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ABSTRACT
The performance of electroencephalogram (EEG)-based systems depends on the
proper choice of feature extraction and machine learning algorithms. This study
highlights the significance of selecting appropriate feature extraction and machine
learning algorithms for EEG-based anxiety detection. We explored different
annotation/labeling, feature extraction, and classification algorithms. Two
measurements, the Hamilton anxiety rating scale (HAM-A) and self-assessment
Manikin (SAM), were used to label anxiety states. For EEG feature extraction, we
employed the discrete wavelet transform (DWT) and power spectral density (PSD).
To improve the accuracy of anxiety detection, we compared ensemble learning
methods such as random forest (RF), AdaBoost bagging, and gradient bagging with
conventional classification algorithms including linear discriminant analysis (LDA),
support vector machine (SVM), and k-nearest neighbor (KNN) classifiers. We also
evaluated the performance of the classifiers using different labeling (SAM and HAM-
A) and feature extraction algorithms (PSD and DWT). Our findings demonstrated
that HAM-A labeling and DWT-based features consistently yielded superior results
across all classifiers. Specifically, the RF classifier achieved the highest accuracy of
87.5%, followed by the Ada boost bagging classifier with an accuracy of 79%. The RF
classifier outperformed other classifiers in terms of accuracy, precision, and recall.

Subjects Artificial Intelligence, Brain-Computer Interface, Data Mining and Machine Learning,
Data Science
Keywords Anxiety detection, Ensemble learning, Artificial intelligence, Electroencephalogram,
Machine learning, Feature extraction

INTRODUCTION
Anxiety is a common mental health condition that can significantly impact individuals’
abilities, behavior, productivity, and quality of life. It can manifest in various forms, such as
generalized anxiety disorder, social anxiety disorder, panic disorder, and specific phobias,
and can lead to severe emotional distress, physical symptoms, and impaired daily
functioning. The impact of anxiety on individuals can be significant, leading to social
withdrawal, avoidance of certain situations or activities, and interference with personal
relationships. Anxiety can also have a significant economic burden on society, with a high
cost of treatment and lost productivity (Baghdadi et al., 2019; Mughal et al., 2020).

How to cite this article Aldayel M, Al-Nafjan A. 2024. A comprehensive exploration of machine learning techniques for EEG-based
anxiety detection. PeerJ Comput. Sci. 10:e1829 DOI 10.7717/peerj-cs.1829

Submitted 17 August 2023
Accepted 29 December 2023
Published 25 January 2024

Corresponding author
Mashael Aldayel,
maldayel@ksu.edu.sa

Academic editor
Feng Xia

Additional Information and
Declarations can be found on
page 20

DOI 10.7717/peerj-cs.1829

Copyright
2024 Aldayel and Al-Nafjan

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.1829
mailto:maldayel@�ksu.�edu.�sa
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1829
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/


Early detection and management of anxiety can help reduce the economic burden
associated with anxiety disorders and improve the overall well-being of individuals and
society. Traditional diagnostic methods for anxiety disorders involve self-reported
symptoms, which can be subjective and unreliable. Automated anxiety detection is
required for anxiety management as it can help identify individuals who require early
interventions and support. Automated anxiety detection using physiological signals
provides an objective, and reliable method for detecting changes in mental states, which
can be used in various settings to detect anxiety (Nath & Thapliyal, 2021; Muhammad &
Al-Ahmadi, 2022).

Over the past few years, numerous studies have proposed automated anxiety detection
using physiological signals, particularly electroencephalogram (EEG), galvanic skin
response (GSR), and heart rate variability. These signals provide a reliable and non-
invasive method for detecting changes in mental states, which can be used in various
settings to detect anxiety. Accordingly, different artificial intelligence and machine
learning approaches have been applied to build systems that have the potential to improve
the accuracy of anxiety detection, thereby enabling early intervention and support for
individuals with anxiety disorders (Chatterjee, Gavas & Saha, 2023;Mane & Shinde, 2022;
Chen et al., 2021).

Anxiety disorder is difficult to cure, and its detection can be challenging due to ethical
reasons. Researchers have proposed solutions to investigate these challenges, including the
use of technology, algorithms, and signal processing techniques. A study by Bubel et al.
(2016) aimed to validate the effectiveness of haptic feedback in determining rising anxiety
levels and tested the device in a real-life public speaking situation to improve the device’s
design and functionality. Researchers have also proposed developing a compact, user-
friendly, and precise universal emotion recognition system that utilizes sensors to detect
emotions and produce valid results.

The challenges in acquiring physiological signals for anxiety detection include noise,
baseline drifts, different artifacts due to body movements, different responses of
participants to different stimuli, and low-graded signals. It is essential to have well-
designed laboratories and carefully selected stimuli. Additionally, subjects must receive
proper training to minimize variance in the data, and models must effectively generalize to
new datasets or unseen data (Mughal et al., 2020).

This study aims to detect anxiety through EEG signals which are non-invasive, safe, and
easy to measure. EEG signals provide valuable information about the brain’s electrical
activity, which can be used to identify changes in mental state. Thus, the study investigates
the following research question: What is the most effective feature extraction and
classification algorithm for detecting anxiety using EEG signals, and how to compare these
algorithms to other approaches that have been used on the same dataset?

To achieve this, we proposed an ensemble learning approach and compare it with
multiple machine learning models. Our proposed approach involved preprocessing the
EEG signals, extracting features, and developing the classifier models. We evaluated the
performance of the ensemble model using various metrics. The proposed ensemble
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learning approach has the potential to improve the accuracy of anxiety detection using
EEG signals and could be applied in various settings to detect changes in mental states.

The contributions of this study are twofold. First, we utilized a benchmark dataset to
detect anxiety, which includes EEG signals recorded from individuals with anxiety
disorders. Second, we conduct a comparative analysis of different feature extraction and
machine learning algorithms and compare our results with other studies using the same
dataset but different approaches. This comparison provides valuable insights into the
strengths and limitations of different approaches and can guide future research in
developing more accurate and reliable methods for detecting anxiety using physiological
signals.

This article is organized as follows: “Background” presents the background. “Related
Works” illustrates the literature review; “Materials and Methods” explains the experiment
method; “Results and Discussion” discusses the results and the comparison of classical
classifiers with related studies; and, “Conclusion” presents the conclusion and future
works.

BACKGROUND
Anxiety using EEG signals
A brain-computer interface (BCI) is a computer-based system that acquires brain signals,
analyzes them, and translates them into commands that are relayed to an output device to
carry out the desired action. Thus, BCIs do not use the normal brain output pathways of
peripheral nerves and muscles (Aldayel, Ykhlef & Al-Nafjan, 2021).

EEG is a technique used to record electrical activity in the brain. A passive EEG-based
BCI approach for anxiety detection enables the extraction of valuable information from
EEG signals without requiring active user engagement or explicit commands. By
incorporating passive BCI techniques, there are open possibilities for real-time anxiety
detection and monitoring in various applications. For instance, it could be integrated into
wearable devices or mobile applications to provide individuals with personalized feedback
and interventions to manage their anxiety levels. Moreover, the incorporation of passive
BCI techniques in anxiety detection may contribute to the development of assistive
technologies for individuals with anxiety disorders, enabling timely interventions and
support.

Anxiety disorders involve extremely high levels of fear or concern that can alter the
chemical properties of the brain. The amygdala, a small almond-shaped structure in the
brain, plays a crucial role in processing emotions, including fear and anxiety. Individuals
with anxiety disorders may have an overactive amygdala, leading to heightened fear and
anxiety responses (Mughal et al., 2020).

EEG can provide rich information about central nervous system activities and linking
mental states to brain activity. Anxiety has been found to be associated with activity in the
amygdala, temporal, and prefrontal cortices, with the amygdala playing a key role in threat
conditioning and response, valence, and salience (Spampinato et al., 2009).

Brain waves, measured in patterns of electrical activity in the brain, can be classified into
five widely recognized frequencies: delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta
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(12–30 Hz), and gamma (above 30 Hz). EEGmeasures are sensitive to cognitive states such
as task engagement, attention, working modality, and perception of user/machine errors,
as well as individual moods and mental states including anxiety, surprise, happiness, and
frustration (Szafir & Mutlu, 2012).

For instance, Bai et al. (2020) proposed an EEG emotion recognition system to
distinguish between positive and negative emotional states in learners using the pre-
processed version of the SEED dataset. They employed the wavelet transform approach to
decompose and extract frequency bands and calculate sample entropy from EEG signals. A
recurrent neural network and long short-term memory were utilized for emotion
classification, achieving a final accuracy rate of 90.12%.

On the other hand, a recent study in Al-Nafjan & Aldayel (2022) explored the potential
of EEG signals to objectively measure students’ attention and engagement during online
classes. The study extracted power spectral density (PSD) features using a fast Fourier
transform and calculated different attention indexes. Three different classification
algorithms, including k-nearest neighbors (KNN), support vector machine (SVM), and
random forest (RF), were evaluated. The findings revealed that the proposed RF approach
achieved a higher accuracy rate of 96% compared to KNN and SVM. This results of this
study suggest that EEG-based attention detection systems can provide teachers with
objective measures of student engagement, facilitating necessary adjustments during
online classes.

Ensemble learning
Ensemble learning is a powerful machine learning method that incorporates multiple
models to improve predictive accuracy and reduce overfitting. Recent years have seen an
increase in its popularity due to its ability to produce more accurate and robust models
(Dong et al., 2020).

In ensemble learning, multiple models are trained on different subsets of data, then the
predictions are combined to form the final prediction. There are a number of ways in
which the base models can be combined. The models may be of the same type
(homogeneous ensemble) or different types (heterogeneous ensemble), and the
combinations may be achieved by using different methods such as averaging, weighted
averaging, or stacking (Dietterich, 2002).

An important advantage of ensemble learning is its ability to reduce overfitting. By
combining multiple models, ensemble learning captures different aspects of the data and
reduces the likelihood of a single model being overfitted to the training data, which is
particularly useful when dealing with complex datasets exhibiting high variability.
Moreover, the accuracy of predictions can also be improved through ensemble learning. By
combining the predictions of multiple models, ensemble learning can effectively reduce the
variance in predictions and produce a more accurate final prediction. It is especially useful
when dealing with noisy or uncertain data (Dong et al., 2020).

In ensemble learning, several methods are available, such as bagging, boosting, and
stacking. The process of bagging involves training multiple base models on different
subsets of the training data and combining their predictions by averaging them. In the
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process of boosting, multiple base models are trained sequentially, with each subsequent
model focusing on the data points that were misclassified by the previous model. The
stacking process involves training multiple base models and using their predictions as
input to a higher-level model (Dietterich, 2002).

The use of ensemble learning has been successful in a variety of fields, including finance,
healthcare, and natural language processing. Ensemble learning, however, can be
computationally expensive and may require a large amount of training data to be effective
(Sagi & Rokach, 2018).

RELATED WORKS
Over the past few years, numerous studies have proposed automated anxiety detection
using physiological signals such EEG, GSR, and heart rate variability. While anxiety is a
specific type of emotional state, it is important to distinguish it from other emotions.
Emotion detection typically aims to recognize a broader range of emotions, such as
happiness, sadness, anger, and fear. On the other hand, anxiety detection focuses
specifically on identifying anxiety-related states. By developing specialized algorithms and
models for anxiety detection, some previous studies aimed to enhance the accuracy and
specificity of detecting this particular mental state, which is crucial for early intervention
and support for individuals with anxiety disorders. Compared to studies on emotion
recognition using EEG signals, there has been relatively little research conducted on
anxiety detection within this field (Baghdadi et al., 2019).

To gain a better understanding of our research problem and the potential for utilizing
EEG-based anxiety detection, we conducted a thorough literature review. Our review
examined published research to provide insights to practitioners and researchers using the
same dataset. Notably, the DASPS dataset is a recent publication from 2019, and
consequently, few studies have employed this dataset to evaluate their methods.

Baghdadi et al. (2019, 2021) proposed a benchmark dataset named DASPS for the
detection of anxious states. Two classification problems were formulated: two-level anxiety
detection (light and severe) and four-level anxiety detection (light, normal, moderate, and
severe). Several features were extracted for classification, including Hjorth parameters,
fractal dimension, band power, Hilbert-Huang spectrum (HHS), discrete wavelet
transform (DWT), and quantitative statistical EEG features such as spectral entropy,
amplitude, connectivity, and range. The results showed that a Stacked Sparse AutoEncoder
achieved an accuracy of 83.50%, outperforming KNN (81.40%) and SVM (77.40%) in
classifying binary anxiety levels. The proposed benchmark dataset and classification
methods provide a valuable resource for further research and development in the field of
anxiety detection.

Mane & Shinde (2022) utilized the DASPS dataset to estimate mental stress levels and
investigate the effectiveness of neural network techniques in utilizing EEG signals for this
purpose. The study addresses the challenges of the irregular shape of EEG signals and the
requirement for fixed data shapes as input to convolutional neural networks. It also
explores the image-based spectrogram processing approach as a solution to this issue and
its potential to improve the convergence efficiency of network models by considering the
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multiparametric dependency of brain state estimation. Mainly, they convert EEG signals
into azimuthal projection-based 2D images and employ convolutional neural networks for
stress detection. The study evaluates the performance of the neural network model with
varying numbers of convolutional layers and reports an accuracy rate of 93%.

Muhammad & Al-Ahmadi (2022) developed an objective framework for assessing
human anxiety by utilizing EEG signals from the DASPS dataset. The study performed a
channel selection step using statistical analysis techniques to identify significantly different
electrodes, ultimately determining that channels AF3, AF4, FC5, FC6, P7, and P8 were
statistically significant among the 14 channels of the headset. The study then extracted
frequency domain features, including mean power, rational asymmetry, and asymmetry
index, from the selected EEG channels. The frequency band selection algorithm was
applied to identify the appropriate EEG frequency bands, which were found to be the theta
and beta bands in this study. The wrapper method was employed for feature selection from
all the features of the selected frequency bands. Results showed that a random forest
classifier with nine features achieved an accuracy of 94.90% for two-level anxiety
classification, while a random forest classifier with ten features achieved an accuracy of
92.74% for four-level anxiety classification.

Chatterjee, Gavas & Saha (2023) used EEG signals for the detection of mental stress. In
the features extraction step, they proposed spatio-temporal transition-based features.
Instead of working with the direct features computed from the recorded signals, they relied
on the spatio-temporal transition behavior of those features. The results showed that the
proposed method was able to discriminate various levels of mental stress in an individual
with a maximum classification accuracy of 83.8% for both binary and four class
classifications.

Syakiylla Sayed Daud, Sudirman & Wee Shing (2023) aimed to enhance the
classification performance of an EEG-DASPS dataset by balancing it using a safe-level
synthetic minority oversampling technique. The researchers filtered the raw EEG signals
using multiple filtration methods and extracted features from the data in the time,
frequency, and time-frequency domains to be used for model classification. They then
processed the features model with the most optimal classification performance using a
sampling technique and safe-level SMOTE before classifying it using KNN, SVM, and
decision tree. The proposed model achieved an accuracy of up to 89.5% and a precision of
89.7% for the dataset with the enhanced class distribution using KNN. The findings
suggest that the proposed method with safe-level SMOTE is more effective than existing
methods without safe-level SMOTE in recognizing anxiety states.

Based on our review of the related works on anxiety detection using EEG signals, we aim
to contribute to this research area by expanding upon the existing knowledge and
addressing some of the identified gaps. Our main aims are to:

� Utilizing the DASPS dataset to investigate anxiety detection using EEG signals.

� Conducting a comparative analysis of feature extraction techniques and classification
algorithms for anxiety detection.
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� Exploring the potential of different classification techniques in estimating mental stress
levels using EEG signals.

� Building upon previous research to enhance the understanding and development of
EEG-based anxiety detection methods.

� Providing insights and findings to improve the accuracy and effectiveness of anxiety
detection using physiological signals.

MATERIALS AND METHODS
The results of anxiety detection depend on algorithm choices for feature extraction and
classification. In this study, we examined the likelihood that two levels of anxiety, namely
“anxious” and “non-anxious”, that could be identified using a valence-arousal emotional
model and different approaches of feature extraction and classification algorithms. For
further improving of the accuracy of anxiety detection, we utilized the best results achieved
from previous research Baghdadi et al. (2019, 2021). Research i.e., (trial duration of 1-s and
best two approaches in feature extraction (PSD and DWT)). The analysis was performed in
a trial duration of 1-s which was found more accurate for anxiety classification (Baghdadi
et al., 2019, 2021). Moreover, we used their finding to improve the result by investigating
the effect of different subjective measurements: SAM and HAM-A -based labeling with
different machine learning models.

We chose the valence-arousal emotional model based on an analysis of neural
correlations of anxiety which have been explained in a number of research studies
(Baghdadi et al., 2019, 2021; Spampinato et al., 2009). For EEG feature extraction, we used
DWT and PSD. We used PSD and DWT features because they have been shown to be
effective for detecting anxiety in previous studies, (Baghdadi et al., 2019, 2021). They
compared feature extraction across three domains (frequency domain, time domain and a
time-frequency domain) and found that best results were achieved with time-frequency
technique (DWT) and frequency techniques (PSD). In addition to their effectiveness, PSD
and DWT features are also computationally efficient and easy to extract. Then, the
valence-arousal emotional features were calculated for each approach. We applied
intelligent computational modeling in the form of signal preprocessing and classification
algorithms as these approaches can effectively reflect the subjects’ anxiety states.

We applied different classification algorithms such as AdaBoost bagging and gradient
bagging, random forest (RF), linear discriminant analysis (LDA), support vector machine
(SVM), and k-nearest neighbors (KNN). Moreover, we compared the efficiency of
classifiers for each approach of feature extraction. We implemented our model in Python
programming language using different packages such as Scikit-Learn, numpy, SciPy, MNE,
matplotlib and Keras for machine learning and signal preprocessing.

This section illustrates our methodology and provides implementation details for EEG-
based anxiety detection as shown in Fig. 1. We begin with an explanation of the benchmark
dataset. Then, we describe the anxiety model, signal preprocessing, data annotation/
labeling, feature extraction, and computation phases. Finally, we describe classification
algorithms for anxiety detection.
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Dataset description
We used a public benchmark database named DASPS, “A Database for Anxious States
based on a Psychological Stimulation”, created by Baghdadi et al. (2019) for anxiety
quantification into two and four levels.

Table 1 presents some aspects of the DASPS dataset. The original dataset includes EEG
recordings gathered from 23 subjects (13 female and 10 male) with a mean age of 30 years
old. These subjects were involved in exposure therapy that included confronting tolerable
situations that trigger anxiety. DASPS dataset used flooding as in-vivo exposure therapy,
which means actual exposure to the feared stimulus that provoked the original trauma. To
identify the situations that caused the highest levels of anxiety, Baghdadi et al. (2019)
surveyed all volunteers who wanted to participate in the experiment and found that the six
situations that caused the highest levels of anxiety, in order of decreasing prevalence, were:
loss (68%), family problems (64%), financial problems (54%), deadlines (46%), witnessing
a deadly accident (45%) and being mistreated (40%).

Figure 1 Proposed system framework. Full-size DOI: 10.7717/peerj-cs.1829/fig-1

Table 1 Dataset description for anxiety detection.

Anxiety model 2-level (light and severe) and 4-level (normal, light, moderate and severe)

Stimuli Visual-based stimuli experiment of six situations i.e., loss, family problems, financial problems, deadline, witnessing a deadly
accident and mistreating).

Task Flooding as in-vivo exposure therapy, i.e., actual exposure to the feared stimulus that provoked the original trauma.

Subjects 23 subjects (six trials for each subject)

Time The recording includes six situations and took 6 min i.e., (1 min per trial)

EEG device 14-channel Emotiv EPOC

Experimental
protocol

Psychotherapist conducts the HAM-A test for each participant and computes a total score that measures a subject’s anxiety
severity. For each situation, the psychotherapist recites each situation for 15 s then the subject recalls and imagines for another
15 s. Then the subject is asked to rate his/her feelings during stimulation using SAM for 30 s. After the 6-min trials, the
psychotherapist re-evaluated some elements of the HAM-A test to update the subject’s anxiety level
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Anxiety model
For anxiety modeling, we used Russell’s two-dimensional affect model to measure valence
and arousal. Arousal is associated with intensity, whereas valence is associated with
whether the emotion type is positive or negative. In DASPS dataset (Baghdadi et al., 2019),
they quantify anxiety quantification into four levels- normal, light, moderate and severe-
based on valance and arousal measures as shown in Fig. 2.

Signal preprocessing
Our study aimed to detect a positive state of anxiety level. Therefore, we used only the
2-level labeling of anxiety states from the original dataset. We used the preprocessed
version of the dataset that had been filtered with a band pass of 4–45 Hz. Artifacts had been
removed with blind source separation, and components were selected based on the average
power ratio of canonical correlation analysis. We further preprocessed the dataset to select
the first second for each trial. We also chose 10 channels correlated to anxiety detection
which are AF3, F7, F3, F4, F8, AF4, FC6, FC5, P7, and P8.

Data annotation/labeling
Anxiety states were labeled using two different measurements: the Hamilton anxiety rating
scale (HAM-A) and self-assessment Manikin (SAM). HAM-A measured the severity of
subjects’ anxiety at the end of the experiment. HAM-A is a 14-item self-report
questionnaire that is used to assess the severity of anxiety symptoms. Each item is rated on
a scale of 0 to 4, with a total score of 0–56. A score of 18 or higher is considered to be
indicative of severe anxiety. SAM measured a two-dimensional emotion model based on
valence (9-scale indicator varying from negative to positive) and arousal (9-scale indicator
varying from sleepy to excited) for each trial in the experiment. Each scale is rated on a 9-
point Likert scale, with higher scores indicating greater valence or arousal. HAM-A test
was used to provide a quantitative measure of anxiety severity, and SAM test was used to
provide a more qualitative assessment of the participants’ current affective state. We used
the HAM-A and SAM scores to label the EEG data as anxious or non-anxious.

For the SAM-based labeling, trials that had valence less than or equal to 5 and arousal
greater than or equal to 5 were labeled as anxious states. The trials that had valence value
ranging from 4 to 5 and arousal value ranging from 5 to 6 were labeled non-anxious as well
as the remaining trials. Based on SAM-based labeling, there were 1,410 non-anxious and
2,730 anxious trials.

For labeling based on HAM-A that was measured at the end of the experiment, trials
with HAM-A scores between 0 to 20 were labels signifying non-anxious while trials with
HAM-A scores above 20 were labeled anxious. Based on HAM-A-based labeling, there
were 1,440 non-anxious and 2,700 anxious trials.

Table 2 shows the number of instances of each anxiety level using both SAM and HAM-
A based labeling. After labeling, we then used the labeled EEG data to train and evaluate
our machine learning algorithms. To handle the imbalanced dataset, we used the Synthetic
Minority Oversampling Technique (SMOTE) for both SAM and HAM-A labels. We chose
to use SMOTE because it is a simple and effective oversampling technique that has been
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Figure 2 Mapping anxiety into four levels based on valance and arousal measures.
Full-size DOI: 10.7717/peerj-cs.1829/fig-2
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shown to improve the performance of machine learning algorithms on imbalanced
datasets. However, it can potentially increase minority class clusters and lead to overfitting
(Nandini et al., 2023). To address this concern, we compared the performance of machine
learning algorithms with and without SMOTE. We found that SMOTE improved the
performance of our algorithms on the held-out test set, without leading to overfitting. After
oversampling in SAM labels, there were 2,700 non-anxious and 2,700 anxious trials. After
oversampling in HAM-A labels, there were 2,730 non-anxious and 2,730 anxious trials.

Feature extraction
The results of anxiety detection depend on algorithm choices for feature extraction and
classification. In this study, we examined the likelihood that two levels of anxiety, namely
“anxious” and “non-anxious”, could be identified using a valence-arousal emotional model
and different approaches to feature extraction and classification algorithms. We chose the
valence-arousal emotional model based on an analysis of neural correlations of anxiety
that has been explained in many research studies (Muhammad & Al-Ahmadi, 2022;
Baghdadi et al., 2021).

For EEG feature extraction, we used DWT and PSD. Then, the valence-arousal
emotional features were calculated for each approach. We applied intelligent
computational modeling in the form of signal preprocessing and classification algorithms
as these approaches can effectively reflect the subjects’ anxiety states. Moreover, we
compared the efficiency of classifiers, such as SVM, RF, and KNN for each approach of
feature extraction. We implemented our model using Python programming language and
different packages such as Scikit-Learn, numpy, SciPy, MNE and Keras for signal
preprocessing, feature extraction and calculation and machine learning.

We extracted EEG frequency bands using two methods: DWT and a PSD. Then, we
used the resulting frequency bands to calculate the valence-arousal affect features in each
approach. The DWT method extracts a set of statistical features for each frequency band
(details [D2–D5] and approximation [A5]). Whereas PSD stacks the extracted features
into one array for each channel in the EEG signals. After applying PSD, we obtained 2023
features.

Discrete wavelet transform
DWT is a multi-scale analysis based on frequency and time domains that breaks down
signals into various and unique coefficients of brain signals. This decomposition results
from the implementation of a set of high- and low-pass filters. The outcome coefficients of
the low-pass filters are named approximation coefficients, whereas the outcome

Table 2 Anxiety labeling using SAM and HAM-A.

Anxiety label SAM HAM-A

Anxious 2,730 2,700

Non-anxious 1,410 1,440
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coefficients of the high-pass filters are named detail coefficients. Based on the Nyquist
theorem, the signal is down-sampled by a factor of two, resulting in a frequency band
ranging between fn=2 and fn. The frequency of each detail coefficient is correlated to the
sampling frequency rate fs of the raw signals, given by fn ¼ fs=2Lþ 1 where L is the
decomposition level. Accurate DWT analysis depends on the value of L and the choice of a
suitable wavelet technique (Vega-Escobar, Castro-Ospina & Duque-Munoz, 2016; Chen
et al., 2015; Yadava et al., 2017).

In this study, the fs was 128 Hz, L was four levels and the wavelet technique was
Daubechies (db4) wavelets. Hence, the decomposed EEG signals are five coefficients,
called, D1, D2, D3, D4, and A4. Each one is related to the following frequency bands,
respectively, (64–22 Hz) c, (22–13 Hz) b, (13–8 Hz) a,(8–4 Hz) h, and (4–1 Hz) d. Table 3
shows the decomposed coefficients (approximation A4 and details D1–D4) and their
frequency bands.

In addition, we calculated the signal complexity using Shannon entropy which measures
of the randomness or uncertainty in a signal. For a signal X, entropy is calculated as
follows:

SðXÞ ¼ �
XN

i¼1
p xið Þlog2 p xið Þð Þ (1)

where p(X) is the probability of the signal value X. Moreover, we computed the statistical
attributes that are frequently employed in signals, which are:

1. Mean: The average value of the signal.

2. Median: The middle value of the signal, when the signal is sorted in ascending order.

3. 25th and 75th percentile values: The values that divide the signal into four equal
quarters, when the signal is sorted in ascending order.

4. Variance: The measure of how spread out the signal values are.

5. Standard deviation: The square root of the variance.

6. Root mean square of the average amplitude values: The square root of the average of the
squared signal values.

7. Zero and mean crossing rates: The number of times the signal crosses the zero and mean
values, respectively.

8. Mean of the signal derivatives: The average value of the derivatives of the signal.

Table 3 Frequency bands correlated to decomposed coefficients.

Coefficient Frequency (Hz) Level

D1 32–64 c

D2 16–32 b

D3 8–16 a

D4 4–8 h

A4 0–4 d
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We computed these ten statistical attributes for the entropy and each of the five
coefficients in each of the 10 channels in the DWT-decomposed EEG signals. This resulted
in a total of 600 features (10 attributes� 10 channels� ð1 entropy þ 5 coefficientsÞ).
DWT resulted in 608 features.

Power spectral density

PSD measures the power of the signal based on frequency domain (Xie & Oniga, 2020).
Previous research (Chatterjee, Gavas & Saha, 2023) has shown that the PSD generated
from EEG signals is useful for detecting anxiety. With the PSD method, signals are
converted from the time domain to the frequency domain and back again based on the fast
discrete transformation of Fourier, and its inverse. In this study, we implemented the PSD
method to decompose each signal into four frequency bands: c (40– 30 Hz), b (30–13 Hz),
a (13–8 Hz), and h (8–4 Hz). The average power across the frequency ranges. In addition,
we calculated the average and total power of each channel.

Feature calculation
We used the following equations to calculate valence (2, 3, 4, 5) and arousal (6, 7, 8, 9).
These equations were adapted from emotion detection research using EEG (Al-Nafjan
et al., 2017)

Valence 1 ¼ bðAF3; F3Þ
aðAF3; F3Þ �

bðAF4; F4Þ
aðAF4; F4Þ (2)

Valence 2 ¼ ln½aðFz;AF3; F3Þ��ln½aðFz;AF4; F4Þ� (3)

Valence 3 ¼aðF4Þ�bðF3Þ (4)

Valence 4 ¼ aðF4Þ
bðF4Þ�

aðF3Þ
bðF3Þ (5)

Arousal 1 ¼ aðAF3þ AF4þ F3þ F4Þ
bðAF3þ AF4þ F3þ F4Þ (6)

Arousal 2 ¼ bðAF3þ AF4þ F3þ F4Þ
aðAF3þ AF4þ F3þ F4Þ (7)

Arousal 3 ¼ log2
bðFz;AF4; F4;AF3; F3Þ
aðFz;AF4; F4;AF3; F3Þ (8)

Arousal 4 ¼ �ðln½aðFz;AF4; F4Þþln½aðFz;AF3; F3Þ�Þ (9)

Using the Russell emotional model of valence and arousal, we mapped the outcome to
investigate the possible anxiety level as explained in “Anxiety model”.

Classification algorithms
This study aims to detect two anxiety levels (“anxious” or “non-anxious”) using EEG
signals. Hence, intelligent machine learning algorithms were implemented to effectively
reflect the anxiety of the users. Three ensemble classifiers RF, AdaBoost bagging and
gradient bagging were proposed and their performance was compared to the KNN, LDA,
and SVM classifiers. In addition, we compared the performance of the classifiers using
different labeling (SAM and HAM-A) and feature extraction algorithms (PSD and DWT).
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The hyperparameter selection process can be challenging, as there is no one-size-fits-all
approach. The best way to select hyperparameters will vary depending on the machine
learning algorithm, the data used, and the performance of the model. The hyperparameters
for the machine learning algorithms were adjusted to the following:

� hyperparameters of KNN: The number of neighbors controls how many of the nearest
neighbors are used to make a prediction. We tried different values of number of
neighbors such as 1, 3, 5, 10 and adjusted it to 1 as it produces better results.

� hyperparameters of ensamble learning: The number of trees controls the complexity of
the model. We tried different values of number of trees such as 100, 500 and 1,000.

○ AdaBoost bagging: The results shows that 100 is enough as no improvement achieved
with 500 or 1,000. Therefore, we adjusted the number of trees in the forest to 100,
which were all processed in parallel.

○ Gradient bagging: The results shows that 100 is enough as no improvement achieved
with 500 or 1,000. Therefore, we adjusted the number of trees in the forest to 100,
which were all processed in parallel.

○ RF: The results shows that 500 is good enough as no improvement achieved with
1,000. Therefore, we adjusted the number of trees in the forest to 500, which were all
processed in parallel.

� hyperparameters of LDA: The regularization parameter controls the trade-off between
model complexity and overfitting. We set the number of components to 1.

� hyperparameters of SVM: The kernel function controls how the similarity between data
points is measured. We used the kernel of Radial Basis Function (RBF).

RESULTS AND DISCUSSION
We detected the anxiety states of the subjects using two different feature extraction
methods (PSD and DWT) and six classifiers: LDA, KNN, SVM, RF, AdaBoost bagging,
and gradient bagging. For evaluation purposes, we split the data into 80% train and 20%
test sets with holdout cross-validation and used various measurements for evaluating the
classification algorithms such as precision, recall, and accuracy.

For PSD-based features, Tables 4 and 5 present the accuracy, recall, and precision
results of the LDA, KNN, SVM, RF, AdaBoost bagging, and gradient bagging algorithms
using anxiety labeling (SAM and HAM-A) with and without oversampling, respectively.
All classifiers achieved better results after oversampling except SVM. SVMs can deal with
unbalanced data because the class-weighted feature is assigning higher penalties for mis-
classification in training objects of the minority class.

For DWT-based features, Tables 6 and 7 present the accuracy, recall, and precision
results of the LDA, KNN, SVM, RF, Ada boost bagging, and gradient bagging algorithms
using anxiety labeling (SAM and HAM-A) with and without oversampling, respectively.

Figures 3 and 4 analyze the classifiers precision from the viewpoint of anxiety labeling
(SAM and HAM-A) for PSD and DWT feature extraction, respectively. The best results
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were achieved with HAM-A labeling for all classifiers which can be justified as HAM-A
rating scales were developed to measure the severity of anxiety symptoms, unlike SAM
which measures emotional state based on valence and arousal.

As oversampling and HAM-A labeling provide better performance, the next paragraphs
focus on investigating their results. Figure 5 analyzes the classifiers’ precision from the
viewpoint of feature extraction techniques (PSD and DWT). RF achieved the highest

Table 4 Classifiers performance of PSD-based feature extraction with oversampling using SAM and
HAM-A labeling.

HAM-A label SAM label

Accuracy Recall Precision Accuracy Recall Precision

KNN 70.09% 70.09% 72.59% 68.04% 68.04% 69.26%

LDA 70.74% 70.04% 72.25% 62.27% 62.27% 63.03%

SVM 67.50% 67.50% 68.63% 59.15% 59.15% 59.89%

RF 84.07% 84.07% 84.15% 79.40% 79.40% 79.50%

AdaBoost bagging 76.11% 76.11% 76.29% 69.32% 69.32% 69.41%

Gradient Bagging 76.20% 76.20% 76.37% 69.14% 69.14% 69.25%

Table 5 Classifiers performance of PSD-based feature extraction without oversampling using SAM
and HAM-A labeling.

HAM-A label SAM Label

Accuracy Recall Precision Accuracy Recall Precision

KNN 64.37% 64.37% 67.74% 58.57% 58.57% 58.11%

LDA 68.35% 68.35% 67.74% 60.39% 60.39% 58.00%

SVM 67.15% 67.15% 72.46% 64.25% 64.25% 59.63%

RF 78.74% 78.74% 78.67% 68.36% 68.36% 67.47%

AdaBoost bagging 74.52% 74.52% 74.20% 67.03% 67.03% 65.60%

Gradient Bagging 73.06% 73.06% 72.66% 64.13% 64.13% 62.44%

Table 6 Classifiers performance of DWT-based feature extraction with oversampling using SAM
and HAM-A labeling.

HAM-A label SAM Label

Accuracy Recall Precision Accuracy Recall Precision

KNN 61.94% 61.94% 72.72% 57.50% 57.50% 69.38%

LDA 75.37% 75.37% 75.85% 65.20% 65.20% 66.68%

SVM 70.06% 70.06% 70.92% 58.80% 58.80% 60.56%

RF 87.50% 87.50% 87.65% 82.14% 82.14% 82.32%

AdaBoost bagging 78.98% 78.98% 79.03% 74.43% 74.43% 72.54%

Gradient bagging 77.87% 77.87% 77.92% 73.44% 73.44% 73.52%
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accuracy of all classifiers and DWT-based features achieved better results for all classifiers
than PSD-based features. When using PSD-based features, the RF and bagging classifiers
yielded enhanced accuracies of 84% and 76% with HAM-A labeling. Similar results were
achieved with the DWT-based features. The highest accuracy was 87.5% with RF and the
second-highest accuracy was 83% with AdaBoost bagging. Figure 6 gives the receiver

Table 7 Classifiers performance of DWT-based feature extraction without oversampling using SAM
and HAM-A labeling.

HAM-A label SAM Label

Accuracy Recall Precision Accuracy Recall Precision

KNN 64.00% 64.61% 65.11% 55.56% 55.56% 55.89%

LDA 72.58% 72.58% 72.03% 60.62% 60.62% 59.08%

SVM 70.04% 70.04% 72.27% 64.25% 64.25% 41.28%

RF 83.93% 83.93% 84.06% 71.37% 71.37% 71.57%

AdaBoost bagging 77.42% 77.42% 77.10% 65.09% 65.09% 63.35%

Gradient bagging 77.05% 77.05% 76.74% 66.91% 66.91% 65.60%

Figure 3 Classifiers precision using different anxiety labeling (SAM and HAM-A) and PSD-based
feature extraction. Full-size DOI: 10.7717/peerj-cs.1829/fig-3

Figure 4 Classifiers precision using different anxiety labeling (SAM and HAM-A) and DWT-based
feature extraction. Full-size DOI: 10.7717/peerj-cs.1829/fig-4
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operating characteristic (ROC) curves for four different experiments using the RF
classifier. The experiments differ in the type of feature extraction used: PSD and SAM
labeling, PSD and HAM labeling, DWT and SAM labeling, and DWT and HAM labeling.
The area under the ROC curve (AUC) measures how well a classifier can distinguish
between two classes, such as “anxious” and “non-anxious”. A higher AUC value indicates a
better classifier. The AUC values for the four experiments are: 0.7914, 0.8271, 0.8192, and
0.8781, respectively. This indicates that the best performing experiment is the one that uses
DWT and HAM labeling for feature extraction. It is also worth noting that the false
positive rate for all four experiments is relatively low, which indicates that the classifiers are
good at avoiding false positives.

In addition to ROC, Fig. 6 presents the confusion matrix of RF to show how many
instances of each class were correctly and incorrectly classified. The confusion matrix
represents the class distribution of actual and predicted values for “anxious” and “non-
anxious” classes.

We performed a statistical analysis that studies the concurrence (agreement) between
two raters named Cohen’s kappa coefficient. We used it to measure the agreement between
the predicted labels resulted from RF and participants’ subjective responses (HAM and
SAM labeling). The kappa coefficient ranges from −1 to 1, where −1 indicates complete
disagreement, 0 indicates agreement that is no better than chance, and 1 indicates perfect
agreement. A kappa coefficient of 0.8 or higher is generally considered to indicate an
almost perfect agreement between raters. The kappa values for the four experiments are:
0.599, 0.661, 0.628, and 0.757, respectively. The highest value is achieved by the experiment
that uses DWT and HAM labeling for feature extraction which indicates that is the most
effective feature extraction method for detecting anxiety using EEG signals.

In addition to the confusion matrix, ROC, and the statistical analysis results, the
classification accuracy of our model was also compared to other previous studies that use
similar approaches, where they used the same dataset but different extracted features and
classification techniques as shown in Table 8.

As shown in Table 8, the combination of DWT-based feature extraction and RF in our
study led to better results compared to features used in the other studies (such as Hjorth
parameters, fractal dimension, band power, etc.). Moreover, we employed RF and

Figure 5 Classifiers precision using HAM-A anxiety labeling and different feature extraction (PSD
and DWT). Full-size DOI: 10.7717/peerj-cs.1829/fig-5
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Figure 6 Confusion matrix and ROC curve of the results obtained using RF.
Full-size DOI: 10.7717/peerj-cs.1829/fig-6
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AdaBoost bagging classifiers as none of the mentioned studies used them. Each study used
different classifiers, such as stacked sparse auto-encoder, KNN, SVM, etc. The choice of
classification algorithms can significantly impact the performance and accuracy of the
anxiety detection model. In our study, the RF classifier achieved a higher accuracy of
87.5%, outperforming other classifiers, including the Ada boost bagging classifier with an
accuracy of 79%. This indicates that the RF classifier was better suited for the feature
combination in the same dataset.

CONCLUSION
This study has investigated the use of EEG signals for anxiety detection by comparing
different feature extraction and classification algorithms. We utilized a new dataset to
detect anxiety and conducted a comparative analysis with other studies that used the same
dataset with different approaches. Our results showed that the combination of HAM-A
labeling and DWT-based feature extraction achieved better results across all classifiers,
with the random forest and Ada boost bagging classifiers leading to enhanced accuracies of
87.5% and 79%, respectively. The performance of the RF outperformed other classifiers in
accuracy, precision, and recall.

This study contributes to the growing body of literature on automated anxiety detection
using physiological signals and provides a foundation for future research in this area. Our
findings suggest that the use of EEG signals for anxiety detection has the potential to
provide an objective, non-invasive, and reliable method for detecting changes in mental
states, which can be used in various settings to detect anxiety. Although EEG-based anxiety
detection is not yet ready for clinical use, but research is ongoing to improve its accuracy
and reliability. Further research is needed to optimize the proposed approach and to
investigate its effectiveness in real-world scenarios. The research limitations include the

Table 8 Related works for anxiety detection.

Ref. Preprocessing Feature extraction techniques Class label Classification
algorithm

Accuracy

Baghdadi et al.
(2021)

Pass-band filter, automatic
artifact removal, Hamming-
windowed Welch, blind source
separation

Hjorth parameters, fractal dimension, band
power, Hilbert-Huang spectrum, discrete
wavelet transform, and quantitative statistical
EEG features

Two-level
anxiety

Stacked Sparse
AutoEncoder

83.50%

Chatterjee, Gavas
& Saha (2023)

Spatio-temporal transition-based features Both two-
level and
four-level
anxiety

KNN 83.8%

Syakiylla Sayed
Daud, Sudirman
& Wee Shing
(2023)

Bandpass filter, ICA, automatic
artifact removal

Time-frequency domains sampling technique and
safe-level SMOTE

Four-level
anxiety
decision
tree

SVM 86.0%

79.2%

Our approach Band pass, channel selection,
normalization

DWT and safe-level SMOTE Two-level
anxiety

RF 87.5%

Aldayel and Al-Nafjan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1829 19/22

http://dx.doi.org/10.7717/peerj-cs.1829
https://peerj.com/computer-science/


complexity of EEG equipment and signal processing which can be include noisy signals
mixed with meaningful signals. Moreover, the EEG signals vary widely from individual to
another. This means that it is difficult to develop a single EEG-based anxiety detection
algorithm that will work for everyone. As a part of our future work, we intend to
experiment to record a comprehensive dataset and rigorously test our proposed model.
This endeavor aims to enhance the accuracy and reliability of EEG-based anxiety
detection, bringing it closer to clinical applicability.
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