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ABSTRACT
Problem:With the rapid advancement of remote sensing technology is that the need
for efficient and accurate crop classification methods has become increasingly
important. This is due to the ever-growing demand for food security and
environmental monitoring. Traditional crop classification methods have limitations
in terms of accuracy and scalability, especially when dealing with large datasets of
high-resolution remote sensing images. This study aims to develop a novel crop
classification technique, named Dipper Throated Optimization with Deep
Convolutional Neural Networks based Crop Classification (DTODCNN-CC) for
analyzing remote sensing images. The objective is to achieve high classification
accuracy for various food crops.
Methods: The proposed DTODCNN-CC approach consists of the following key
components. Deep convolutional neural network (DCNN) a GoogleNet architecture
is employed to extract robust feature vectors from the remote sensing images. The
Dipper throated optimization (DTO) optimizer is used for hyper parameter tuning of
the GoogleNet model to achieve optimal feature extraction performance. Extreme
Learning Machine (ELM): This machine learning algorithm is utilized for the
classification of different food crops based on the extracted features. The modified
sine cosine algorithm (MSCA) optimization technique is used to fine-tune the
parameters of ELM for improved classification accuracy.
Results: Extensive experimental analyses are conducted to evaluate the performance
of the proposed DTODCNN-CC approach. The results demonstrate that
DTODCNN-CC can achieve significantly higher crop classification accuracy
compared to other state-of-the-art deep learning methods.
Conclusion: The proposed DTODCNN-CC technique provides a promising solution
for efficient and accurate crop classification using remote sensing images. This
approach has the potential to be a valuable tool for various applications in
agriculture, food security, and environmental monitoring.
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INTRODUCTION
Remote sensing image (RSI) classification technology is an essential technology of remote
sensing (RS) research, initially; its classification could be explained by artificial
visualization (Joshi et al., 2023). In the scientific community, computer automatic
classification technology is increasingly developed into the mainstream because of its
higher-cost labor and great uncertainty (Eftekhari & Yang, 2023). It can be categorized into
unsupervised and supervised classifications, to enhance the classification accuracy,
researchers have recently developed the decision tree, fuzzy mathematics, neural network,
and other new techniques (Mathur, 2021). With an improvement of higher-resolution
RSIs, the necessities of classification are always attained higher, the classification of
complex scenes and the needs of rotation translation invariance provide a begin to several
researches on deep learning (DL) in the domain of RS Land cover and crop category maps
are major necessary inputs while handling with agricultural and environmental
monitoring tasks (Bouguettaya et al., 2023). Multi-temporal multisource satellite images
are commonly needed for capturing particular crop development phases and therefore,
capable of discriminating various kinds of crops (Farmonov et al., 2023). For instance,
multispectral optical images may not be sufficient for separating summertime crops in a
heterogeneous and complex environment. Higher-resolution RSIs are extensively
employed for classifying crops.

Traditional RSI classification methods, such as statistical approaches and machine
learning algorithms, are often limited in their ability to handle the high dimensionality and
complex spectral characteristics of RSIs. Additionally, these methods often require
extensive manual work for feature extraction and parameter tuning, which can be time-
consuming and prone to errors. Effective feature extraction GoogleNet architecture is
employed within the DTODCNN-CC framework to extract robust and informative
features from RSIs. Standard crop classification techniques mainly based on machine
learning (ML), namely, SVM, RF, and KNN, frequently need predetermined features, and
the classification outcomes need additional processing (Bouguettaya et al., 2022). The
classification model is very complex, classification accurateness is lesser, and complex
spatial as well as temporal data of higher-resolution RSIs are not proficiently employed
(Tian et al., 2021). In recent years, the most commonly utilized and effective
methodologies for multitemporal and multisensor land cover classification have been
ensemble-based and DL methods. These methods are determined to implement the SVM.
DL has a robust ML technique to solve an extensive number of tasks occurring in computer
vision (CV), natural language processing (NLC), image processing, and signal processing
(Tripathi, Tiwari & Tiwari, 2022). The major concept is to reproduce the human vision for
dealing with big data issues, utilize every data accessible, and offer semantic data as the
output. Several techniques, models, and benchmark datasets of reference images are
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obtainable in the image classification field (Suchi et al., 2021). Recently, many researchers
have utilized the DL method for processing RSI. DL approach is shown that effective in
processing both optical (multispectral and hyperspectral images) and radar images for
extracting various kinds of land cover, namely, building extraction, and road extraction
(Virnodkar et al., 2020). Current RSI classification methods often suffer from low accuracy
when dealing with complex spectral characteristics and high-dimensional data. This
significantly limits their effectiveness for real-world applications such as precision
agriculture and crop yield estimation. Existing deep learning models offer promising
solutions but are prone to overfitting and computationally expensive, hindering their
practical applicability. Additionally, the hyper parameter tuning process in these models is
often manual and time-consuming, requiring expertise and limiting their accessibility.

This study presents a dipper throated optimization with deep convolutional neural
networks based crop classification (DTODCNN-CC) technique for RSI analysis. The
presented DTODCNN-CC methodology concentrates on the detection and classification
of food crops that exist in RSIs. To accomplish this, DTODCNN-CC technique applies
DCNN-based GoogleNet method for the extraction of feature vectors. Next, DTODCNN-
CC technique uses the DTO technique for hyperparameter selection of GoogleNet
approach. For crop classification purposes, DTODCNN-CC system deploys an extreme
learning machine (ELM) algorithm. Finally, a modified sine cosine algorithm (MSCA) is
introduced for the optimum parameter tuning of ELM methodology that results in an
upgraded classification solution. To validate the better crop classification solution of
DTODCNN-CC methodology, a wide range of experimental analyses were applied. The
practical advantage enables automated and precise mapping of agricultural landscapes,
facilitating efficient crop management and resource allocation by providing accurate crop
classification data, DTODCNN-CC enables real-time monitoring of crop growth, health,
and yield, allowing farmers to detect potential issues and take timely corrective actions.
The practical issues with image quality, noise, or inaccurate annotations in the training
data can negatively impact the model's performance and potentially lead to biased
classifications.

This article is organized as follows: The “Literature Review” section presents a review of
related work in RSI classification using deep learning. “The Proposed Model” describes the
proposed DTODCNN-CC approach in detail. The “Results and Discussion” section
discusses the results and compares DTODCNN-CC with existing methods. “Conclusions”
concludes the article and discusses future research directions.

LITERATURE REVIEW
Munaf & Oguz (2024) projected a plant disease detection for significant yield losses.
Traditional detection methods, while still widely used, are frequently laborious and prone
to errors, highlighting the need for more efficient, scalable, and rapid solutions. The
potential of Deep Learning (DL) models, particularly Convolutional Neural Networks
(CNNs) and MobileNet architectures, for early and accurate identification of plant
diseases. Achieved an even higher accuracy of 96%, indicating its potential for real-world
deployment on mobile devices. Chamundeeswari et al. (2022) projected an optimum
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DCNN-based crop classification model (ODCNN-CCM) utilizing multispectral RSIs. This
introduced ODCNN-CCM method primarily utilizes an adaptive wiener filter-based
image preprocessing method. Furthermore, the RetinaNet algorithm was implemented for
executing the feature extraction method. Lastly, a dolphin swarm optimizer (DSO) with a
deep SDAE (DSDAE) algorithm was employed for classifying types of crops. Karthikeyan
et al. (2023) introduced a novel remora optimizer with a DL-driven crop classification and
chlorophyll contents estimation (RODLD-C4E) approach that exploited multispectral
RSIs. To achieve this, this developed RODLD-C4E algorithm primarily arises using an RO
method with NASNetLarge framework to extract features. The deployment of the RO
method permits to effectually the adoption of the hyperparameters of the NasNetLarge
framework. Furthermore, the cascaded GRU (CGRU) technique was utilized for classifying
types of crops. Eventually, the DBN technique could use for evaluating the chlorophyll
contents present in the crop.

Meng et al. (2021) considered a technique of DL-based crop mapping applying single-
shot hyperspectral satellite images, there are 3-CNN approaches, namely, 1DCNN,
2DCNN, and 3DCNN methods, which can be implemented for endwise crop mapping.
Additionally, a multiple learning-based visualization methodology like t-distributed
stochastic neighbour embedding (t-SNE) mainly presented for representing the
discriminated proficiency of deep semantic features extracted employing several CNN
methods. Qiao et al. (2021) suggested a new DL technique for predicting crop production
such as SSTNN (Spatial-Spectral-Temporal Neural Network) that incorporates 3D-CNN
as well as RNN for employing their complementarities. Especially, SSTNN integrates
temporal dependency capturing and SS learning methods into a combined convolutional
network for identifying the integrated SS-temporal models.

In Chew et al. (2020), the authors employed RGB images composed of UAVs flown in
Rwanda to improve a DL approach to identify types of crops, especially legumes, bananas,
and maize that can be major strategic food crops in Rwandan cultivation. This method
leverages the development of DCNNs and TL, exploiting the openly available ImageNet
database and VGG16 framework for pretraining. The authors (Gadiraju et al., 2020)
introduced a method multimodal DL method that collectively utilizes SS and phenological
characteristics for recognizing the main types of crops.

Li, Shen & Yang (2020) suggested a novel technique that integrates LSTM, GAN, and
CNN frameworks for classifying crops of soybeans and corn from time-series RSIs that
GAN’s discriminator has been employed as the outcome classifier. This technique is
possible in the case that the training instances can be lesser, and it entirely obtains the
benefit of phenology, spatial, and spectral features of the crop from satellite information. In
Wei et al. (2019), an approach of SS fusion that depends on CRF (SSF-CRF) for classifying
the crops in UAV-borne hyperspectral RSIs is introduced. This suggested technique
develops appropriate possible functions in a pairwise CRF algorithm, combining the
spatial and spectral features to decrease spectral dissimilarity in similar fields and
efficiently detect crops. Kanna et al. (2023) proposed sophisticated deep learning
approaches for early disease prediction in cauliflower plants using VegNet image dataset.
Combines DCNN, ELM, and DTO for robust disease classification. Future direction
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towards requires significant computational resources, black-box model.Dhaka et al. (2021)
using Deep convolutional neural networks (DCNNs) using Public datasets like
PlantVillage, Leafsnap. Leverages DCNNs for feature extraction and classification of
plant leaf diseases. Requires large datasets for training, computationally expensive.
Kundu et al. (2021) proposed automatic and intelligent data collector and classifier.
Requires specialized hardware and expertise for setup and maintenance. Pearl millet
farmland data, including imagery and parametric data. Combines IoT technology with
interpretable deep transfer learning for real-time disease prediction.

THE PROPOSED MODEL
In this article, mainly focused on the development and project of DTODCNN-CC
algorithm for crop detection by RSI Analysis. DCNN-based GoogleNet the pre-trained
GoogleNet architecture, with high accuracy in image recognition tasks. GoogleNet for
extracting features from the RSIs that are relevant to crop detection and classification.
DTO-based Hyperparameter Tuning optimizes and improve its performance on the
specific task of crop detection. ELM-based Detection for the final detection of crops in the
RSIs. MSCA-based Parameter Selection technique is used to select the most relevant part
of the image for crop detection and improve detection accuracy. Figure 1 exemplifies
overview of DTODCNN-CC technology.

Optimal GoogleNet-based feature extraction
To extract an optimum set of features, GoogleNet model is applied. DL algorithm learns
directly from images such as lower level, middle-level, and abstract features that are besides
hand-crafted features (Ashraf et al., 2020). The trained group of images is applied as input
for the GoogleNet pretrained model for extracting the deep features. In such cases, 144
layers are used together with FC layer, convolution layer, and groups of images by
dissimilar modalities. It repositioned the features of GoogleNet model by using validation
and training on medical image data. The objective is to carry out relearning based on 12
class labels of data.

GoogleNet has trained already for 1,000 semantic class labels by applying features in
large-scale data. TL of deep network whereby it regenerates a network based on a new level
by finetuning of parameters. During the finetuning model, the feature was extracted from
the provided group of images. The max-pooling layer has been used for reducing the
dimensional of input through the same padding, eight filters, kernels of 4 × 4, and a stride
of 1. The outcome of pooling layers provides a 112 × 112-dimension outcome. The
outcome of the initial convolution layer is given to non-linearity, subsequently, the spatial
max-pooling layer summarizes neighboring neurons. ReLU can be applied for non-
linearity to outcomes of the FC layer. For the pretraining GoogleNet model, images can be
applied as input for replacing the final three layers, viz., output, loss three-classifier, and
prob, to rejoin the layer with residual network. In such cases, an FC layer, a softmax layer,
and the classifier resultant layer are added to pretrained GoogleNet models. Softmax
functions to N-dimension vector that measures the vector values within (0,1) and its
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summation provides a value of 1 to characterize all classes. The final FC layer is of a similar
size viz., the amount of classes of the data is 12.

For adjusting parameters connected to the GoogleNet, the DTO algorithm is
introduced. DTO is a new metaheuristic technique enthused by the cooperative nature of
Birds (Abdelhamid et al., 2023). A narrow mathematical model and a complete overview of
its usage and discovery are discussed in this section. Three different techniques are used in
the DTO technique to optimize exploration: (1) flying effectively over a known area, (2)
flying towards a new site, and (3) shifting towards another bird.

A flock of bird’s swims in space to find food while applying DTO algorithm. The speed
and position of birds can be represented as P and V. DTO might explore the search range
for the optimum solutions using these metrics.

Figure 1 Block diagram of CLSA-EBASDL method. Full-size DOI: 10.7717/peerj-cs.1828/fig-1
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P ¼

P1;1 P1;2 P1;3 � � � P1;d
P2;1 P2;2 P2;3 � � � P2;d
P3;1 P3;2 P3;3 � � � P3;d
� � � � � � � � � � � � � � �
Pm;1 Pm;2 Pm;3 � � � Pm;d

2
66664

3
77775 (1)

V ¼

V1;1 V1;2 V1;3 � � � V1;d

V2;1 V2;2 V2;3 � � � V2;d

V3;1 V3;2 V3;3 � � � V3;d

� � � � � � � � � � � � � � �
Vm;1 Vm;2 Vm;3 � � � Vm;d

2
66664

3
77775 (2)

For indexes i 2 1; 2; 3, m and j 2 1; 2; 3 . . ., in jth dimensional parameter, bird position
ith represented as Pði;jÞ, and bird speeds represented as Vði;jÞ. The subsequent range defines
the bird’s fitness f ¼ f1; f2; f3; . . . ; fn.

f ¼

f1 P1;1;P1;2;P1;3; � � � ;P1;d
� �

f2 P2;1;P2;2;P2;3; . . . ;P2;d
� �

f3 P3;1;P3;2;P3;3; � � � ;P3;d
� �

. . .
fm Pm;1; Pm;2; Pm;3; � � � ; Pm;d
� �

2
66664

3
77775 (3)

Mother birds basically contain maximal fitness between bird’s since it is offered
maximum offspring with the capability to search for survival and food. Pbest represents the
best location in the search space. Pnd signifies the regular bird, which serves as a follower of
the mother bird. PGbest indicates the global optimum solution.

X ¼ Pbest ið Þ � K1: K2:Pbest ið Þ � P ið Þj j (4)

Y ¼ P ið Þ þ V iþ 1ð Þ (5)

P iþ 1ð Þ ¼ X if r3, 05
Y otherwise

�
(6)

V iþ 1ð Þ ¼ K3V ið Þ þ K4r1 Pbest ið Þ � P ið Þð Þ þ K5r2 PGbest � P ið Þð Þ (7)

Here Pbest (i) indicates the optimal position of the bird, P(i) shows the average place of
the bird at ith iteration, and V(i+1) indicates bird speeds at i+1 iteration. K4 and K5 are said
to be coefficients with values 1.7 and 1.8, correspondingly, then the weight values K1, K2,
and K3 dynamically nominated in the range [0–2]. r1,r2, and r3 are arbitrary number ranges
from zero to one.

Crop classification using ELM model
For crop classification system, ELM algorithm is used. The ELM model depends on the
SLFN (Huang et al., 2019). The working principles and network structure of SLFN are
discussed in the following.

Assume ðxi; yiÞ; i ¼ 1; 2; . . . ;N, while xi ¼ ½xi1; xi2; . . . xin�T 2 Rn, characterizes the
sample features; yi ¼ ½yi1; yi2; . . . ; yim�T 2 Rm signifies tags of ith samples in m classes, and
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yij 2 f0; 1g; j ¼ 1; 2; . . .m. SLEN architecture with activation function (x) and L hidden

nodes (L ≤ N). A SLFN is mathematically modelled as follows:

yj ¼
XL
i¼1

big wi; bi; xið Þ; j ¼ 1; 2; . . .N (8)

In Eq. (8), βi and wi show the input and output weights of ith nodes of the hidden layer
(HL); wi and bi are random numbers, bi signifies the biases of i

th node of HL; gðwi; bi; xiÞ
indicates activation function of ith nodes in HL. Equation (8) is expressed as follows:

Hb ¼ Y (9)

whereas,

H ¼ H w1; . . . ; wL; b1; . . . ; bL; x1; . . . ; xNð Þ

¼
g w1; b1; x1ð Þ . . . g wL; bL; x1ð Þ

..

.
. . . ..

.

g w1; b1; xNð Þ . . . g wL; bL; xNð Þ

2
64

3
75
N�L

b ¼
bT1
..
.

bTL

2
64

3
75; Y ¼

yT1
..
.

yTN

2
64

3
75

The parameter of SLFN is evaluated by the minimum-squares solution:

minjjHb� Yjj (10)

On the other hand, ELM finds a series of optimum parameters β̂;Wi; b̂; i ¼ 1; 2; . . . ; L,
thus:

jjH ŵ1; . . . ; ŵL; b̂1; . . . ; b̂L
� �

b̂� Y jj ¼ min
b;wi;bi

jjH ŵ1; . . . ; ŵL; b̂1; . . . ; b̂L
� �

b� Y jj (11)

The least-square solution of this formula is:

b̂ ¼ HþY (12)

In Eq. (12), H+ refers to the MP generalized inverse of the matrix H.

Optimal hyperparameter turning using MSCA
Finally, MSCA was performed parameter tuning of ELM system. The optimization process
of SCA begins with a set of arbitrary solutions as a starting point (Mani, Shaker &
Jovanovic, 2023). Next, this solution is enhanced by a set of procedures that form the basis
of the optimizer algorithm. The efficiency can be measured by the objective function.
These two phases of optimization techniques such as exploration and exploitation, are of
equal importance.

In the exploration phase, the optimization technique fuses a random solutions with a
high degree of unpredictability to identify the possible area within the searching range
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(Dadi, Tamilvizhi & Surendran, 2022; Singh Gill et al., 2022). But as the process transitions
to the exploitation stage, the random solution undergoes progressive modification, and the
level of random variation reduces considerably than the exploration stage. For updating
the position, a subsequent equation is developed for these two stages:

Xtþ1
i ¼ Xt

i þ r1� sin r2ð Þ � r3Pt
i � Xt

i

�� �� (13)

Xtþ1
i ¼ Xt

i þ r1� cos r2ð Þ � r3Pt
i � Xt

ii

�� �� (14)

where Xt
i is the location of the existing answer in [^] ith parameter at tth iteration. r1, r2,

and r3 are arbitrary values, and Pi shows the place of the target fact in ith dimension. The
complete value is denoted by k. The combination of these two equations is given below:

Xtþ1
i ¼ Xt

i þ r1� sin r2ð Þ � r3Pt
i � Xt

i

�� ��; r4 < 0:5
Xt
i þ r1� cos r2ð Þ � r3Pt

i � Xt
ii

�� ��; r4 � 0:5

�
(15)

In Eq. (15), r4 denotes the random integer within [0,1].
The SCA technique integrates four essential parameters: r1, r2, r3, and r4. During the

optimization process, the parameter r1 defines the location area. A parameter r2 defines
the magnitude of movement. The parameter r3 controls the effect of the endpoint on the
solution. Finally, the parameter r4 switches between sin and cos functions in Eq. (15). In
certain executions, SCA demonstrates poorer performance caused by an extreme focus on
the less promising regions of the searching region. This leads to a total reduced quality of
outcomes.

Fortunately, algorithm hybridization is a conventional method to overcome known
deficiencies of optimization algorithms (Gill et al., 2022; Surendran, Alotaibi & Subahi,
2023a). This integrates the famous FA search model into the basic SCA algorithm to
overcome the lack of exploratory ability.

X tþ1ð Þ
i ¼ Xt

i þ b0 � e
�cr2

i;jð Þ

� �
Xt
j � Xt

i

� �
þ at j� 0:5ð Þ (16)

In Eq. (16), α is the random parameter, κ shows the pseudo-random number derived
from the Gaussian distribution. The range amongst i and j individuals is represented as
rði;jÞ. γ parameter defines the light propagating characteristics of the media and the solution

quality β0 defines the outcomes of the objective function. Figure 2 depicts the stages
involved in MSCA.

The resultant low-level hybrid algorithm incorporates one further mechanism to
maintain better stability. The ϕ parameter is attached to all the solutions. In all iterations,
the pseudo-random values range from zero to one. When the ϕ value is higher than 0.5,
then the FA search model is used. Or else, the typical SCA search is used. This model is
only enabled following 1/3 of the initial iterations to encourage stability.

The MSCA system developments an FF to make the best detection algorithm answer. It
describes an optimistic number to signify the optimum results of candidate efficiency.
During this situation, the decrease in classifier errors assumed that FF (Rineer et al., 2021).
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The parameters of the GoogleNet architecture algorithm has Number of layers and their
configurations (e.g., filter sizes, activation functions), and Pre-trained weights used for
transfer learning. Dipper Throated Optimization (DTO) algorithm optimization
parameters (e.g., Levy flight coefficient, search space boundaries). Extreme learning
machine (ELM) algorithm regularization parameter. Modified sine cosine algorithm
(MSCA) algorithm optimize size and termination criteria.

fitness xið Þ ¼ ClassifierErrorRate xið Þ ¼ No: of misclassified instances
Total no: of instances

� 100 (17)

RESULTS AND DISCUSSION
The simulation validation of DTODCNN-CC technology was verified on the drone
imagery dataset (Surendran, Alotaibi & Subahi, 2023b), including 6,450 examples with six
classes determined in Table 1. The size of the dataset (6,450 images) is relatively large for
crop classification tasks. This provides a good foundation for training deep learning
models like DTODCNN-CC. However, the number of images for certain classes might be
insufficient for achieving optimal performance, particularly for Legume and Structure.

Figure 3 establishes the confusion matrices created by DTODCNN-CC technique under
80:20 and 70:30 of the TRS/TSS. The result value denotes effectual detection and detection
of all six classes.

The average MCC values for both the training and test sets are above 98%, indicating
excellent performance for the overall classification task. The average precision and recall
values are also high, ranging from 92.99% to 93.12% for precision and from 91.00% to
91.44% for recall. The F1-score, which combines precision and recall, shows similar

Figure 2 Steps involved in MSCA. Full-size DOI: 10.7717/peerj-cs.1828/fig-2
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performance, with an average value of 91.99% on the training set and 92.18% on the test
set. The “Structure” class exhibits the highest performance across all metrics, achieving an
average MCC of 99.07%, precision of 94.75%, recall of 90.44%, and F1-score of 91.24%.
The “Legume” class shows the lowest performance, particularly in terms of recall and F1-
score, indicating that the model struggles to correctly identify all instances of this class. The
crop classification results of DTODCNN-CC model at 80:20 of TRS/TSS are portrayed in

Table 1 Detailed database.

Classes No. of images

Maize 2,075

Banana 1,661

Forest 1,270

Other 750

Legume 363

Structure 331

Total no. of images 6,450

Figure 3 Confusion matrices of (A and B) 80:20 of TR set/TS set and (C and D) 70:30 of TR set/TS
set. Full-size DOI: 10.7717/peerj-cs.1828/fig-3

Alotaibi et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1828 11/22

http://dx.doi.org/10.7717/peerj-cs.1828/fig-3
http://dx.doi.org/10.7717/peerj-cs.1828
https://peerj.com/computer-science/


Table 2 and Fig. 4. The results show that DTODCNN-CC method suitably recognizes six
class labels. With an 80% TRS, DTODCNN-CC technology offers average accuy, precn,
recal, Fscore, and MCC of 98.13%, 93.12%, 91%, 91.99%, and 90.86%, respectively.

Table 2 Crop classifier outcome of DTODCNN-CC algorithm at 80:20 of TR set/TS set.

Classes Accuy Precn Recal FScore MCC

TR set (80%)

Maize 97.71 95.49 97.37 96.42 94.75

Banana 97.48 94.21 96.19 95.19 93.49

Forest 98.08 95.47 94.81 95.14 93.95

Other 98.39 93.64 92.88 93.26 92.35

Legume 98.02 86.87 76.79 81.52 80.65

Structure 99.07 93.03 87.98 90.44 89.99

Average 98.13 93.12 91.00 91.99 90.86

TS set (20%)

Maize 97.44 95.56 97.07 96.30 94.36

Banana 97.75 94.83 96.30 95.56 94.06

Forest 98.45 96.72 95.16 95.93 94.98

Other 98.37 91.73 92.42 92.08 91.17

Legume 98.06 83.58 80.00 81.75 80.75

Structure 99.07 95.52 87.67 91.43 91.03

Average 98.19 92.99 91.44 92.18 91.06

Figure 4 Average of DTODCNN-CC algorithm on 80:20 of TR set/TS set.
Full-size DOI: 10.7717/peerj-cs.1828/fig-4
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Moreover, on the 20% TSS, DTODCNN-CC methodology achieves average accuy, precn,
recal, Fscore, and MCC of 98.19%, 92.99%, 91.44%, 92.18%, and 91.06% correspondingly.

The crop classifier outcome of DTODCNN-CC methodology at 70:30 of TRS/TSS is
described in Table 3 and Fig. 5. The simulation value denotes that DTODCNN-CC model
properly identifies six classes. With 70% TRS, DTODCNN-CC algorithm achieves average

Table 3 Crop classifier outcome of DTODCNN-CC algorithm at 70:30 of TR set/TS set.

Classes Accuy Precn Recal FScore MCC

TR set (70%)

Maize 97.05 94.53 96.53 95.52 93.34

Banana 97.54 93.61 96.83 95.19 93.57

Forest 97.70 94.06 94.28 94.17 92.74

Other 98.72 95.57 93.41 94.48 93.76

Legume 98.54 91.52 81.35 86.13 85.53

Structure 98.27 88.78 76.79 82.35 81.69

Average 97.97 93.01 89.86 91.31 90.10

TS set (30%)

Maize 97.52 95.74 96.37 96.05 94.25

Banana 97.42 95.25 95.25 95.25 93.47

Forest 97.57 93.01 94.72 93.86 92.35

Other 98.55 90.30 97.72 93.86 93.13

Legume 98.40 92.55 78.38 84.88 84.36

Structure 98.66 91.46 79.79 85.23 84.74

Average 98.02 93.05 90.37 91.52 90.38

Figure 5 Average of DTODCNN-CC algorithm on 70:30 of TR set/TS set.
Full-size DOI: 10.7717/peerj-cs.1828/fig-5
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accuy, precn, recal, Fscore, and MCC of 97.97%, 93.01%, 89.86%, 91.31%, and 90.10%
correspondingly. Finally, with 30% TSS, DTODCNN-CC method attains average accuy,
precn, recal, Fscore, and MCC of 98.02%, 93.05%, 90.37%, 91.52%, and 90.38% similarly.

To estimate the performance of DTODCNN-CC technology with 80:20 of TRS/TSS,
TRS, and TSS accuy curves distinct those exposed in Fig. 6. TRS and TSS accuy curves
create DTODCNN-CC performance technique over numerous epochs. The figure
provides expressive particulars about learning, challenge, and simplification capacities of
DTODCNN-CC technique. With a growth in epoch count, it is observed that TRS and TSS
accuy curves get upgraded. It is perceived that DTODCNN-CC technique attains greater
testing accurateness that can recognize designs in TRS and TSS data.

Figure 7 shows the complete TRS and TSS loss values of DTODCNN-CC model with
80:20 of TRS/TSS over epochs. TRS loss display the model loss gets diminished above
epochs. Chiefly, the loss values obtained decreased as the model alters the load to decrease
the forecast fault on TRS and TSS data. The loss curves determine the range that the
method fits the training data. It is noticed that TRS and TSS loss progressively reduced as
well as depicted that DTODCNN-CCmodel successfully learns the patterns shown in TRS
and TSS data. As well, it is seen that DTODCNN-CC model adjusts the parameters to
diminish the difference amongst the prediction and original training labels.

The precision-recall curve of DTODCNN-CC model with 80:20 of TRS/TSS is
established by plotting the accuracy beside recall as clear in Fig. 8. The outcomes confirm
that DTODCNN-CC technique gets amplified precision recall values below all classes. The
figure portrays that the model learns to identify numerous class labels. DTODCNN-CC
technique completes the enhanced outcomes in the detection of positive samples with
minimum false positives (Gao et al., 2021).

Figure 6 Accuracy curve of DTODCNN-CC algorithm on 80:20 of TR set/TS set.
Full-size DOI: 10.7717/peerj-cs.1828/fig-6
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The ROC curves provided by DTODCNN-CC technique with 80:20 of TRS/TSS are
demonstrated in Fig. 9, ability to differentiate class labels. The figure indicates respected
vision of trade-off amongst TPR and FPR rates above separate detection thresholds as well
as changing numbers of epochs. It projects the precise analytical performance of
DTODCNN-CC methodology on the detection of distinct classes.

Figure 8 PR curve of DTODCNN-CC algorithm on 80:20 of TR set/TS set.
Full-size DOI: 10.7717/peerj-cs.1828/fig-8

Figure 7 Loss curve of DTODCNN-CC algorithm on 80:20 of TR set/TS set.
Full-size DOI: 10.7717/peerj-cs.1828/fig-7
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In Table 4, the overall comparative results of DTODCNN-CCmethod are demonstrated
(Rineer et al., 2021; Surendran, Alotaibi & Subahi, 2023b). Figure 10 represents the
comparison analysis of the DTODCNN-CC method in terms of accuy. The result stated
enhancement of DTODCNN-CC technology in terms of accuy. Depend on accuy,
DTODCNN-CC method acquires an aggregate accuy of 98.19%, whereas SBODL-FCC,
DNN, AlexNet, VGG-16, ResNet, and SVM approaches get reduced accuy of 97.91%,
86.69%, 91%, 90.86%, 88.21%, and 87.17% correspondingly.

Figure 11 signifies the comparison analysis of DTODCNN-CCmethodology in terms of
precn, recal, and Fscore. The simulation values inferred the developments of DTODCNN-
CC method in terms of precn, recal, and Fscore. Depend on precn, DTODCNN-CC system
gains enhanced precn of 92.99%, whereas SBODL-FCC, DNN, AlexNet, VGG-16, ResNet,

Figure 9 ROC curve of DTODCNN-CC algorithm on 80:20 of TR set/TS set.
Full-size DOI: 10.7717/peerj-cs.1828/fig-9

Table 4 Comparative outcome of DTODCNN-CC method with other systems.

Methods Accuy Precn Recal FScore

DTODCNN-CC 98.19 92.99 91.44 92.18

SBODL-FCC 97.91 89.55 85.51 87.16

DNN model 86.69 86.66 84.85 86.74

Alex Net 91.00 88.15 82.24 83.81

VGG-16 Model 90.86 85.73 81.79 86.23

ResNet model 88.21 86.88 81.64 83.48

SVM model 87.17 88.49 84.15 84.75
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and SVM algorithms attain lesser precn of 89.55%, 86.66%, 88.15%, 85.73%, 86.88%, and
88.49% correspondingly. Moreover, with respect to recal, the DTODCNN-CC system
achieves a higher recal of 91.44%, whereas the SBODL-FCC, DNN, AlexNet, VGG-16,
ResNet, and SVM models obtain lower recal of 85.51%, 84.85%, 82.24%, 81.79%, 81.64%,
and 84.15% correspondingly. Finally, based on Fscore, DTODCNN-CC methodology gains
an increasing Fscore of 92.18%, whereas SBODL-FCC, DNN, AlexNet, VGG-16, ResNet,
and SVM systems obtain minimal Fscore of 87.16%, 86.74%, 83.81%, 86.23%, 83.48%, and
84.75% respectively. Thus, DTODCNN-CC model was utilized for enhanced crop
classification results.

The dataset might not be representative of all potential scenarios and geographical
regions. This can limit the generalizability of the model’s performance to diverse
environments and agricultural practices. Choosing optimal hyperparameters for the
various algorithms within DTODCNN-CC can be challenging and time-consuming. This
can lead to suboptimal performance if not carefully tuned. Combines the strengths of deep
learning (DCNN), extreme learning machines (ELM), and metaheuristics (MSCA) to
achieve efficient and accurate crop classification.

Figure 10 Comparative outcome of DTODCNN-CC methodology with recent methods.
Full-size DOI: 10.7717/peerj-cs.1828/fig-10
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CONCLUSION
In this manuscript, we mainly concentrated on the growth and project of DTODCNN-CC
algorithm for crop classification by RSI Analysis. The DTODCNN-CC architecture
combines deep learning (DL) with extreme learning machines (ELM) and metaheuristics,
providing a theoretically sound framework for efficient and accurate crop classification.
The employment of the modified sine cosine algorithm (MSCA) for optimizing ELM
parameters introduces a novel theoretical contribution to machine learning and
optimization research. The DTODCNN-CC algorithm demonstrates the potential of
integrating different machine learning techniques for achieving superior performance in
complex classification tasks. The presented DTODCNN-CC algorithm concentrations to
the detection and classification of food crops that exist in RSIs. To accomplish this,
DTODCNN-CC technique applies DCNN-based GoogleNet model for the extraction of
feature vectors. Next, DTODCNN-CC technology employs DTO model for
hyperparameter selection of GoogleNet model. For crop classification purposes,
DTODCNN-CC technique employs ELM model. Finally, MSCA is introduced for the
optimum parameter tuning of ELM approach outcomes in an amended classification
solution. To validate a better crop classification solution of DTODCNN-CC methodology,
a large array of experimental evaluates are executed. DTODCNN-CC system gains
enhanced precn of 92.99%, whereas SBODL-FCC, DNN, AlexNet, VGG-16, ResNet, and

Figure 11 Precn, recal, and Fscore outcome of DTODCNN-CC approach with recent methods. Full-size DOI: 10.7717/peerj-cs.1828/fig-11
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SVM algorithms attain lesser precn of 89.55%, 86.66%, 88.15%, 85.73%, 86.88%, and
88.49% correspondingly. An extensive result highlight the greater solution of DTODCNN-
CC technique to other DL approaches in terms of different evaluation metrics.
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