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ABSTRACT
Lane detection under extreme conditions presents a highly challenging task that
requires capturing each crucial pixel to predict the complex topology of lane lines
and differentiate the various lane types. Existing methods predominantly rely on deep
feature extraction networks with substantial parameters or the fusion of multiple
prediction modules, resulting in large model sizes, embedding difficulties, and slow
detection speeds. This article proposes a Proportional Feature Pyramid Network (P-
FPN) through fusing the weights into the FPN for lane detection. For obtaining a
more accurately detecting result, the cross refinement block is introduced in the P-
FPN network. The cross refinement block takes the feature maps and anchors as
inputs and gradually refines the anchors from high to low level feature maps. In our
method, the high-level features are explored to predict lanes coarsely while local-
detailed features are leveraged to improve localization accuracy. Extensive experiments
on two widely used lane detection datasets, The Chinese Urban Scene Benchmark for
Lane Detection (CULane) and the TuSimple Lane Detection Challenge (TuSimple)
datasets, demonstrate that the proposedmethod achieves competitive results compared
with several state-of-the-art approaches.

Subjects Artificial Intelligence, Autonomous Systems, Computer Vision, Data Mining and
Machine Learning, Neural Networks
Keywords Lane detection, ResNet, Cross refinement, Context information

INTRODUCTION
Lane detection has received widespread attention as an essential component of advanced
driver assistance systems and autonomous driving technologies (Badue et al., 2021).
Accurate and efficient lane detection provides crucial information for autonomous
driving systems, such as lane departure marking, lane-keeping assistance, and adaptive
cruise control (Zhang et al., 2021). As a fundamental aspect of vehicle perception, many
researchers have devoted their efforts to developing efficient and accurate lane detection
algorithms to achieve reliability and practicality in various environments. However, lane
detection still encounter some challenges for detecting accurate lanes, such as illumination
variations, severeweather condition, difference lanemarking, and vehiclemoving directions
etc.
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Figure 1 (A) The landmark and lane line have the similar characteristics, but it difficult to distinguish
them. (B) The lane lines were successfully detected, but the positions are not accurately localized. (C,
D) It is challenging to detect lane in severe situations without the fusion of global contextual feature in-
formation. Image source: CULane dataset, https://xingangpan.github.io/projects/CULane.html.

Full-size DOI: 10.7717/peerjcs.1824/fig-1

The landmark is a particular geometric structure with rich semantic information.
The lane line and landmark share the similar feature, but they have different semantics.
Only through the feature, it is difficult to distinguish them. The high-level semantic
information and low-level feature are complementary for accurate lane detection. However,
the information fusion from different levels remains an unsolved problem. From Fig. 1A,
it can be observed that the landmark and lane line have the similar characteristics, but it
difficult to distinguish them. Figure 1B shows that the lane lines were successfully detected,
but the positions are not accurately localized. Figures 1C and 1D demonstrate that without
the fusion of global contextual feature information, it is challenging to detect lane in severe
situations. Therefore, the semantic information is very important for lane detection.

Recently, the lane detection methods based on information fusion were proposed (Pan
et al., 2018). For example, the standard Feature Pyramid Network (FPN) was used to tackle
the global contextual information fusion and the lane detection method based on this
network was proposed (Wang et al., 2022). However, these approaches directly integrate
feature maps from different levels and input them into subsequent detection modules
without considering the different contribution of different level feature map, which is very
important for different level to detect the lane.

In this article, a Proportional Feature Pyramid Network (P-FPN) is proposed for lane
detection, in which the low-level and high-level features are employed and the feature
layer with more valuable information will be assigned greater weight. Specifically, the
high semantic features is firstly performed detection to coarsely localize lanes. Then, the
refinement module is conducted based on weight-fusion strategy to get more precise
locations. Our model focuses on capturing more global contextual information by learning
from informative feature layers. The main contributions of this article can be summarized
as follows:
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•Anovel Proportional Feature PyramidNetwork (P-FPN) is proposed for lane detection,
in which the low-level and high-level features are fully utilized.
• The weight-fusion algorithm has been proposed to improve the performance and

robustness of the lane detection model by adapting to the different data distributions.
• Experiments were conducted on the widely used datasets, CULane (Pan et al., 2018)

and TuSimple dataset, achieving higher detection accuracy and competitive detection
speed.

The rest of the article is organized as follows. The literature review section discusses the
current related works of the lane detection and its challenges. The methodology section
introduces the overall architecture of the proposed framework, including Proportional
Feature Pyramid Network (P-FPN), cross refinement block and training strategy. The
experimental results section presents the lane detection performance of the proposed
method. Finally, the conclusion section summarizes the whole article.

LITERATURE REVIEW
Accurate and efficient lane detection plays a crucial role in optimizing traffic decisions
(Subotić et al., 2022), and its synergistic interaction with roadmarking recognition provides
essential support for intelligent driving (Jayapal, Muvva & Desanamukula, 2023). At
present, lane detection methods can be classified into two classes including traditional
computer vision approaches (Berriel et al., 2017; Assidiq et al., 2008) and deep learning
methods (Hou et al., 2019; Philion, 2019).

Traditional lane detection methods commonly utilize the image processing techniques,
such as edge detection (Zhou et al., 2010;Yoo et al., 2017), Hough transform (Liu, Wörgötter
& Markelić, 2010), etc. The main advantage of these methods is their computing speed, but
in complex urban driving scenes or varying lighting or poor weather conditions (Sun, Tsai
& Chan, 2006; Bar Hillel et al., 2014), the performance of these methods will be severely
degraded.

Benefiting from the effective feature representation of Convolutional Neural Networks
(CNN),many lane detectionmethods (Hou et al., 2019;Roberts et al., 2018;Zou et al., 2020)
have achieved excellent performance. In these methods, parameter-based lane detection
typically employ curve fitting techniques to model the lane lines as polynomial curves.
Other works (Gansbeke et al., 2019; Feng et al., 2022) proposed fit polynomial curves to
deep neural networks. These approaches can handle the lane lines with different shapes and
curvatures, and aid to address the occlusion issues. But these methods are more sensitive
to variations of the lane lines.

The methods based on semantic segmentation, such as MobileNet (Howard et al., 2017),
ERFNet (Romera et al., 2018), LaneNet (Wang, Ren & Qiu, 2018), etc., have been proposed
for lane detection. In these methods, the pixels of the image were classified into lane or
background. The advantage of these approaches is able to effectively detect the lane in
complex scenes and diverse lighting conditions. Since it is easy to misposition the lane line
for the segmentation methods, the cumbersome post-processing is needed. Also, when
facing occlusion or bright illumination, the performance of the segmentation method will
be degraded.
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Currently, the anchor-based lane detection is one of the main lane detection methods.
Anchor-based methods typically adopt the object detection techniques to detect the
positions and shapes of lane lines by setting the anchors in the image, in which the lane
detection is transformed into a classification problem. The advantage of the methods is
able to handle the lane lines with different shapes. The anchor-based approach with a
transformer model (Liu et al., 2021b) was proposed and achieved high accuracy in lane
detection. Tabelini et al. (2021a) introduces a novel anchor-based attention mechanism
that utilizes global information to accurately determine the position of lane markings.
Similar to Tabelini et al. (2021a), Qin, Wang & Li (2020) demonstrates that the reduction
of the anchor size can improve the detection speed. Zheng et al. (2022) explores a feature
aggregation module that iteratively enhances anchoring within feature maps across several
levels, resulting in favorable results. However, it is difficult to find the start points of the
lane lines for the anchor-based methods in some complex situations, which will result in
inferior performance.

Inspired by the Feature Pyramid Network (FPN) (Lin et al., 2017a), it is a architecture
that has been specifically developed to address the challenge of integrating multi-scale
information. The FPN has demonstrated significant advancements in the fields of object
detection and semantic segmentation. The FPNmodel integrates bottom-up and top-down
feature maps by employing a horizontal connection mechanism. Specifically, the technique
of horizontal connecting splices involves combining feature maps from several levels in
order to create a feature pyramid that possesses both high resolution and abundant semantic
information. The utilization of a pyramid structure in FPN facilitates the detection and
segmentation of objects across various scales uniformly. Zheng et al. (2022) explored to
integrate the FPN and anchors to detect the lane and obtained good performance.

However, these models employ predetermined learning strategies for feature maps
at different levels and allocate the same attention to the feature layers with different
information, which resulting in the acquisition of extraneous features. Moreover, these
methods based on the anchors suffer from over-dependence on the specific dataset.

METHODOLOGY
The overall architecture of the proposed framework based on weight fusion and cross
refinement for lane detection is illustrate in Fig. 2. It primarily consists of two sequential
components: the Proportional Feature Pyramid Network(P-FPN) block and the Cross
Refinement block.

Proportional Feature Pyramid Network (P-FPN)
Since lane lines usually occupy a small proportion of an image, lane detection can be
regarded as the small object detection. Therefore, each individual pixel belongs to the lane
line is very important for detection, and even a small number of pixels can significantly
affect the final detection result.

In reference to Zheng et al. (2022), a lane line can be represented as a sequence of points
along the y-axis, with the fixed pixel intervals for sampling the x-axis. This representation
can be denoted as L= {(x1,y1),(x2,y2),...,(xn,yn)}. An anchor for lane lines consists

Hui et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1824 4/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1824


Refinement Block

Weight Fusion Factor

P-FPN

             

             

Refinement

Refinement

             ROIAalign

 
Backbone Block

Upsample

Weighted Ratio
             

Fusion Block

Attention

Refinement
Archor

Resize Flatten Conv 
Block

Fully
Connected

Refinement

 

CLS Loss

Focal Loss

LIOU Loss

Anchor

Weight Fusion Factor

Figure 2 Overview of the proposed method. It consists of P-FPN and Refinement Block. The feature
maps (Ci) are acquired using ResNet (He et al., 2016), subsequently fed into the P-FPN. Then, the weight
fusion factor is employed to focus on the feature layers with more context information. Finally, the fusion
feature maps (Pi) are fed into the refinement block module to refine the lane lines.

Full-size DOI: 10.7717/peerjcs.1824/fig-2

of four components: (1) foreground and background probabilities;(2) the length of the
anchor along the y-axis; (3) the start position of the anchor and its angle θ concerning the
x-axis; (4) the offset of n points relative to the anchor line.

In the proportional feature pyramid network (P-FPN), the traditional feature extraction
networks, ResNet (He et al., 2016), is employed to extract the semantic feature. The model
uses the last three layers of the backbone as the original input feature maps. These feature
maps are then progressively fused at different levels to be used by subsequent feature
refinement modules. Then the weight fusion between high-level and low-level semantic
features is explored based on the relative proportion of each level feature. Therefore, our
model can provide greater attention to the feature layers with more context information
for each image.

In FPN-based lane detection methods, the performance was primarily influenced by
two factors: the downsampling factor and the weight fusion mechanism employed between
adjacent layers.

Previous works (Ren et al., 2017; Lin et al., 2017b; Kong et al., 2020; Tan, Pang & Le,
2020) have extensively investigated the downsampling factor and concluded that the lower
downsampling factors lead to better performance, albeit with huge computational cost.

The weight fusion mechanism between adjacent feature layers in P-FPN is shown in
Eq. (1).

Pi= fConv (Ci)+Wi+1× fUpSample (Pi+1) (1)

where fConv(·) represents a 1×1 convolution operation that is employed to ensure
consistency in the channel dimensions, fUpsample(·) executes a 2 × upsampling on the
higher-level feature maps in order to align the resolution, Wi+1 denotes the weight fusion
factor between adjacent feature layers,Ci represents the ith level feature map and Pi denotes
the ith level fusion feature map in the P-FPN network. The purpose of P-FPN is to add a
suitable weight fusion factorW to the feature fusion process.

To further explore how to get the effective weight fusion factor W , a weight fusion
algorithm is designed, which can improve the accuracy of the lane detection through
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optimizing the weight assigned to each data point. At different levels of the P-FPN
network, the data distribution on the feature map is different. In order to train the different
weight features for each data point, the weight fusion algorithm is proposed as shown in
Algorithm 1, which is outlined in the following section.

Algorithm 1 Algorithm 1
Require: N (List of all image indices)
Require: ListLn (list of tuples containing image index and three LIOU losses Lp1, Lp2, Lp3)
Require: α (hyperparameter value)
Ensure: ListWn (list of tuples containing image index and two weight fusion factorsW 2

3
andW 1

2 )
1: functionMatchLoss F Retrieve losses for image indices
2: end function
3: function CalWeiNum F Compute weight fusion factors
4: end function
5: ListLn←[]
6: for Ni in N do
7: ListLn. append((Ni, Lip1, Lip2, Lip3))
8: end for
9: ListWn←[]

10: for (Ni, Lip1, Lip2, Lip3) in ListLn do
11: (W 2

3 ,W
1
2 )← CalWeiNum(ListLn, α)

12: ListWn. append((Ni,W 2
3 ,W

1
2 ))

13: end for
14: return ListWn

The algorithm proceeds as follows: (1) The initial FPN is employed for training the
model with a weight fusion factor of The LIoULoss values (Zheng et al., 2022) of all feature
layers will be recorded; (2) the weight of each layer in the P-FPN network is calculated
through the Eq. (2); (3) the weight fusion factor between adjacent layers is calculated using
Eq. (3); (4) save the weight fusion factors and the index of the input image.

Si= e−α×LLIoU (i) (2)

where the variable e denotes Euler’s number, which is a constant representing the base
of the natural logarithm, LLIoU (·) denotes the line intersection over union loss (Zheng et
al., 2022), α is a hyperparameter which can be set as from 0.1 to 0.9, its optimal value in
different datasets is selected through experimenting which is elaborated in our experiment
section. The weight fusion factor can be calculated as follows:

Wi=
Si
Si−1

(3)

whereWi is the weight ratio of the i and i−1 layer, Si represents the weight of the ith layer.
i can be set as 3 or 2.
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Cross refinement block
The lane detection with high-level features from the P-FPN can be localize lanes coarsely.
Then, the coarsely detected lanes can be further refined by using the cross refinement
block, which takes the anchors and the fused feature maps from the P-FPN as the input of
the block.

The anchors refine using ROIAlign to obtain more precise features (He et al., 2020).
The delicate anchor features aggregate through convolutional layers. These features are
further processed using attention-weighted operations with featuremaps that have changed
dimensions and sizes. Therefore, the feature maps are resized and flattened to adjust their
size and dimensions, while the anchors undergo fine-grained operations through ROIAlign.
After that, convolutional and fully connected operations are applied to align the dimensions
and shape with the transformed feature maps. The anchors initially map the feature maps
to obtain an attention matrixM . The formula is shown in Eq. (4).

M =
XT
p Xf
√
C

(4)

where Xp represents the anchor’s representation, Xf represents the global feature map
information, the aggregation matrix W , which refines the feature map’s aggregation over
anchors, is obtained through a weighted process. The formula is shown in Eq. (5).

W =MXf (5)

Finally, the output is added to the anchor Xp.

Model training
Positive sample allocation
During the training process, the selection of the top−k predictions is performed for each
target through sorting all anchors using the following cost function. The sum of the LIoU
values for the k predictions is calculated and rounded to yield the positive predictions
for the target, which are referred to as Kpos. The cost function is subsequently employed
to designate the Kpos predictions with the minimum cost as positive samples. The cost
function is represented by Eq. (6).

Cprice =WsimCsim+WclsCcls (6)

Csim= (CdisCxyCtheta)2 (7)

where Ccls denotes the focus distance, a metric that measures the separation between the
anticipated trajectory and the actual path at their respective places of focus. The similarity
cost Csim represents the cost associated with the similarity of the three criteria Cdis, Cxy , and
Ctheta. The variable Cdis denotes the mean pixel distance separating valid lane points, Cxy

signifies the distance between the initial points, and Ctheta quantifies the horizontal angle
difference. The values have been adjusted to fall inside the range of [0, 1]. Furthermore,
the predetermined weight fusion factorsWsim andWcls are employed to modify the relative
contributions of each standard.
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Training Loss
As discussed above, the lane can be represented as discrete points which needed to be
regressed with the ground truth. The distance loss is often used to regress these points,
which will result in less accurate regression (Zheng et al., 2022). In reference to Zheng
et al. (2022), the Line Intersection over Union (LIoU) loss LLIoU , which is the ratio of
intersection over union between two line segments, is defined as:

LLIoU = 1−LIoU (8)

where LIoU can be computed as

LIoU =
∑N

i=1d
ϑ
i∑N

i=1d
u
i

(9)

where dϑi represents the intersection between the predicted and labeled lines, dui represents
the union of the predicted and labeled lines. In the context of optimizing non-overlapping
line segments, it is possible for the value of dϑi to be negative, so the value of LIoU is within
the range of (−1,1).

This study employs three different loss functions to collectively supervise the training
process. Lcls represents the classification loss, Lxytl corresponds to the regression loss for
the starting point position, angle, and length, andLLIoU , as proposed in Zheng et al. (2022),
performs regression on the lane lines as a whole unit.

Ltotal =wclsLcls+wLIoULLIoU +wxyLxy (10)

During the training, the model will output the detection result of each layer through the
cost function and input it into the loss function optimization model, and only output the
detection result of the last layer during the test.

EVALUATION METRICS
In order to compare the performance to other competitors in TuSimple and CULane,
there are two evaluation metrics, accuracy and F1 score, often used for lane detection. The
accuracy is used as the official evaluation metrics of TuSimple and CULane proposed in
the literature. In reference to Pan et al. (2018), The F1 score is adopted as the metric in
our exprement, which is a value that represents a harmonic mean, and it is considered a
reliable metric that combines precision and recall. They are calculated as follows:

Accuracy
Accuracy is defined as the ratio of the number of correctly predicted instances to the total
number of samples. This can be represented by the formula as shown in Eq. (11).

Accuracy =
Tp+Tn

Tp+Tn+Fp+Fn
(11)

where Tp, Tn, Fp, and Fn denote true positive, true negative, false negative and false positive
rates, respectively.
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F1 Score
The F1 score is the harmonic mean of precision and recall. Precisionmeasures howmany of
the positive predictionsmade by amodel are correct, while recall measures howmany of the
positive examples in the data are correctly identified by the model. The F1 score combines
these two metrics into a single number, which provides a balance between precision and
recall, and is particularly suitable when there is an imbalance in the distribution of class
labels. The formula for calculating the F1 score is shown as Eq. (12).

F1=
2×Precision×Recall
Precision+Recall

(12)

where recall is defined as the ratio of correctly classified values to the total number of values
in the dataset, precision is provided as the ratio of correctly predicted values to the total
number of predicted values. The recall and precision are calculated as Eq. (13) and Eq. (14),
respectively.

Recall =
Tp

Tp+Fn
(13)

Precision=
Tp

Tp+Fp
(14)

where Tp, Fp, and Fn denote true positive, false negative and false positive rates, respectively.
Similar to Zheng et al. (2022), in our experiments, the accuracy and F1 score are all

employed for the Tusimple dataset. The F1 score is employed as the evaluation metric for
the CULane dataset.

EXPERIMENTAL RESULTS
Dataset and setting
TuSimple
The TuSimple dataset is one of the widely used datasets in lane detection, consisting of
6,408 road images on US highways, of which the images are under different traffic and
weather conditions. The dataset contains highway scene with 3,268 images for training,
2,782 for testing, and 358 for validation. All the images have 1,280 × 720 pixels. In this
dataset, in reference to Liu et al. (2021b), the lane is treated as a 20-pixel-width line. If the
predicted point is within the 20-pixel-width line, this point is considered as a correct point.
If the number of correct predicted points of a lane is greater than 85%, the lane prediction
is considered as a true positive (TP).

CULane
The CULane dataset is a well-known, extensively used, and large scale challenging dataset
for lane detection, initially presented in the SCNN (Pan et al., 2018). A total of 133,235
frames were extracted frommore than 55 h of videos. The dataset contains nine challenging
categories which are normal, crowded, highlighted, shadow, no line, arrow, curve, cross,
and night respectively. The dataset consists of 88,880 samples for training, 9,675 for

Hui et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1824 9/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1824


Table 1 Settings of the CULane and TuSimple datasets.

DataSet CUlane TuSimple

Train 88,800 3,268
Val 9,765 358
Test 34,680 2,782

Table 2 Proportion of challenging scenarios on the CULane test set.

Type Percentage (%)

Normal 27.7
Corwded 23.4
Night 20.3
No line 11.7
Shadow 2.7
Arrow 2.6
Dazzle light 1.4
Curve 1.2
Crossroad 9.0

validation, and 34,680 for testing. The testing data contains eight distinct challenging
categories. All the images have 1,640 × 590 pixels. If the predicted point is within the
30-pixel-width of the ground truth, this point is considered as a correct point (Zheng et al.,
2021). If the number of correct predicted points of a lane is greater than 50%, predicted
lane is considered as a true positive (TP).

The details of the two datasets are shown in Table 1, and the proportion of each category
in the CULane test set is shown in Table 2.

Implement details
Our model is implemented based on PyTorch 1.8 and CUDA 11.2 on the Ubuntu 20.04
with RTX 3080 GPU to run all the experiments. All the input images are initially resized to
320 × 800 pixels. To augment the data for making the model robust indifferent lightness
situations, similar to Zheng et al. (2022), random affine transformation (translation,
rotation, and scaling) (Polson & Scott, 2011) and random horizontal flips are employed
in the experiments. Specifically, every input image is rotated a random degree within 10
degrees, scaled with a random factor between 0.8 and 1.2, and added a random brightness
with the range (−10, 10), whichmake themodel adapt the same image in different situation.
Especially in the evening, the model can minimize the influence of the low luminescence,
and maintain good recognition quality. After preprocessing, the images are normalized to
320 × 800 pixels again.

In training phase, the quantity of anchors has been set to 72. The distribution cost is
defined as Wcls = 1 and Wsim = 3. For the CULane dataset, the number of epochs was set
to 30 with a batch size of 24. Vertical sampling was performed from 589 to 230 at intervals
of 20 pixels. Corresponding loss weights were configured as wcls= 2.0, wLIoU = 2.0, and
wxy = 0.2. For the TuSimple dataset, the number of epochs was set to 70 with a batch

Hui et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1824 10/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1824


Figure 3 Result of validation set on CULane and TuSimple dataset. (A) The best α value of CULane val-
idation set is 0.8, and (B) the best α value of TuSimple validation set is 0.2.

Full-size DOI: 10.7717/peerjcs.1824/fig-3

size of 40. Vertical sampling was performed from 710 to 150 at intervals of 10 pixels.
Corresponding loss weights were configured as wcls= 6.0, wLIoU = 2.0, and wxy = 0.5.

During the optimizing process, the AdamW (Loshchilov & Hutter, 2019) optimizer is
used with an initial learning rate of 1e−3. The learning rate was decayed by a cosine
annealing learning rate strategy with a decay factor of 0.9 (Loshchilov & Hutter, 2017).

Analysis of hyperparameter α values
The weight calculation formula based on hyperparameters α is shown in Eq. (2). A higher α
value has a larger penalty for model misdetecting, which makes the model be more suitable
for learning complex samples. However, a lower α value has a smaller liability for false
positives, whichmakes the model be easy to learn the simple data. The α values are different
for different datasets. As shown in Fig. 3A, the experiments are conducted on the validation
set of the CULane dataset, and it can be seen that the F1 score reaches a peak when the α
value is 0. 8. On the TuSimple dataset, 20% of the training set is randomly divided as the
validation set. As shown in Fig. 3B, it can be seen from the experimental results that when
the α value is 0. 2, the F1 score reaches the peak. Therefore, in the following experiments,
the α value is set to 0.8 for the CULane dataset and 0.2 for the TuSimple dataset.

Ablation experiments of weight fusion mechanism
A series of ablation experiments are conducted to test the effectiveness of our proposed
P-FPN network. In these experiments, three settings, layer P3→ P2, P2→ P1, and
P3→ P2→ P1, are considered to perform refinement and the comparative experiments
are designed between our proposed method (P-FPN) and the baseline method (CLRNet)
(Zheng et al., 2022). The experimental results are shown in Table 3. It can be seen from the
result, the detection performance of our method (P-FPN) surpasses the baseline method
in all three settings, which proves the effectiveness of our weight fusion mechanism.
Furthermore, adopting the refinements from P3 to P2 to P1(P3→ P2→ P1) is much
better than the other settings, which validates our final weight fusionmechanism can utilize
low-level and high-level features better.
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Table 3 Ablation studies were conducted on different stages of the pyramid network. Pi represents the
ith fusion feature map in the network, and ‘‘with P-FPN’’ indicates the results using our proposed propor-
tional feature pyramid network. Bold numbers are the best results.

Settings F1 in CULane (%) F1 in TuSimple (%) Accuracy in TuSimple (%)

P3→ P2 79.12 96.80 95.92
P3→ P2 with P-FPN 79.23 97.02 96.14
P2→ P1 79.19 97.01 96.21
P2→ P1 with P-FPN 79.34 97.24 96.44
P3→ P2→ P1 79.58 97.89 96.84
P3→ P2→ P1 with P-FPN 79.86 98.01 96.91

Table 4 Ablation analysis of weight fusion and cross refinement block. Bold number is the best result.

Weight fusion Cross refinement block F1 (%)

77.82
X 79.58

X 78.62
X X 79.94

Ablation experiments between weight fusion and cross refinement
block
An ablation experiment between weight fusion and cross refinement block is conducted
to further test the effectiveness of the proposed model. Table 4 presents the ablation
experimental results. From this table, it can be seen that if only using the weight fusion
module, the F1 score can be improved from 77.82% to 78.62%. Similarly, if only using
the cross refinement block, a significant improvement is obtained with the F1 score from
77.82% to 79.58%. When two components are synergistically used in our experiments, the
model achieves the highest F1 score, reaching 79.94%, which demonstrates the effectiveness
of the proposed modules for lane detection.

Analysis of training loss
The comparative experiments of the training loss are conducted between our proposed
method and the CLRNetmethod (Zheng et al., 2022) since the twomethods have the similar
backbone network. Therefore, the CLRNet method is selected as the baseline method for
comparing experiments. The loss curves are plotted between our method and the baseline
method during training process are shown in Fig. 4. From the figure, it can be seen that
our training loss is lower than the baseline method on the CULane and TuSimple datasets,
which can conclude that our improvement strategy is effective.

Comparison with existing lane detection methods
This study conducted a comprehensive comparative experiments with the existing lane
detectionmethods on the two lane detection datasets, the TuSimple dataset and the CULane
dataset.
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Figure 4 The result of the training loss between our method and the baseline method. (A) Training loss
on CULane dataset. (B) Training loss on TuSimple dataset.

Full-size DOI: 10.7717/peerjcs.1824/fig-4

Performance on TuSimple
The performance comparison with the current popular methods on the TuSimple dataset
is shown in Table 5. From the table, it can be seen that, in all comparative methods, their
results are all very good (high value) and their performance difference is very small on
this dataset, which shows the result in this dataset seems to be saturated already. However,
our method still performs best in the all comparative methods, especially on the Resnet18
backbone, which obtains 98.01% F1 score and 96.91% accuracy. This improvement shows
that our lane detection method is effective. In addition, from the Table 5, it also can be seen
that, on the Resnet101 backbone, our method obtains a highest false negative (FN) ratio
with 3.09%, which shows that our model successfully reduces the learning samples from
the wrong lanes and can more accurately determine the wrong lane lines in the detecting
process. Comprehensive comparative experiments show that our method outperforms the
previous state-of the-art methods in the TuSimple dataset.

Performance on CULane
The comparative experiments between our method with other popular lane detection
methods are conducted in three different backbone networks on the CUlane dataset. As
shown in Table 6, using the Resnet18 backbone, our proposed method achieves a new
state-of-the-art with an 79.86% F1 score and in most challenging detection scenarios, our
method is also significantly superior to other methods. In the meantime, our method can
achieve the detecting speed with 157 FPS, which is a competitive detecting speed and is
efficient for real-time lane detection.

When using the Resnet34 backbone, the comparative experimental results are shown
in Table 7. From this table, it can be seen that our proposed method achieves the highest
F1 score of 79.94% and the detecting speed with 126 FPS, which show that our method
performs better. Also, in most challenging detection scenarios, our method surpasses other
popular methods in the Resnet34 backbone network.

When using a deeper feature extraction network Resnet101, the comparative results
are shown in Table 8. From this table, it can be seen that our proposed method obtains
the highest F1 score of 80.31% and the fastest detecting speed with 67 FPS. Furthermore,
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Table 5 The comparative experimental results on the Tusimple dataset. Bold numbers are the best results.

Method Backbone F1 (%) Accuracy (%) Proportion of FP (%) Proportion of FN (%)

SCNN (Pan et al., 2018) VGG16 95.57 96.53 6.17 1.8
RESA (Zheng et al., 2021) Resnet18 96.93 96.84 3.63 2.48
LaneATT (Tabelini et al., 2021a) Resnet18 96.71 95.57 3.56 3.01
LaneATT (Tabelini et al., 2021a) Resnet34 96.77 95.63 3.53 2.92
LaneATT (Tabelini et al., 2021a) Resnet122 96.06 96.10 5.64 2.17
PolyLaneNet (Tabelini et al., 2021b) EfficientNetB0 90.02 93.36 9.42 9.33
LSTR (Liu et al., 2021b) Resnet18 − 96.18 2.91 3.38
CondLane (Liu et al., 2021a) Resnet18 97.01 95.48 2.18 3.80
CondLane (Liu et al., 2021a) Resnet34 96.98 95.37 2.20 3.82
CondLane (Liu et al., 2021a) Resnet101 97.24 96.54 2.01 3.50
CLRNet (Zheng et al., 2022) Resnet18 97.89 96.84 2.28 1.92
CLRNet (Zheng et al., 2022) Resnet34 97.82 96.87 2.27 2.08
CLRNet (Zheng et al., 2022) Resnet101 97.62 96.83 2.37 2.38
Our method Resnet18 98.01 96.91 2.31 2.12
Our method Resnet34 97.89 96.93 2.52 2.41
Our method Resnet101 97.68 96.89 2.97 3.09

in all nine challenging scenarios of the CUlane dataset, our method achieves the best
performance, which indicates that our method is easier to reduce the confusion caused
by the challenging noise than the state-of-the-art methods when using a deep feature
extraction network.

To further demonstrate the computational efficiency of the proposedmethod, themetric
of Floating-Point Operations (FLOPs) is adopted in the experiments. The experimental
results are shown in Table 9. From this table, it can be seen that the proposed method
obtains a relatively better computational efficiency comparing with the other methods
when using Resnet34 backbone. Therefore, the experimental results validate the proposed
method is competitive in terms of computational efficiency.

In summary, onCULane dataset, the comparative experiments are conducted in different
backbone networks for the lane detection. By analyzing the results from using the backbone
networks with Resnet18, Resnet34, and Resnet101, our method obtains the highest F1 score
compared to the other popular lane detection methods and also achieves a competitive
detection speeds and computational efficiency. Comprehensive analysis shows that our
proposed method performs better than the state-of-the-art lane detection methods, which
proves the effectiveness and robustness of our proposed lane detection method.

Analysis of visualization
Samples with challenging weather conditions (such as night with streetlights, strong light
reflection, night without streetlights) and good weather condition are selected to visualize
and analyze themodels using the RESA (Zheng et al., 2021), LaneAtt (Tabelini et al., 2021a),
CondLane (Liu et al., 2021a), CLRNet (Zheng et al., 2022), and our method on the CULane
test set.
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Table 6 Comparative experimental results adopting ResNet18 as the backbone on CULane dataset. Bold numbers are the best results.

Method Backbone F1
(%)

FPS Normal
(%)

Crowd
(%)

Dazzle
(%)

Shadow
(%)

No line
(%)

Arrow
(%)

Curve
(%)

Cross Night
(%)

SCNN (Pan et al., 2018) VGG16 71.60 7.5 90.60 69.70 58.50 66.90 43.40 84.10 64.40 1,990 66.10
LaneAF (Abualsaud et al., 2021) ERFNet 75.63 24 91.10 73.32 69.71 75.81 50.62 86.86 65.02 1,844 70.90
LaneAF (Abualsaud et al., 2021) DLA-34 77.41 20 91.80 75.61 71.78 79.12 51.38 86.88 72.70 1,360 73.03
FOLOLane (Qu et al., 2021) ERFNet 78.80 40 92.70 77.80 75.20 79.30 52.10 89.00 69.40 1,569 74.50
GANet-S (Morley et al., 2001) ResNet18 78.79 153 93.24 77.16 71.24 77.88 53.59 89.62 75.92 1,240 72.75
LaneFormer (Han et al., 2022) Resnet18 71.71 – 88.60 69.02 64.07 65.02 45.00 81.55 60.46 25 64.76
BézierLaneNet (Feng et al., 2023) Resnet18 73.67 213 90.22 71.55 62.49 70.91 45.30 84.09 58.98 996 68.70
LaneATT (Tabelini et al., 2021a) Resnet18 75.13 250 91.17 72.71 65.82 68.03 49.13 87.82 63.75 1,020 68.58
CondLane (Liu et al., 2021a) Resnet18 78.14 173 92.87 75.79 70.72 80.01 52.39 89.37 72.40 1,364 73.23
CLRNet (Zheng et al., 2022) Resnet18 79.58 119 93.30 78.33 73.71 79.66 53.14 90.25 71.56 1,321 75.11
Our method Resnet18 79.86 157 93.53 78.65 74.09 80.96 53.67 90.27 72.68 1,225 74.93
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Table 7 Comparative experimental results adopting ResNet34 as the backbone on CULane dataset. Bold numbers are the best results.

Method Backbone F1
(%)

FPS Normal
(%)

Crowd
(%)

Dazzle
(%)

Shadow
(%)

No line
(%)

Arrow
(%)

Curve
(%)

Cross Night
(%)

SCNN (Pan et al., 2018) VGG16 71.60 7.5 90.60 69.70 58.50 66.90 43.40 84.10 64.40 1990 66.10
LaneAF (Abualsaud et al., 2021) ERFNet 75.63 24 91.10 73.32 69.71 75.81 50.62 86.86 65.02 1844 70.90
LaneAF (Abualsaud et al., 2021) DLA-34 77.41 20 91.80 75.61 71.78 79.12 51.38 86.88 72.70 1360 73.03
FOLOLane (Qu et al., 2021) ERFNet 78.80 40 92.70 77.80 75.20 79.30 52.10 89.00 69.40 1569 74.50
RESA (Zheng et al., 2021) Resnet34 74.50 45.5 91.90 72.40 66.50 72.00 46.30 88.10 68.60 1896 69.80
GANet-m (Morley et al., 2001) Resnet34 79.39 127 93.73 77.92 71.64 79.49 52.63 90.37 76.32 1368 73.67
LaneFormer (Han et al., 2022) Resnet34 74.70 – 90.74 72.31 69.12 71.57 47.37 85.07 65.90 26 67.77
LaneATT (Tabelini et al., 2021a) Resnet34 76.68 171 92.14 75.03 66.47 78.15 49.39 88.38 67.72 1330 70.72
CondLane (Liu et al., 2021a) Resnet34 78.74 128 93.38 77.14 71.17 79.93 51.85 89.89 73.88 1387 73.92
CLRNet (Zheng et al., 2022) Resnet34 79.73 103 93.49 78.06 74.57 79.92 54.01 90.59 72.77 1216 75.02
Our method Resnet34 79.94 126 93.70 78.24 74.81 81.21 54.21 90.74 73.92 1160 74.85
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Table 8 Comparative experimental results adopting ResNet101 as the backbone on the CULane dataset. Bold numbers are the best results.

Method Backbone F1
(%)

FPS Normal
(%)

Crowd
(%)

Dazzle
(%)

Shadow
(%)

No line
(%)

Arrow
(%)

Curve
(%)

Cross Night
(%)

SCNN (Pan et al., 2018) VGG16 71.60 7.5 90.60 69.70 58.50 66.90 43.40 84.10 64.40 1990 66.10
LaneAF (Abualsaud et al., 2021) ERFNet 75.63 24 91.10 73.32 69.71 75.81 50.62 86.86 65.02 1844 70.90
LaneAF (Abualsaud et al., 2021) DLA-34 77.41 20 91.80 75.61 71.78 79.12 51.38 86.88 72.70 1360 73.03
FOLOLane (Qu et al., 2021) ERFNet 78.80 40 92.70 77.80 75.20 79.30 52.10 89.00 69.40 1569 74.50
LaneATT (Tabelini et al., 2021a) Resnet122 77.02 26 91.74 76.16 69.47 76.31 50.46 86.29 64.05 1264 70.81
GANet-L (Morley et al., 2001) Resnet101 79.63 63 93.67 78.66 71.82 78.32 53.38 89.86 77.37 1352 73.85
CondLane (Liu et al., 2021a) Resnet101 79.48 47 93.47 77.44 70.93 80.91 54.13 90.16 75.21 1201 74.80
CLRNet (Zheng et al., 2022) Resnet101 80.13 46 93.85 78.78 72.49 82.33 54.50 89.79 75.57 1262 75.51
Our method Resnet101 80.31 67 94.04 78.91 74.64 82.56 54.69 89.84 75.83 1179 75.43

H
uietal.(2024),PeerJ

C
om

put.Sci.,D
O
I10.7717/peerj-cs.1824

17/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1824


Table 9 Comparative experimental results of floating point operations on CULane dataset. Bold num-
bers are the best results.

Method Backbone GFLOPs

SCNN (Pan et al., 2018) VGG16 328.4
LaneAF (Abualsaud et al., 2021) ERFNet 22.2
LaneAF (Abualsaud et al., 2021) DLA-34 23.6
RESA (Zheng et al., 2021) Resnet34 41.0
LaneATT (Tabelini et al., 2021a) Resnet34 18.0
CondLane (Liu et al., 2021a) Resnet34 19.6
Our method Resnet34 21.5

Figure 5 Visualization result of the RESA, LaneAtt, CondLane, CLRNet, and our method. Image
source: CULane dataset, https://xingangpan.github.io/projects/CULane.html.

Full-size DOI: 10.7717/peerjcs.1824/fig-5

As shown in Fig. 5, under the detection condition in night with streetlights in the first
row of Fig. 5, it can be observed that the RESA method exhibits an uneven lane detection,
whereas the other four methods demonstrate superior detection results. From the second
row of Fig. 5, the detection condition is under strong light reflection, it can be seen that the
RESA method still suffers from detection distortion and the LaneAtt method fails to detect
the left lane line. Whereas our method obtains a good detecting performance. Under the
night without streetlights environment, the detecting results are shown in the third row of
Fig. 5, it can be observed that our method accurately detected and located the rightest lane
line, but the other four methods failed to detect it. In the last row of the figure, it shows that
the weather condition is good. Under this condition, all five methods successfully detected
the four lane lines, however, our method still exhibits more robust and accuracy. From the
visualization analysis, it can be concluded that our method performs better regardless of
extreme challenging weather or good weather conditions.

CONCLUSION
In this article, a novel lane detection method based on Proportional Feature Pyramid
Network(P-FPN) is proposed through fusing the weights into the FPN. In the P-FPN
network, the cross refinement block and loss block are introduced. The cross refinement
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block makes more attention to the feature layers with more knowledge and refines the
lanes. The loss block obtains a good performance by regressing the lane as a whole unit.
In our method, the high-level features are explored to predict lanes coarsely while local-
detailed features are leveraged to improve localization accuracy. Extensive experiments
on two widely used lane detection datasets demonstrate the proposed method achieves
competitive performance with F1 score of 80. 31% on the CULane dataset and F1 score
of 98. 01% on the TuSimple dataset. Comparing with several state-of-the-art approaches,
the proposed method performs better in either detection accuracy or efficiency. From the
results of the visualization, the proposed method provides more precise lane detection than
the other methods.

In future, the proposed method will be further investigated and refined by exploring the
more suitable model architectures and balancing the computing time and accuracy.
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