.06 96.4 88.0 93.7 92.7

While the proposed model exhibited higher parameter numbers than the adverse
weather denoising model WeatherNet, our encoder, which utilizes the lightweight STDC
backbone network, incorporates the WeatherBlock module to extract features without
additional multi-branch structures. As a result, the floating-point operation number was
only 44.2% that of WeatherNet. SqueezeSeg boasted the lowest GFLOPs and parameter
numbers, showcasing remarkable lightweight characteristics. However, its MIOU score
was the lowest at 72.5%. The complexity of the model is compressed and the effectiveness
of semantic segmentation is diminished due to the model’s decoder module.

The proposed model consistently outperformed PP-LiteSeg, with a significant 15.1%
IOU improvement for the fog category. This can be attributed to the effective feature
extraction competency of the WeatherBlock module in the initial layers and the capability
of the SAFM to fuse high-level and low-level features concurrently. These results validate
the efficacy of the WeatherBlock module in feature extraction and the effectiveness of
SAFM in high-level and low-level feature fusion operations.

Although both RangeNet21 and LiLaNet achieved high MIOU scores, the former had
higher parameter numbers and GFLOPs, and the latter exhibited the slowest inference
speed, making it less suitable for real-time PCD in the preprocessing stage. Note that the
proposed model’s inference speed was lower than that of PP-LiteSeg due to the more
complex initial feature extraction module and increased computational costs. However, it
still outperformed the other models, maintaining a real-time performance of over 200 FPS.

Table 1 indicates that the various models performed reasonably well in distinguishing
valid points, but most struggled to segment rain and fog-related noisy data effectively.
Figure 7 depicts that the confusion matrices reveal the degree of confusion that some
well-performing models exhibit worse performance when dealing with rain and fog-related
noisy data. The fact that fog and rain consist of water droplets and differ mainly in density
and size decreases the performance of neural networks. However, when compared to
PP-LiteSeg and WeatherNet, the proposed model reduced the misclassification rate of
rain-related noisy data over fog-related noisy data by 1.12 and 1.97, respectively. Overall,
the proposed model exhibited smaller confusion levels than the other models and achieved
the best performance regarding accuracy.

Zhang and Ling (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1832 12/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1832


 
Figure 7 Confusionmatrix comparison of model segmentation results: (A)WeatherNet and Squeeze-
Seg; (B) PP-LiteSeg and SAFDN (ours).

Full-size DOI: 10.7717/peerjcs.1832/fig-7

Table 2 Ablation experiment results.

Model WeatherBlock SAFM FLOPs/M Parameters/M IOU/% MIOU/% Inference speed/FPS

Valid Fog Rain

Baseline – – 4114.47 3.53 92.1 72.9 79.6 81.6 229.23
SAFDN X – 8143.07 3.55 95.6 84.5 89.2 89.8 208.57
SAFDN – X 4114.52 3.58 93.7 75.7 81.6 83.6 222.56
SAFDN X X 8143.12 3.60 96.4 88.0 93.7 92.7 205.06

Ablation experiment and result
To objectively assess the effectiveness of the proposed method and evaluate the impact of
each improved module on the model performance, we conducted ablation experiments
on the improved modules under the same conditions. The experimental results are shown
in Table 2, where the baseline model represents the original PP-LiteSeg without any
introduced improvements, and the UFAM in the baseline model employs the spatial
attention module. The ‘‘X’’ sign indicates the inclusion of the respective improvement
strategy.

(1) Influence of WeatherBlock on the model performance
As shown in Table 2, the first row represents the denoising by using the baseline model,

with IOU values of 92.1% for valid points, 72.9% for fog-related points, and 79.6% for
rain-related points, respectively. When compared to the baseline model, the IOU for
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each category increased by 3.5%, 11.6%, and 9.6%, respectively, with the most significant
improvement in the detection performance of fog-related noisy data after theWeatherBlock
module was incorporated. TheMIOU increased by 8.2%, indicating that, theWeatherBlock
module contributed to expanding the network’s receptive field in the initial layers when
compared to the original 3× 3 convolution operation in the initial feature extraction layer of
the baseline model. When rain and fog feature information at different scales are extracted
better, the model’s competency is effectively enhanced to identify rain and fog-related noise
points. On the other hand, the fact that the WeatherBlock module includes four parallel
convolutional operations, the increase in recognition accuracy is accompanied by a rise in
the model’s FLOPs, leading to a greater demand for computational resources. Although
the inference speed decreases by 9.0%, the increase in computable parameters becomes
minimal, with only 0.02M. Overall, the WeatherBlock module, while increasing the FLOPs
and sacrificing detection speed, significantly enhances the denoising accuracy.

(2) Influence of the SAFM on model performance
Since the SAFM is incorporated, themodel applies spatial attention and channel attention

mechanisms sequentially during feature fusion operation. This effectively emphasizes
relevant feature information for noise removal, enriches the fusion of low-level and
high-level feature maps, and enhances the feature representation of rain and fog-related
noise objects. As shown in the third row of Table 2, this enhancement improved recognition
accuracy for each object category when compared to the baseline model. Specifically, the
IOU for the valid, fog and rain categories increased by 1.6%, 2.8%, and 2.0%, respectively,
resulting in a 2.0% improvement in MIOU. While there was a slight increase in the
FLOPs and parameter numbers, the inference speed decreased by approximately 2.9%.
This indicates that the real-time performance of the model remained high, even with the
addition of the SAFM, which effectively enhanced both the segmentation and denoising
performance without significantly increasing the model complexity or computational
requirements.

By introducing both theWeatherBlock module and SAFM, the model built upon a more
comprehensive initial feature extraction layer allowed for a more effective emphasis on
the fusion of both low-level and high-level feature information. This resulted in a further
improvement in accuracy for the recognition of various target objects. Specifically, the IOU
for the valid, fog and rain categories increased by 4.3%, 15.1%, and 14.1%, respectively,
resulting in an 11.1% improvement in MIOU. Notably, the most significant enhancement
in detection accuracy was observed for fog-related noise points. On the other hand, due to
the increased complexity of the network, the model’s inference speed decreased by 10.5%,
yet it still maintained a real-time performance of over 200 FPS. Overall, the experimental
results demonstrated that although there was a trade-off in terms of an increase in the
FLOPs and a minor decrease in detection speed, the proposed model successfully achieved
a balance between real-time performance and denoising accuracy.
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Figure 8 Segmentation and denoising results for each model in the fog environment of scene.
Full-size DOI: 10.7717/peerjcs.1832/fig-8

 

Figure 9 Segmentation and denoising results for each model in the rainfall environment of scene.
Full-size DOI: 10.7717/peerjcs.1832/fig-9

Qualitative results and discussion
Qualitative results on chamber data
We selected four representative models to visualize a more intuitive comparison of the
denoising performance in adverse weather conditions. The PCD used for visualization
was taken from the scences in Fig. 1A and Fig. 1B. The original PCD and the qualitative
visualization of the denoising results are depicted in Figs. 8 and 9, respectively. Black boxes
highlight pedestrians and distinct fog clutter in Fig. 8 and rain clutter in Fig. 9, respectively.

The four models showcased in Figs. 8 and 9 demonstrate the capability to remove noise
in rainy and foggy scenes, but the denoised results vary. In Fig. 8, the proposed model
exhibits a more accurate identification of fog-related noise near distant pedestrians, and
it shows a significant improvement over PP-LiteSeg in the recognition accuracy of nearby
fog-related noise. WeatherNet also performs well in denoising nearby areas but tends to
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exhibit noticeable confusion between rain and fog labels. Note that SqueezeSeg achieves the
best denoising results for nearby regions but struggles to recognize noise in the middle to
distant areas, especially near pedestrians. In comparison, the proposed model’s denoising
performance in nearby areas is less impressive, potentially due to the loss of some essential
information during the upsampling process in the decoder, which restores the feature map
to the original resolution. In Fig. 9, the proposed model can more effectively identify and
remove noise caused by rainfall when compared to PP-LiteSeg within the black boxes.

Additionally, PP-LiteSeg misclassifies some valid points and rain-related noise points
as invalid points. While WeatherNet and SqueezeSeg exhibit good denoising performance,
they similarly confuse rain and fog labels. Qualitatively, the proposed model demonstrates
better denoising performance for noise caused by rain and fog conditions.

Qualitative results on dynamic road data
Additionally, we conducted qualitative testing on LiDAR PCD collected from real dynamic
roads with different scenarios under adverse weather conditions. The selected PCD
under rainy weather conditions were sourced from publicly available datasets, namely
nuScense (Caesar et al., 2020) and Radiate (Sheeny et al., 2021). Although nuScenes
includes a noise label, these chose PCD lacking specific Ground Truth labels for noise
points regarding rain and fog categories. As employed in Heinzler et al. (2020) for static
scenes, the automatic labeling method does not apply to the dynamic road PCDmentioned
above. The manual labeling of such data becomes exceedingly challenging. Therefore,
we conducted qualitative assessments. Figure 10 displays the segmentation results for
the baseline model PP-LiteSeg (top row) and the improved model SAFDN (bottom
row) under rainy conditions. By contrasting Fig. 10A and Fig. 10B, the proposed model
effectively detects rain-related noise and reduces false negatives in object detection, such
as pedestrians on the roadside. Furthermore, by comparing Fig. 10B and Fig. 10D, the
proposed model yields improved segmentation results to detect the number of raindrops.
Based on visual analysis of the noise segmentation results, the proposed model performs
better in real-world scenarios with rain, showcasing its ability to generalize across different
scenarios.

CONCLUSIONS AND FUTURE RESEARCH
The fast and accurate removal of severe noise when adverse weather conditions exist
is crucial for the safety of autonomous driving systems. In this article, we propose a
real-time PCD model based on improvements to PP-LiteSeg. By enhancing the initial
feature extraction layer and feature fusion module, the model significantly improves
the segmentation and denoising accuracy without severely reducing the inference speed.
The experimental results demonstrate that the proposed model accurately segments and
removes noise points caused by rain and fog conditions and generalizes well to various
road scenarios. The IOU for the valid point, fog, and rain categories were improved by
4.3%, 15.1%, and 14.1%, respectively, with an overall MIOU improvement of 11.1%.
Furthermore, the inference speed reached 205.06 FPS, balancing denoising accuracy and
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Figure 10 The baseline model PP-LiteSeg (A and B) and the proposed model SAFDN (C and D) com-
pared in terms of noise segmentation in two individual sample point cloud data from real rainfall. Im-
age source: DENSE dataset, (Gruber et al., 2019).

Full-size DOI: 10.7717/peerjcs.1832/fig-10

real-time performance concurrently. This model suits segmentation and noise removal
tasks under adverse weather conditions.

In future work, to enhance the adaptability of the denoising model to other adverse
weather conditions, we will consider expanding the scope of the research to include snowy
weather conditions, considering their unique characteristics and challenges.
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