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In recent years, inexpensive and easy to use robotics platforms have been incorporated
into middle school, high school, and college educational curricula and competitions all over
the world. Students have access to microprocessors and advanced sensor systems that
engage, educate, and encourage their creativity. In this study, the capabilities of the
widely available VEX Robotics System are extended using wireless ESP-NOW protocol to
allow for real time data logging and to extend the computational capabilities of the
system. Specifically, this study presents an open source system that interfaces a VEX V5
microprocessor, an OpenMV camera, and a computer. Images from OpenMV are sent to a
computer where object detection algorithms can be run and instructions sent to the VEX
V5 microprocessor while system data and sensor readings are sent from the VEX V5
microprocessor to the computer. System performance as a function of distance between
transmitter and receiver, data packet round trip timing, and object detection using YoloV8
were evaluated. Three sample applications are detailed including the evaluation of a vision
based object sorting machine, a drivetrain trajectory analysis, and a PID control algorithm
tuning experiment. It was concluded that the system is well suited for real time object
detection tasks and could play an important role in improving robotics education.
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ABSTRACT

In recent years, inexpensive and easy to use robotics platforms have been incorporated into middle
school, high school, and college educational curricula and competitions all over the world. Students
have access to microprocessors and advanced sensor systems that engage, educate, and encourage
their creativity. In this study, the capabilities of the widely available VEX Robotics System are extended
using wireless ESP-NOW protocol to allow for real time data logging and to extend the computational
capabilities of the system. Specifically, this study presents an open source system that interfaces a VEX
V5 microprocessor, an OpenMV camera, and a computer. Images from OpenMV are sent to a computer
where object detection algorithms can be run and instructions sent to the VEX V5 microprocessor while
system data and sensor readings are sent from the VEX V5 microprocessor to the computer. System
performance as a function of distance between transmitter and receiver, data packet round trip timing,
and object detection using YoloV8 were evaluated. Three sample applications are detailed including the
evaluation of a vision based object sorting machine, a drivetrain trajectory analysis, and a PID control
algorithm tuning experiment. It was concluded that the system is well suited for real time object detection
tasks and could play an important role in improving robotics education.

INTRODUCTION

Machine learning (ML) and artificial intelligence (Al) are changing the way goods and people travel with
autonomous vehicles (Bathla et al., 2022), the way people write (Kasneci et al., 2023), the way people
debug programs (Surameery and Shakor, 2023), the way people create art (Mazzone and Elgammal,
2019), the way teaching is done (Adiguzel et al., 2023), and the way we work (J. et al., 2017).

Many middle schools and high schools around the United States have adopted engineering courses
that have a robotics component (Harrell et al., 2004; Darmawansah et al., 2023). In addition, participation
in Robotics in middle school and high school has been shown to encourage students to pursue (Hendricks
et al., 2012; Sullivan and Bers, 2019) and prepare students for (Karim et al., 2015) careers in STEM.
They have also been shown to be effective at improving academic performance (Jurado-Castro et al.,
2023) and promoting strong computational-thinking (Evripidou et al., 2020). Robotics competitions
introduce students to the fields of Mechanical Engineering, Electrical Engineering, Computer Science,
and Mathematics in an exciting competitive sports-like environment.

Recently, there has been a push to incorporate Al and machine learning into middle school and high
school curriculum (Xiong et al., 2018; Zhai et al., 2021; Dai et al., 2020; Knox, 2020; Ali et al., 2019).
Project based learning in robotics has been successful at the university level (Zhang et al., 2020) and
both Game- and project-based learning have been shown to be effective in teaching students about Al
(Leitner et al., 2023; Martins and Wangenheim, 2022). Guiding students through projects involving image
recognition is an excellent way to introduce them to the basics of machine learning and prepare them for
a world that is quickly integrating Al into everyday life (Sophokleous et al., 2021). This paper provides a
platform and a few examples that can be used to teach project based Al or ML at the middle school or
high school level.
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The platform presented integrates with the VEX VS5 robotics system. The Robotics Education and
Competition (REC) Foundation runs robotics competitions for elementary school, middle school, high
school and college students using VEX robotics equipment. The REC Foundation reports that over
100,000 students participated at 2,600 international events in the 2022 - 23 competition season. They
also claim that 1.1 million students participated in their various programs which distribute educational
materials to classrooms (REC Foundation, 2023). The VEX robotics system used in competitions has
been purchased and used by many high schools throughout the United States and abroad, and can be
used beyond the competitions to teach STEM concepts through hands-on learning activities. However,
the VEX robotics hardware includes a only rudimentary vision sensor capable of detecting competition
objects by color at 50 fps, and the Cortex A9 microprocessor running the competition equipment has
limited processing capability and a fixed ecosystem of plug and play peripherals. It can not run complex
machine learning models without additional computational power.

In order to run Al or ML applications, the VEX equipment must be paired with a more capable
processor and camera. There has been some success pairing the previous generation VEX Cortex
microprocessor with a Raspberry Pi (He and Hsieh, 2018), and pairing the VEX V5 microprocessor with a
Raspberry Pi (Zietek et al., 2022). The Raspberry Pi is a capable processor which has been used for many
IOT applications (Nguyen et al., 2022) and even used to run convolutional neural networks (Sabri and Li,
2021). However, the Raspberry Pi requires an additional power source and lacks the computational power
to execute complex vision models. In this paper, the VEX V5 microprocessor is paired with an ESP32 to
communicate wirelessly with a computer system. ESP32s are cheap, widely available microcontrollers
that communicate wirelessly with each other over long distances using the ESP-NOW protocol. The low
overhead and fast through rate for the protocol makes it fast enough to use in real time robotic control
applications. ESP32s have already been used for a wide range of projects, such as the remote monitoring
of bee colonies (Kviesis et al., 2023), environmental monitoring (Winkler, 2021), air quality monitoring
(Truong et al., 2021) and low-energy wireless networks (Labib et al., 2021). Others have also incorperated
OpenMV (Abdelkader et al., 2017) machine vision modules, which integrate a camera with a basic low
power microprocessor for vision applications (Guo et al., 2020; Wei-Peng et al., 2020).

Educational robotics also benefits from real time data visualization. Logging and visualization can
improve students’ investigative, analytical, and interpretive skills (McFarlane and Sakellariou, 2002),
improve student understanding of key physics concepts (Alimisis and Boulougaris, 2014), and change the
way students think about experiments (Barton, 2004). Access in the python programming language to
libraries for data analysis, visualization, computer vision, and machine learning makes it well suited for
this task (Fraanje et al., 2016).

This paper outlines the construction, coding, and usage of a low-cost communication interface
between the widely available VEX V5 microprocessor, a computer system, and a camera system for the
purpose of implementing machine learning algorithms and data logging in educational environments.
The bidirectional system allows data transfer from the robotic system to the visualization system and for
commands to be sent from the computer system to the robotic system. Due to the increased processing
capability, this system extends the functionality and usage cases for the VEX V5 system, allowing students
to run more advanced code on their robot. The wireless communication between the ESP32s also gives
students real time access to data streams from their robot. This paper discusses possible ways that this data
could be used to introduce students to important and interesting topics in robotics, such as PID controller
optimization and trajectory analysis. The study also integrates a widely available OpenMV camera which
provides both a photodetector and an onboard microprocessor. This gives the system the ability to run real
time image recognition programs and provides an excellent platform for teaching students about object
detection algorithms.

MATERIALS AND METHODS

Hardware Configuration

ESP-NOW The ESP32 (Espressif Systems, 2022) supports a proprietary communication protocol called
ESP-NOW which utilizes the 2.4 GHz band and is optimized for sending short messages of up to 250 bytes
to other ESP32 nodes with very little overhead, a quick response time on the order of a millisecond, low
power usage, and a range between nodes of over 200 meters (Yukhimets et al., 2020). These characteristics
make the ESP32 ideal for reading data from and sending instructions to real time control systems and
data logging (Linggarjati, 2022). The onboard ESP32 does not require a separate battery and can be

2/16

Peer] Comput. Sci. reviewing PDF | (CS-2023:07:88894:0:0:CHECK 26 Jul 2023)


incorporated


PeerJ

100
101
102
103
104
105

106

107
108
109
110
111
112

113

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

138

139
140
141
142
143
144
145
146
147
148
149
150
151

152

powered by the output voltage on any of the VEX robot 3-wire ports which support an output of 5 Volts at
a maximum of 2 Amps. The ESP-NOW link was operated at a bit rate of 1 Mbps.

The ESP32 also has Wi-Fi communication built into the board. The Wi-Fi communication would
work well for the transmission of data from the board to a computer for applications such as data logging.
However, the overhead associated with this communication would make it ill-suited for usage in a real
time control system where the external computer is driving the robot and responding to sensor data
transmitted by the robot.

OpenMV The H7 OpenMV camera (Abdelkader et al., 2017) module used in this study has an ARM
32-bit Cortex M7 CPU and consumes 140 mA when active. It can be powered using the 5 Volt 3-wire
port power on the VEX V5 microprocessor. The USB connection between the camera and the computer
can transmit data at rates up to 12 Mb/s. The camera can take 16-bit RGB565 images at a resolution
of 640x480 at 75 frames per second. The onboard processor is capable enough to run small tensorflow
lite models, run the opencv image processing library, and perform basic image preprocessing if needed.
Programs can be written for and run on the OpenMV hardware using python.

Connectivity Three different hardware configurations were envisioned for this system, as shown in
Figure 1. Each of these configurations has strengths that would be make it useful for different applications.

The first configuration, Figure 1a, has the VEX V5 microprocessor connected to an ESP32 with the
OpenMV camera, computer, and another ESP32 connected to each other. The direct OpenMV to computer
connection via USB supports rapid transmission of images. This is useful for real time computationally
intensive image analysis. Commands are then sent to the robot via the ESP-NOW connection. This
configuration is suitable for a case where the robot actuation is occurring in response to a visual que in a
fixed region, such as machine automation tasks and quality control. This first configuration was selected
for the sorting experiments detailed later in this paper.

The second configuration, Figure 1b, has the OpenMV and VEX V5 microprocessor connected to the
same ESP32. The VEX V5 is connected via a RS485 bridge while the OpenMV camera is connected
via a serial connection. The vision analysis would be limited to tensor flow lite models which can be run
directly on the OpenMV camera. This configuration has the advantage that the OpenMV camera, the
VEX V5 microprocessor, and the ESP32 can be powered using the VEX battery.

The third configuration, Figure 1c, has the VEX V5 microprocessor, the computer, and the OpenMV
camera each connected to one of three independent ESP32s. If the camera and robot were both remotely
located and the camera was not traveling with the robot, this configuration might be considered. This
would be suitable for a case where a tensor flow lite model can be used and run directly on the OpenMV
camera, negating the need for heavy computation on the computer.

All three of these configurations are viable and benefit from the added computational power gained by
having a computer in the loop. In addition, each ESP32 can be used to interface with additional sensors
such as lidar, temperature, or GPS sensors via I2C. These types of sensors are unavailable through the
official VEX manufacturer and I2C is inaccessible on the VEX V5 microprocessor. These additional
sensor types would greatly increase the scope and type of experiments that could be conducted using the
VEX V5 microprocessor.

Wiring The VEX V5 microprocessor has 21 smart ports, of which 20 are located on the front of the
device as shown in Figure 2. These smart ports can communicate with external devices using the RS485
standard and provide power at 12 Volts. The VEX V5 microprocessor also has eight 3-wire ports located
on the side of the device which can be used to supply power at 5 Volts. The ESP32 power input pin
is connected to a 5 Volt power supply via the 3-wire port on the VEX V5 microprocessor. The RS485
signal emitted via the smart port on the VEX V5 microprocessor is decoded by a MAX485 chipset. The
power to the RS485 decoder is supplied via the 3.3 Volt power output pin on the ESP32. The RS485
decoder used in this study can be set to transmit or receive a signal based on the state of the DE and RE
pins. Bidirectional communication is achieved by driving these pins using the ESP32. When a signal is
received via the ESP-NOW protocol, the ESP32 sets the state of the RS485 to transmit mode. A message
is then sent via RS485 to the VEX V5 microprocessor. The ESP then sets the RSS485 decoder back to
receive mode so that the VEX V5 microprocessor may transmit messages through the ESP32 back to the
computer system. The wiring diagram showing the connection between the ESP32, RS485 decoder and
VEX V5 microprocessor is shown in Figure 2.
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Figure 1. Potential configurations for the remote ESP-NOW enabled connection between the computer,
OpenMV camera, and the VEX V5 microprocessor. (a) OpenMV camera is directly connected to the
computer via a USB cable while the computer and VEX V5 microprocessor communicates via
ESP-NOW. (b) The OpenMV camera and VEX V5 microprocessor both communicate to the computer
through a single ESP-NOW link. (c) The OpenMV camera and the VEX V5 microprocessor are each
linked to a separate ESP32 allowing communication via ESP-NOW between camera, VEX V5
microprocessor, and the computer. In all cases, one ESP32 was connected to the VEX processor and one
ESP32 was hardwired to the computer.

Software

Three distinct pieces of software were written and are available in the supplemental data section of this
paper. This includes a driver for communication between the two ESP32s, a code for running the VEX
V5 microprocessor, and a GUI for use on the computer system.

ESP32 Communication Code The Arduino IDE was used to code a communication link between
two ESP32s using the ESP-NOW communication protocol. The ESP32 connected to the VEX V5
microprocessor continuously transmits system status data via the ESP-NOW protocol at a fixed interval
to another ESP32. The ESP32 linked via USB to the computer receives the data, and repeats it to the
computer via a serial link. Commands sent by the computer through the USB are echoed in the opposite
direction back to the ESP32 connected to the VEX V5 microprocessor.

VEX Code A code template written in C++ is provided which runs the communication link on the
VEX V5 Microprocessor. It provides a starting point for users interested in modifying and extending the
capabilities of this system. The code auto detects the presence of VEX peripherals and transmits data from
each of these peripherals at a regular interval to the computer. The code also provides a mechanism for
the VEX V5 microprocessor to recognize custom commands sent from a computer and to run predefined
tests in response to instruction from the computer. The code can be edited using Visual Studio Code with
the VEX VS Code Extension installed and then downloaded onto the VEX V5 Microprocessor.

Python GUI A graphical user interface was written in python using the Tkinter graphical user interface
(GUI) library. This library is included in the standard installation of Python. Data received from the VEX
V5 microprocessor is plotted in real time using MatplotLib (Hunter, 2007). This data can be stored or
retrieved from files on the hard drive, plotted, and analyzed using the python code. The python code can
also capture and display images from an OpenMV camera connected via USB to the computer. It can
be used to perform machine learning operations on the images and send commands back to the VEX
V5 microprocessor. Users can modify the code to create hybrid control systems that are running some
processing on the computer platform and some on the VEX V5 microprocessor while sharing data and
commands between the two. The Python multiprocessor module is used to isolate the GUI operations
from data transmission, resulting in a smooth GUI and much improved responsiveness when compared to
a single processor algorithm.

Cost
The system hardware was designed with minimal cost and footprint. It is intended to be used by high
schools that already have a VEX program in place. A VEX starter kit costs on the order of $1,000
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Figure 2. Wiring diagram between ESP32, RS485 decoder and VEX V5 microprocessor. As shown, the
ESP32 is connected to a 3 wire port on the microcontroller which supplies power. The RS485 decoder
receives and transmits signals to the microcontroller via the smart port.

18 USD. The parts needed to extend the system to use machine learning and sophisticated machine vision
185 cost less than $100 USD, as shown in Table 1. The ESP32/RS485 package connected to the VEX V5
186 microprocessor fits within an electronics case with dimensions 2.4 x 1.4 x 1 inches. The ESP32 connected
187 to the computer fits within an electronics case with dimensions 2.36 x 1.42 x 0.67 inches.

Item Quantity | Cost (in US$)
ESP-32S Wifi Development Board 2 $5.67
TTL to RS-485 MAX485 Module 1 $1.48
2.4 x 1.4 x 1 inch Electronics Case 1 $1.44
2.36 x 1.42 x 0.67 inch Electronics Case 1 $1.40
OpenMV Camera Module 1 $ 82.00
Total $97.66

Table 1. Device cost breakdown as determined on Amazon.com on 6/14/2023.

1w RESULTS AND DISCUSSION

189 Message Transit Time The time required for a message to be sent from the computer to the VEX V5
190 microprocessor, processed by the VEX V5 microprocessor, and then for a response to be sent back to the
191 computer was determined. The mean round trip message time was determined from 10 trials to be 187 ms
122 with a standard deviation of 57 ms.

193 Packet Loss The practical distance limits between the computer and the VEX V5 microprocessor
19a described in this experiment were evaluated by determining the wireless packet loss as a function of
15 distance. A VEX V5 microprocessor was attached to a drivetrain as shown in Figure 9a. The robot was
16 then placed on the ground and a laptop with a receiving ESP32 connected to it was moved at intervals of
157 10 m away from the robot. Data was transmitted from the VEX V5 microprocessor at intervals of 50 ms
1e  and received on the computer end. The number of data packets received by the computer in a 15 second
199 interval was recorded. The packet loss, PL, is calculated as follows:
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Figure 3. Screenshot showing the Python GUI running on the computer system which can be used to
send commands wirelessly via the ESP-NOW connection to the robot and to display data in real time
from sensors and motors on the VEX V5 microprocessor. Here the results of multiple runs are displayed
simultaneously and can be compared with one another.
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PL= x 100% (1

ne
where 7, is the number of expected packets received from the ESP-32, and n,, is the number of packets
actually received. The mean and standard deviation of the percent loss for each distance interval is shown
in Table 2. The packet loss was less than 1% between 0 and 40 meters. For data logging, the functionality
is sufficient up to 60 meters, but for control applications where the computer is in the control loop, the
distance between transmitter and receiver should be 40 meters or less.

Distance (m) | Mean [%] | Standard Deviation [%]
0 0.00 0.00
10 0.197 0.139
20 0.571 0.410
30 0.861 1.22
40 0.126 0.178
60 13.2 104

Table 2. Average and standard deviation of the percent of data messages lost between transmitter and
receiver outdoors as a function of distance.

Machine Learning Sorting Application
As an example of an application that uses machine vision to identify objects and drive the motion of a
physical system, a simple sorting experiment was created. As shown in Figure 5, the sorting machine has
an OpenMYV camera placed above a platform on which VEX game pieces are placed. The machine can
then sort the pieces to the left side or right side of the platform.

VEX game pieces were collected from the past five game seasons, as shown in Figure 4. These
game pieces differ significantly from one another and make for a good proof of concept experiment. An
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212 OpenMV H7 camera was held 19 inches above a platform onto which the VEX competition objects were
213 placed. The camera was used to obtain 640x480 pixel RGB images of objects on the platform. The
214 images from the camera were analyzed by a computer, the YoloV8 algorithm was used to determine the
215 object type, and then a signal was sent to the VEX V5 microprocessor. In response to signals from the
216 Microprocessor, a motor swings an arm across the platform, sweeping objects either to the left or the right.
217 The system can be programmed to sort one VEX game object type to the left and another VEX game
218 object type to the right. To test the accuracy of the model, we programmed the system to swing the arm to
219 the left if a box was detected, to the right if an acorn was detected, and not to move the arm if no object
220 was detected. Objects were placed on the platform or the platform was left empty for 2 second intervals to
221 allow the arm an appropriate time to react. Each object was placed on the platform 10 times, for a total of
222 30 trials. A random number generator was used to determine the order in which objects would be placed
223 on or withheld from the platform.

Figure 4. VEX game pieces used for sorting experiment. The object types listed from left to right
include in the top row the acorn, box, container and in the bottom row the ring, disc, and ball.

224 Training The YOLO (You Only Look Once) v8 image object identification algorithm was selected for
225 use in this project because of its ability to identify objects with high accuracy at high speed. The model
226 was trained on pictures of VEX game objects from multiple years of competitions, as shown in Figure
227 4. A set of 116 images were taken at a size of 640x480 pixels using the OpenMV camera of the game
228 objects in various positions, orientations, groupings, and at various angles. Figure 6a shows one of the
229 images that were taken. The training images were imported within LabelStudio (Tkachenko et al., 2022),
230 an image labelling software that makes it easy to label objects for image recognition algorithms. Each
231 distinct VEX game object was assigned a tag. For each image, all identifiable objects were assigned a tag
2;2 and labelled with a bounding box. After the images were labeled, they were split into training, a testing,
233 and a validation sets which consisted of 86, 16, and 14 images respectively. Training was run for 50
23 epochs and the best set of YoloV8 parameters from these 50 epochs was used as the final model.

235 After training was completed, the accuracy of the best resulting YoloV8 model was then measured
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Figure 5. Simple sorting machine used to test visual recognition of VEX game pieces. Objects are
pushed to the right or the left depending on their identified type.

23 using the validation set of images. Figure 6b illustrates how the model can label identified objects within
237 an image. The name of each object type and the confidence for each prediction is shown at the top of
238 the bounding box for each object. The sample image illustrates that most objects can be identified with
23 high confidence (above 90%). It also shows that some objects can be missed, such as the yellow disc
2¢0 shown behind a purple ring, and some objects can be identified twice, such as the double bounding boxes
241 around the purple ring. To quantify these errors and labeling performance, the precision, recall, mAP, and
222 processing time of the model were evaluated.

23 Precision and Recall Precision and recall are useful values for evaluating the performance of a machine
224 learning model. Precision, P, is a measure of how many identifications made were correct, while recall, R
25 is a measure of how many objects were identified correctly, and are defined as follows:

TP
p—— "~ 2
TP+FP
TP
R=— 3
TP+ FN 3)
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Figure 6. (a) Raw image taken using OpenMV H7 camera at 640x480 resolution of partially occluded
VEX game pieces. (b) Predicted object labels using YOLOVS8 algorithm and trained weights.

26 where T P refers to the number of true positives, or number of labeled objects that were correctly identified,
27 F'P to the number of false positives, or number of predicted objects that did not exist, and F'N to the
25 number of false negatives, or number of labeled objects that were not identified. TP, FP, and FN are
229 calculated from the confusion matrix, a table that shows the number of each object that were labeled as
250 each of the possible object labels, as shown in Figure 7a. Precision and recall scores lie between 0 and
251 1, and a more accurate model has both a higher precision score and recall score. The precision-recall
252 curve for each of the tested object categories is shown in Figure 7b. All objects had precision and recall
253 scores close to 1, demonstrating that the model correctly identified objects most of the time. The precision
254 and recall values can also be combined to generate an F1 score, another common way to evaluate the
255 performance of a model. The F1 score is defined as follows:

2xXPxR
Fl=——— @
P+R
256 F1 scores lie between 0 and 1, and a more accurate model has a higher F1 score. The F1 scores of each
257 object category were used to generate an F1 curve, as shown in Figure 7c. All classes had F1 scores close
28 to 1 at most confidence levels, and all classes had an F1 above 0.99 at a confidence level of 0.882.

- Precision-Recall Curve F1-Confidence Curve

14
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- Box 0 0 0o 0 0 0
0.6
3 8 06
< Container 0 0 0 3 0 0 0 5
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s 6 3 o
= Disc- 0 0 0 0 0 0 &
4 04 04
Ring- 0 0 0 0 0 0 -
3 = — 2o
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£ s g — all classes 0.995 MAP@O.5 s vsssttae
S T 0.0 00
K 00 02 04 0% 08 10 o 0z 0a 05 08 10
Predicted Label Recall Confidence

Figure 7. Evaluation of the validation images using the best YoloV8 weights gives (a) the confusion
matrix for the objects detected in the validation images, (b) the precision-recall curve, and (c) the F1
curve.

259 A confusion matrix and precision, recall, and accuracy scores were also calculated for the sorting
260 experiment described earlier. The results are shown in Figure 8. The system identified both objects and an
261 empty platform correctly with 100% accuracy.

22 MAP Score Another value of interest for evaluating the model’s performance is the mean average
263 precision value, mAP, which is equal to the area enclosed by the precision-recall curve and the coordinate
264 axis. It is calculated as follows:
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Figure 8. (a) The confusion matrix, and (b) metric results obtained from the object sorting experiment.

k=n
map = H=1 AR )

n
where n is the number of classes the model is trained on, and AP is the average precision of class k.
mAP scores lie between 0 and 1, and a more accurate model has a mAP score closer to 1. The difference
between a mAP50 and mAP50-95 score lies in the way that true and false positives are identified. A label
is classified as true positive when a certain percentage of the labeled area overlaps with the true object
boundary. If the overlapping area does not meet this threshold, it is labelled as a false positive. This
overlap area is known as the intersection over union, or IoU, value. To compute the mAP50 score, the
IoU value of a predicted object must be greater than or equal to 0.5 to be classified as a true positive. To
compute the mAP50-95 socre, the number of true positives is computed as the average of the number
of true positives for each IoU threshold value between 0.5 and 0.95. The mAP50 and mAP50-95 values
are shown in Table 3, and are all close to 1. The mAP50 scores are all larger than the mAP50-95 scores,

which is expected as there should be fewer true positives as the IoU threshold value increases.

Class Instances | mAP50 | mAP50-95
All 57 0.955 0.924
Acorn 14 0.995 0.940
Ball 8 0.995 0.941
Box 12 0.995 0.940
Container 3 0.995 0.995
Disc 10 0.995 0.865
Ring 10 0.995 0.863

Table 3. mAP values computed from validation training set of 14 randomly selected images using the
weights from the best set of weights obtained after 50 training epochs. The column labeled instances
gives the number of labeled objects of each type found within the set of 14 images.

Inference Time The YoloV8 algorithm takes an image as input, then conducts a preprocessing step that
resizes the image, pads the image to have a square shape, normalizes the pixel values and converts the
pixel array to a pytorch tensor. The inference step identifies objects within the processed image, and then
post-processing conducts a non-maximal suppression (NMS) step. The processing time for each of these
steps was recorded. Table 4 shows the time taken for preprocessing, inference, and post-processing for a
single image on a set of devices with the algorithm running on either the CPU or GPU averaged over the
set of validation images.

Real Time Data Logging

Trajectory Analysis Repeatability and reliability are a recurrent problem in middle school and high
school robotics competitions and in educational curriculum. Understanding how design choices and
control algorithms influence the reproducibility of a particular motion is particularly useful. In this section,
a simple six wheel drivetrain powered by two motors, as shown in Figure 9a, is created and outfitted
with a VEX GPS sensor. The VEX GPS sensor allows the drivetrain’s position to be determined within a
competition field. Though the name implies this sensor relies on GPS, it is in fact vision based and uses
images of an encoded strip placed along the field perimeter to determine the location.
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Device Type Preprocessing Inference Postprocessing
mean (stdev) [ms] mean (stdev) [ms] mean (stdev) [ms]
AMD Ryzen 9 5950X CPU 1.09 (0.325) 62.8 (2.49) 0.53 (0.450)
NVIDIA Quadro P2200 | GPU 0.750 (0.493) 8.41 (1.67) 1.64 (0.585)
Apple M2 CPU 0.772 (0.351) 52.1(14.4) 0.472 (0.957)
Table 4. Average inference times obtained by executing the YoloV8 algorithm on various hardware
platforms.
291 The drivetrain was programmed to travel around the field in a prescribed square pattern, as shown

202 in Figure 9b. The tests are triggered by the GUI executing on the computer and are parameterized,
203 allowing students to adjust the travel distances. Sensor data is sent back at a rate of 20 readings per
204 second to the computer. This allows students to review real time data giving the robot’s position and
205 orientation, which can be graphed and analyzed in a variety of ways. A graph displaying the real time
206 position and orientation of the drivetrain is provided. Data from multiple trials can be saved and graphed
207 simultaneously giving a clear graphical indication of the drivetrain repeatability, as shown in Figure 9c,
208 where the position of the drivetrain completing the square path shown in Figure 9b during eight trial runs
200 are graphed simultaneously.

— Trial1
—— Trial 2
—— Trial 3
—— Trial 4

Trial 5
Trial 6
Trial 7

Coordinate [mm]
°

£ =200
—— Trial 8

-400

-600

—8

0
-800 —-600 -400 -200 0 200 400 600 800
X Coordinate [mm]

(a) (b) (c)

Figure 9. (a) Drivetrain used in testing. The ESP32 transmitter is located on the back of the drivetrain
held in place with blue tape. (b) Photograph of the VEX field taken from above with the robot path
labelled with red arrows. (c) Repeat trajectories collected in the system.

Segement ID | Description
0 Starting position
1 Drive forward 40 inches (1016 mm)
2 Turn right by 90 degrees
3 Drive forward 40 inches (1016 mm)
4 Turn right by 90 degrees
5 Drive forward 40 inches (1016 mm)
6 Turn right by 90 degrees
7 Drive forward 40 inches (1016 mm)
8 Turn right by 90 degrees
9 Final heading adjustment.
Table 5. Drivetrain movement segment definitions.
300 Beyond the visualization of trajectories, a jupyter notebook is provided which can be used to evaluate

a1 the repeatability using saved data in more detail. The VEX code that runs the drivetrain is built so that
a2 each segment of a trajectory is labeled independently. For example, segment 1 involves moving the
s0s  drivetrain along a straight path for a given distance while segment 2 involves turning the robot to the right
a4« by 90 degrees. The position and orientation of the drivetrain at the endpoint of each segment is plotted in
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Figure 10a for all 8 trials. Figure 10b displays the position and orientation of the drivetrain at the end of
each segment averaged over all 8 trials, as well as an error bar that indicates the maximum and minimum
position. This data can be used to assess the reliability and repeatability of the drivetrain and compare the
performance of design changes. The provided jupyter notebook can also be used to tabulate all of the
trajectory averages as shown in Table 6.
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Figure 10. (a) Drivetrain position and orientation at the endpoint of each trajectory segment shown for
all 8 trials. (b) Drivetrain position and orientation averaged over 8 trials. The min and max values of the
drivetrain s and y position are shown with the error bars.

Sip X y 0 X range y range 0 range
mean mean mean [min, max] [min, max] [min, max]
(stdev) (stdev) (stdev) [mm] [mm] [degree]
[mm] [mm] [degree]
0 518 (55) | 423(51) 88(0) [—662,—486] [289,452] [86,89]
1 539(29) | 462 (21) 88 (1) [503,584] [437,494] [86,91]
2 452 (27) | 544 (21) | 170(5) [403,487] [515,580] [158,179]
3 473 (43) | -519(32) | 176(1) [415,523] [—558,—448] [174,179]
4 587(49) | -479(21) | 269 (10) [509,662] [—506,—437] [256,281]
5 -455(50) | -441(38) | 271(4) | [-516,-396] | [-517,—398] [265,281]
6 =379 (45) | -488(38) | 353(9) | [—437,-317] | [-550,—444] [—28,4]
7 -350(80) | 518(52) 0(14) [—461,—238| [422,578] [—4,6]
8 -372(78) | 489(38) | 77(25) | [—490,—268] [423,542] [13,97]
9 -418(95) | 529(50) 91(6) [—549,—-309] [420,590] [82,100]

Table 6. Table of segment endpoints. x, y, and 0 are the robot’s field coordinates at the end of each
movement segment respectively.

Tuning a PID Controller A proportional-integral-derivative controller, or PID controller, is a control
feedback loop that corrects for deviations from the desired value. PID controllers are commonly used to
precisely control parameters such as temperature, speed, or pressure. In robotics, PID controllers can be
used to control the velocities of a drivetrain, for lifting objects, and for spinning flywheels. For example,
the angular velocity of a flywheel might need to be precisely controlled to propel a projectile a particular
distance. The controller would adjust the flywheel motor power as a function of the difference between
the target flywheel angular velocity and the actual angular velocity. Here the angular velocity could be
determined via a rotation sensor on the flywheel axle.

Another common example would be lifting an object to a desired height. The experimental setup
shown in Figure 11a illustrates the case where an arm has been fitted with a circular disc weight. The arm
is driven directly via a motor at the base. A rotation sensor is attached to the axle passing through the arm
and motor to monitor the arm configuration. The arm is to be lifted to a particular target angle. The motor
power can be determined using a PID controller that responds to the difference, e(), between the target
arm angle, 6, and the actual arm angle as measured by the rotation sensor, 6(r) where the difference is
defined by:
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e(t)=06(t)—6, (6)

325 A PID controller determines the output response as a function of a term that is proportional to the
a6 difference between the target and actual value, a term that is proportional to the integral of this difference,
a2z and a term that is proportional to the derivative of this difference.

328 The equation for the instantaneous motor output, u(z), is then defined as follows:
de(t
u(t) = Kye(t) + K; / e(t)dr + Kd% 7

w0 where K, is the coefficient of the proportional term, () is the difference between the measured value and
a0 the desired value, K; is the coefficient of the integral term, and K is the coefficient of the derivative term.
33t Each of the three coefficients K),, K; and K,; must be found for each application independently, as the
a2 optimal values depend on the characteristics of the system being driven. This process is known as tuning,
a3 and is often done by entering approximate coefficient values into the equation, observing the system
s response, and then further refining the coefficients.

335 Tuning is greatly simplified when real time data logging is possible. Students can observe the system
s response as they modify PID parameters to determine if a particular set of coefficients is effective or not.
sz Figure 11b displays the system response with various PID parameters and a target angle of 45 degrees.
338 Real time data logging shows much more accurately whether a particular set of coefficients result in
sss  an effective controller. Figure 11b illustrates that a controller with only a proportional term never reaches
a0 the target angle for this system. While the proportional component on its own is an effective controller in
341 many cases, it is not suitable for lifting applications where the output power may never be large enough to
a2 hold the weight at the target angle. The addition of an integral term allows the system to settle near the
a3 target value and the addition of a derivative term eliminates the oscillations by slowing down the response
s« when the measured value changes too quickly. This allows the system to settle at the target value much
as  faster. All of this information is captured visually as the student modifies parameters of the PID model.

Al

-~ Target Angle 45°
— K =0.3,K=0.K,=0

— K, =0.3,K=0.003,Ks=0
— Ky =0.3,K=0.003,Ks=2

15
Time [s]

(b)

Figure 11. (a) Photograph of the weighted arm system. (b) System response given different PID
parameters.

« CONCLUSIONS

a7 In this paper, we have demonstrated that the ESP-NOW protocol can be used to extend functionality
as  of the VEX V5 microprocessor to allow real time object detection and real time data logging. Further,
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the described system provides the ability to interface sensors and motors outside the VEX ecosystem,
enhancing their capabilities for experimentation. The system can wirelessly log sensor data from the
VEX V5 microprocessor in real time at a rate of 20 samples per second reliably to distances of 40 meters
from the transmitter. The transmission distance can probably be increased with better placement of the
transmitter relative to the ground and additional distance between the transmitter and the surrounding
metallic components of the drivetrain.

Object detection in real time was achieved using the YoloV8 algorithm. Round trip messages from
computer to the VEX V5 microprocessor require 187 ms and total prediction times for the YoloV8
algorithm range from 10.8 ms to 64.4 ms depending on the hardware used. Therefore, 4 to 5 sequential
object identifications can be made per second using this system. The current speeds are sufficient to
enable students to build real time object manipulation applications. Future work will focus on optimizing
the transmission protocol to reduce the round trip message time further.

It was also shown that the YoloV8 algorithm, trained on a dataset of 116 images of VEX game pieces,
was able to identify game pieces in a sample sorting application. This methodology can easily be extended
to create robots that seek out particular objects, avoid objects, or manipulate objects depending on object
identification. It is also straightforward to extend the methodology to larger groups of object types which
are more difficult to distinguish from one another by increasing the number of training images used.

The real time wireless data logging enabled by this system also allows for the VEX V5 microprocessor
to be used for more advanced experimentation in the classroom. Students can compute statistics related
to repeatability as was done with the trajectory analysis. It was also demonstrated that the sometimes
difficult task of tuning a PID controller can be tackled visually by students using graphs generated using
the developed python GUI.

The low system cost, ease of construction, and the supplied software in this study make the ESP-NOW
enabled system an excellent choice for schools that have existing VEX equipment and a desire to work
with ML or conduct more advanced experimentation.
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