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CA courses are offered without the lab component. This paper demonstrates how stddents working in
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u ABSTRACT

12 Teaching Computer Architecture (CA) course in undergraduate curricula is becoming more of a challenge
13 as most students prefer software-oriented courses. In some computer science/engineering departments,
14 CA courses are offered without the lab component. This paper demonstrates how students working
15 in teams are motivated to study the CA course and how instructors can increase their motivation and
16 knowledge by taking advantage of the hands-on practices described. Firstly, the teams are asked to
17 design and implement their 16-bit MIPS-like processors from the scratch under certain limitations such
18 as using a specified instruction set, and limited data and instruction memory.

19 Student projects comprised of three phases, namely, design, desktop simulator implementation, and
20 verification using Hardware Description Language (HDL). In the design phase, teams developed their
21 architectures to implement specified instructions. Although teams’ requirements and limitations are the
22 same, their designs differed. For example, while one of the teams designed a processor with extensive
23 features by having user-defined instructions resulting in longer cycle times, the other team preferred to
24 build a processor with a minimal instruction set but with a faster clock cycle time. Next, teams developed
25 adesktop simulator in any of the programming languages to execute instructions on the architecture
26 they built. Lastly, they created HDL projects in Verilog to verify their data-path realized in the design
27 phase by executing instructions in the ISim simulator environment supported by ISE. At the completion
28 stage of the project, students’ thoughts and their current understanding of the project are collected by
22 means of a questionnaire using a ten-point Likert scale. Results of the survey show that the hands-on
30 approach increase students’ motivation and knowledge in the CA course and this approach can be
31 extended to similar courses, ie. ‘Micréprocessor Design, with some minor changes. Furthermore, the s
32 present study demonstrates that interactions between students in each phase increased their potential
33 knowledge and perspective on designing custom processors.
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5 As computing technology evolves at an immense pace, X becomes harder to go back to the&i\\““
origins of hardware in order to understand its internal worki every improvement either in
pftware technology, scientists and engineerstry to hide technical details from the
38 userst equires a strong computer engineerin ground and understanding.
1 The CK courseoffered in the 3rd year of the Computer Engineering curriculum at Konya Food
& Agriculture University (hereafter referred to as KFAU) is one of the essential courses that
conveys the necessary background knowledge with hands-on experience to undergraduate
students. As expected, when it comes to teaching\CA to undergrad students, the task becomes
more challenging since most of the students are Mot really interested in learning computer
i \ f ~ 4« hardware details because,the nature of the CA cour’ looks too theoretical in their eyes and
4 requires an unde s‘tandin{g\o&the internal mechanisms of the computer that they think TtNsyvery

s difficult to grasp. by ?v _.h
“O\WN e
/

s» 1 INTRODUCTION

40

e

Peer] Comput. Sci. reviewing PDF | (CS-2020,10:54761:1:1:NEW 25 Aug 2022) - 2

\S e O&J’Y*‘S/ QV\N»T\N’\\\ ‘ \S\
ANVt S;T/ Dol | oy | S

\N‘c-v’\)K A\\ \me\.ﬂ .



PeerJ Computer Science Manuscript to be reviewed

47 Bureau of Labor Statistics (hereafter called BLS) projects that jobs for Computer Hardware
s Engineers will grow by about 2% from 2020 to 2030, which is lower than the average growth
s (8%) (U.S. Bureau of Labor Statistics, 2022a). However, under the same conditions, BLS projects
s jobs for Information Security Analysts and Web Developers will grow by about 33% and 13%,
s: respectively (U.S. Bureau of Labor Statistics, 2021, 2022b). Furthermore, BLS indicates that
s2. Computer Hardware Engineers get paid relatively more than Information Security Analysts and
3. Web Developers (U.S. Bureau of Labor Statistics, 2021, 2022b,a). This shows us the attention
NA\ s« of students and fresh graduates shifts to recent developments and emerging job vacancies in
y ss different fields of computing regardless of their salary.

56 Unfortunately, for students’ this situation can be not only effective in CA course, but also
| s in other musY) courses in the curriculum. According to the KFAU Computer Engineering

ss_currictla, students take common core courses in faculty throughout the first three semeste Naw
] In the remaining five semesters where students gain computer engi i 1115, there are 16 (A,‘,M
- . . .
s-€musty ours€ and studentsSuffer from the problem given aboven 4 different courses which

(“\"f\\g s1 are Programming Languages, Computer Architecture, Operating Systems, Automata Theory and

“"3 62 Formal Languages (Noone and Mooney, 2018; Thomas et al., 2012; Anderson and Nguyen, 2005;
s3 Vijayalaskhmi and Karibasappa, 2012). As the number of theoretical and requiring low-level [ g}, 7~

e« computer understanding courses increases, which is approximately 25% of the curriculum in
e Adies T os  KFAU, we believe they can make a huge impact on students’ career paths. Furthermore, current A\
LT studies fail to propose a practical and quantifiable approach to be used for eliminating these .

\{%Q,& K & problems in CA course. g @
68 This study creates the following assignments for the CA course and anal;&\e'&\the\k\ assign-
6 ment’ﬁ\contributions to students and th’g%g( how knowledge diffusion among students can
70 increase.

\-\/)ow\vh 7 * processor design shown in Fig. 1 including Instruction Set Architecture (ISA) and data-
S T i VSIS S N SN
Cavovsis O 73 * a desktop simulator demonstrating how the processor executes given code and how
Nzwn SO X 74 contents of memory and registers change&throughout the execution process.
" “,4% %‘»M 7 ~ St'-f)‘x ¢ Pt 7_
Rl 7 * verifying the designed processor by using HDL. At the end of the project, students take a
\;\&‘ xw... e 7% survey about their thoughts and assessments about the conduct of the course.
S u\,?h P Y4
VervaNy = & 7 The approach offered in this study'¢an be applied to other courses withrmimorchranges and
. 7 increase both the students’ motivation apd potential knowledge of these theoretical course
— \ )”"‘“" )C 75 Besides, if the requirements and limai i s are arranged well, students woiﬂﬁ:‘?——&“\
PP ;_&‘ so more creative and focus on different aspects of user needs..Hence students are able to visualize
o s and examine various scenarios and use-cases in a course.m&)r&i};rwould be
;\SF\L«,, W = s2 beneficial in classes where student participation is relatively low, especially in onli r distance
&3 education classes, and be a good assessment tool for teachers while grading their students”
NEA'A VIV sa efforts. Instructors can access and replicate this work shared on GitHub and YouTube, with .
/\K\& F\*: )8 ss small modifications to be used in their CA classes.[!] Nf‘*’?‘
r / 8 This study, we believe for the first time in the literature, proposes an approach to increase < Rey

AN » students’ interest, motivation, and knowledge in CA course by examining two different student

YN A vb b e groups who design their own processors under certain instruction and hardware limitations,

XX N, SO | so and the techniques they used in this process and the effects of these techniques on their designs

U 7? s and knowledge. Besides, this study incorporates detailed documentation that can be traceable
S M‘ﬂ 5 o1 and replicable by others. ‘ ‘ . ‘

_ 4 92 The rest of the paper is organized as follows: The background, design phase, simulator

%x— }\T‘t s implementation phase, and hardware validation by-Yerttog phaseXs described in sections 2,3, 4,

X s« and 5 respectively. In the-next-section; the results section, data dpllected from students using

95 surveys is analyzedXQ_ﬁe discussion pagi Tt toned the strengths and weaknesses

s of the project are-deseribed. F?le,-"fﬁe per is concluded with|the conclusions section and
o7 future work.
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s 2 RELATED WORK - Mwiﬁ&

99 TrTmpastﬂmr@wefe&any scientific studies\econdusted on the difficulties encountered in CA
1o and other theoretical courses. One of the best ways to tackle these difficulties is to give students
11 effective hands-on assignments, such as simulators (Wu et al., 2014). In this section, studies
12 are analyzed in three main parts: a) courses that are hard to teach, i.e., computer architecture.
w03 b) possible problems and proposed solutions about why these courses are hard to teach. <)
104 practicality and scope of simulators developed to teach CA course.

105 Thomas et al., 2012 remark on MM&\Qf difficulties and problems students can expe-
s rience in a CA course due to abstract concepts (Thomas et al., 2012). Simkins and Decker,
1w 2016 and Omer et al., 2021 show that students grasp limited knowledge and the course it-
s self becomes inefficient when teaching methods focus only on theoretical concepts (Simkins
100 and Decker, 2016; Omer et al., 2021; Yehezkel et al., 2001; Kehagias, 2016). Anderson and
10 Nguyen, 2005 survey the literature to find the best assignments for their course to avoid stu-
1 dents struggling in the theoretical parts of an operating systems course (Anderson and Nguyen,
12 2005). Vijayalaskhmi and Karibasappa, 2012 state that teaching formal languages and automata
s theory course is challenging due to the following reasons: a) monotonous teaching style b)
s courses mathematical nature causes poor understanding and students not showing adequate
us participation (Vijayalaskhmi and Karibasappa, 2012). <

116 Leibovitch and Levin, 2011 mention difficulties faced in CA course due to the fact that

V4

Swe.
s b

1w CA cours® are comprised of different contiguous fields, such as digital design, embedded /,b‘(_‘ )
s Yy,

us_, systems, operating systems, etc., and-make-themrcomplex ibovitch a
/—""'—’_—Jg/the other hand, Patel and Patt, 2019 state-the main €eason is forcing~students to memorize

120 things before they understand the topic detailRq (Patel anc : )--Simkins and Decker,

122 and Decker, 2016). About 41% of students who encounter difficulties in “Tools for Lea

121 2016 survey the difficulties that students encounter during programming cou«r“é‘é"s‘"(Siﬁﬂc'ms\” f_i
rning” N

13 state that the main reason is lack of practice. Omer et al., 2021 collected and analyzed 66
124 different articles published from 2014 to 2020 to investigate recent developments in introductory
125 programming cours‘eg,(Omer etal.,, 2021). Omer et al., 2021 and Malliarakis et al., 2016 suggest
126 using games to increase students’ motivation during the learning process (Malliarakis et al.,
127 2016; Omer et al., 2021). Furthermore, hands-on experiences with processor architectures
122 have a supportive impact on students’ better understanding of the CA course (Kehagias, 2016).
13 Kehagias, 2016 survey given every single assignment including basic question answers an
10 sophisticated programming assignments, in CA course at top North American Universities
13 (Kehagias, 2016). The conducted research examines the quality and quantity of assignments to
12 enlighten the pathway for educators and instructors to create assignments and thereby assess
153 students properly. Kehagias, 2016 show that 25% of instructors include developing or modifying
13+ a simulator design task for a target processor architecture, which is a core part of this approach
135 (Kehagias, 2016).

136 The necessity of hands-on experiences in teaching different courses is examined in several
17 studies and various assignments or projects are proposed to contribute to students’ knowledge
132 (Aviv et al,, 2012; Hsu, 2015; Vijayalaskhmi and Karibasappa, 2012; Christopher et al., 1993).
130 According to a survey by Omer et al., 2021 survey tools are needed to have sufficient visualization
10 to help students comprehend subjects (Omer et al., 2021). Morgan et al., 2021 developed RISC-V

11 Online Tutopywhich can also be used in CA courses (Morgan et al., 2021). Wu et al., 2014 state
142 that studepds who utilized hands-on practices have significantly higher scores than the one who
144 practices decreased students’ stress levels during the course.

145 Nikolic et al., 2009 survey and evaluate the current simulators which are used to teach CA

1 course (Nikolic et al., 2009). The survey evaluates simulators in different categories which are
17 the coverage of topics and features provided for simulation. The study shows that the best

—
~ W21

Z-

Y in an introduction to computer science course (Wu et al., 2014). Furthermore, hands—oﬁ\% Jg

s simulators that cover many topics are M5 and Simics simu s (Binkert et al., 2006; Magnusson c%‘ .
149 etal., 2002). Many available simulators cover aboutone-third of the course content-whereas : “e )
150 M5 and Simics cover around two-thirds. Schuurman, 3 developed a simulator to teach c:,t'iO T
151 processor architecture basics to computer science students (Schuurman, 2013). Schuurman, e

12 2013’s approach shares common tasks with those advocated in this study, such as design and

S o
= 3/26
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200 On the processor demgn are discussed in the followjng sections. If this phase had been carried
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13 simulator phases. Angelov and Lindenstruth, 2009 designed a 16-bit RISC-based non-pipelined
154 processor which can be created by entry-level students as course homework (Angelov and
15 Lindenstruth, 2009). Furthermore, they developed a simulator where users can type their
155 assembly instructions and examine the code step by step. On the other hand, Bhagat and
17 Bhandari, 2018 did not only design a 16-bit RISC processor but also, verified their design by
e using Verilog HDL (Bhagat and Bhandari, 2018). Similar to Bhagat and Bhandari, 2018, Angelov
1ss  and Lindenstruth, 2009 also used Von Neumann architecture. However, their design is limited
1o to support 15 different instructions to make the processor simpler and easier to design. Jaumain
11 et al, 2007 made a difference among those studies and developed a simulaf{or] where students
12 enter the assembly instruction&@ track each electric &g@ y step ain
163 etal., 2007).
164 Rao et al., 2015 came up with such a processor design that all compegnents such as ALU,
165 control unit, instruction decoder, etc. are carefully selected to achieve hetter performance (Rao
w6 et al.,, 2015). However, they achieved these results usip_gjngit-ina—mgions whilethe ALU can
-bitoperations.

168 Black, 2016 proposes a module to be used by students to allow them to run their desighsin
Arduino hardware with the help of an Emumaker86 simulator developed earlier by the professo

70 (Black, 2016). The study concentrates on allowing students to run their code in hardware rather
171 than designing a processor. Similarly, Yildiz et al., 2018 propose a soft CPU simulation platform
w2 called VerySimpleCPU (VSCPU) to allow students to design their processors from the scratch
173 and build code for their processors and implement it wsizrg FPGA @asily (Y1ldiz et al., 2018). This
174 tool concentrates on making the processor design easie
175 them to understand and design a processor with its bits aRd bytes.

LA
7 3 THE PROCESSOR (CPU) DESIGN A
(%)}
177 This sectiony defines ﬁrstly&the fundamental design limitations each processor must support.
178 Then, it anZE}zes and compdres the differences of each processor design. Before examining the

179 processor design, Trwittbeappropriatetogive some insight T ents’ knowledge prior

1w to taking the CA course. Students ha\l‘é mathematical background, digital de d basic
s Verilog @l%@nihe—@l’—@deﬁgn as they have taken Programmmg (Java,
1z Pythop) C/C++), Discrete Mathematics, and Logic Design courses previously. Although their
rammmg abilities are suff1c1ent to carry out desktop simulator development, ”aistudents
they faced challenges during the design phase using HDL due
1es  to their lack of HDL programming experience.

186 In this phase of the project, students specified their instruction architecture, data-path,
1w control signals, supported instruction list, and arithmetic logic unit design. Students had two
18 weeks to come up with their architectural ideas. As Omer et al., 2021 suggest to instructors,
1o we attached significant importance to collaborative learning and therefore each group made a
190 presentation of
191 students discu

194 with-their-wealcones— **\ e
195 At the beginning€ourse, we planned to have an extra phase for the project regarding\he
1ss  physical implementation of the designs made by students. We believe that this phase Gould

198 university and its facilities were closed duringthe semester and this phase of the project had to

be cance ed m—t-hemdd'}evf“t‘hemsmr

202 out, students would be responsible to build their pyocessors using transistor-transist stor logic.
205 which meant they should have used various integrated circuits, timers, and breadboards. In
204 addition, students should have used memory componeqts to store instructions and data, and an
20 LCD screen to visualize registers. i
206 Since there are two different CPU architectures from\two different groups, seeetnicatar
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207 méf&éiﬁeléﬂﬁa&e-b&b&m;&hemMuSe and DoMe Architectures. Both architec-
208 tures used MIPS architecture m%—p%d—bu&t—{-hem*@eﬁmmm (MIPS,

20 2001).
a

20 3.1 Prerequisites of CPUs - /ﬂ.}\
A

an Since MIPS is a RISC type of archite€ture the students have limited instruction set, data and

22 instruction memory,gtchitecture typedand register count. Each proposed architecture must

23 support 18 predefined, instructions wi =bitg These instructions are specified

1w by the Jectu given to students before the project starts. Students have separatéﬂ\256-

C'”\:}\ 25 bytes, memoris for-pregram-counter. and data memoryte-st i i .
, ermore, they have eight 16-bit general purpose registers to-aceess-data-that the-CRPU-is—

eﬂﬁeﬁ-t-l-y—pfeeessi.n.grlsas.ﬂ.)ggach processor design must use a single cycle data-path and Von

; . Neumann architecture to avoid complexity. With these specified instructions and Hrmitations,

Y\"X’ - 219 usersofarchitectures would be capable of writing many small-scale programs. NS
220 The specifications of CPUs had to be carefully selected because eventually it is expected that
2z such a CPU is simple enough but allows students to see the general picture and_has the minimal
22> _ability to contain instructions of a generic processor, for instance, a 16-bit CPU. The reason\
223 m—bit CPU rather than an B=bit<ar_32-bit is that an 8-bit CPU design would Ny
224 be its easiness for a course prbject, but a 32-bit CPU destgn could not have been completed on (L
225 time due to project limitations. ‘ bt

\“Q fol T‘ C e |

g
226 3.2 MuSe Architecture\&he Processor Design Stage
2z Here all the key elements of*MuSe Architecture, including Multiplication Algorithm/Instruction
28 Set & Format, data-path, and Tastly ALU design are described. Students’ onstituted detailed
29 work on ALU design, data-path, and control signals for their architecture (additional details
20 are explained in the supplementary). The MuSe Architecture is designed in such a way that it
231 supports and conforms to all requirements mentioned in section 3.1-at the same time, taking
2z care of performance issues which are encountered in the DoMe ArcM. \)\}‘ - (k y&ﬂ”‘“

233 3.2.1 MuSe Architecture: The Multiplication Algorithm
24 Multiplication is one of the time-consuming instructions that is performed in the ALU. In
25 MuSe Architecture, designers used the multiplication algorithm proposed by Patterson and
< 2 Hennessy, 2016 to implement a multiplication method iteratively by using registers and adders
\&{ 2 as shown in Fig. 2. Since an iterative approach is not feasible for a single-cycle data-path, MuSe
C%")@{{, \-) 2 Architecture is designed with a multiplication unit in the ALU, that was composed of eight shift
Aty N :Y\ 23 registers and eight 8-bit adders.

V' * a0 3.2.2 MuSe Architecture: The Instruction Set and format
22 While designing a CPU, MuSe Architecture designers split instructions into types just like in
2«2 the MIPS architecture. In the MIPS architecture, instructions are split into three types R-type,
23 I-type, and J-type instructions. Each instruction type has different fields t i
24 (MIPS, 2001). These instructions are distinguished from each other by their operation code
25 (opycode) fields which means each instruction has a unique opycode value, except for R-type
2es  instructions. R-type instructions do not include a target address, branch displacement, or
2# immediate field. They have fields for three registers, function code, and shift amounts, ynlike
2 other instruction types. To increase furgctionality, MIPS architecture designers set the op‘s code
2 of each R-type instruction 0. Function Code\field is used to recogmize R-type instructions

oy

g, n?u:%\ o

. 251 In I-type instructions, bits used forI Function¢ode)are used forfmmediate value. This
\\SJ\' . . . . . .. e
- »s2  immediate value is used for the followmg\: i) a constant operand ii) a branch target offset ii1) a
\f\‘\\zsz memory operand displacement. i i SeTSTOT to Use a Tegister 107

24 ~velue. J-typeynstructions areforjumpimgrstroctions- Fhey change the flow of a program.

& 255 The instruttion format that the MuSe Architecture designers propose$,is shown in Table 1
E ’ 256 n supporting th performance. Yrs<rrtheMIRS

)S\'V\ 257 i Fetions #Hh-threetyme R

258 & J While deciding

to utilize the 3-bit opcode

M“"fg,

i\f» w'\?
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3
20 field as ALU operation code to reduce tkbdecoding complexity eftrrstruetion The idea is to
s first look at is_jump and is_imm fields and decode instruction accordingly. In the decoding

21 phase, they+sied-to choyse 3-bit opco@eﬁ%ﬂm*%}w Na
22 decrease time and hardware complexity to resolve which operation to select in “Rather, f,. 1 \
23 than distinguishing R-type instructiongfrom the others by using opcode, MuSe Architecture Ty
24 designers pmfeued.addie&extraﬁelds to determine the type of instruction called is_imm and (,{
] ¢ i / R-type instructions have three register values. Q,‘-?L
iZ€ an immediate value. This type of instruction does not have an R ‘”jt 3
27 field. Yet, they include a 5-bit immediate field for storing an immediate value. Because I-type
268 instructions use immediate values, is_imm field is always set to 1. %
N\

269 J-formatinstzuctionsaFe-uwsedfoljomp instructions =astructiensin-thiscategoshave no

20 Rd, Rs, and Rt fields. Instead, they include an 11-bit‘label Yield for storing the target address.
zn Because they are intended for jump, is_jump field is alway\set to 1. Stemek !

c:go\-fk.zl Ss &\ }\ 272 All types of instructions supported by MuSe Architectuke designers aré shown in supple- A

AU S A P 273 mentary. se— o - ~ 7 ¢

e A\ \e ¥ Sechhe /Q\yﬁrw ~. | fn?(
K A 274 3.2.3 MuSe Architecture: The ALU Design Prea ; 4 ""2
s

zs  The Arithmetic Logic Unit (ALU) is the core part of the CPU tHat performs all calculations.

1
276 MuSe Architecture handlesAdUr-and-its-operations-using two input ports eadted-imput A and “1%\
@& 77 inpat B}and an output port whichriscalled-output C a-s-seaa—i-n(Fig, 3) AbU-iécapeableof hamdling o i Cé\

zs  various-cateulations-and type calculation is determined by ALU conxol lines which are 3-bits )4(
m zs (FO, F1, F2) in length. These lines are controlled by the ALUOp contdpl signal introduced in :

20 datdpath and change whépever an upcoming instruction is decoded. Mdre details about MuSe I,L:g N

zs:  Architecture ALU capabilities can be found in supplementary. v

282 3.2.4 MuSe Architecture: The Data-path and Control Signals &P‘*\‘\, 3
283 Data\path is&rgiueeonnectﬁgm%mponenmmm&ﬁ%no
i\’\“f 284 tiomrat umitsof-preecessors such as ALU, adders, memory, registers, etc. Moreover, the data\path
which enable different units of CPU. For example, the memory read control
1s set to 1, and it allow§ us)to readyfrom the memory when the load word (lw) instruction
is called. While creating the data\path,’ uSe Architecture designers were inspired by the
5 original MIPS data-path, as shown in Fig. 4. In traditional MIPS architecture, there are eight
Lﬂ(\\(uL » 20 different control signals (MIPS, 2001). On the other hand, the design of duSe Architecture has
. - 20 11 different control signals in order to handle instructions. The additional tontrol signals in
<\\ (5-\ M) 2 addition to the ones in traditional MIPS architecture are System call (syscall), Juinp Register

b 22 (JumReg), and Shift Register (Shift Reg) control signals. In the supplementary, controlsigna
203 values for each instruction are shared for those who want to replicate MuSe Architecture. 41\‘

JescAey,

24 3.3 DoMe Arc;itecture: The Processor Design Stage
25 This section 4 the DoMe Architecturei&design\\and how it differs from the MuSe

206 Architecture. Unlike%e Architecture, DoMe Architecture focuses on the more instructiﬁgg

C;\V»"“ 57— capability. DoMe Arckitecture designers grefer to have more instructions than mandator
- instructions)such as diviSon to make their CP{J design more functional. However, this approach

299 ~@ﬁom thé\spirit of MIPS. On\he other hand, it increases the abilities of the
% processor with some perfor ce degradation Kv\ejl as allowing the students to explore the

301 diversity. ”\\q.,

3.3.1 DoMe Architecture: The Multiplication Algorithm

J Hiscuss the DoMe Architecture multiplication algorithm which is handled in the design
phase. After extensive research, DoMe Architecture designers decided to use the Wallace Tree
s multiplication method (Wallace, 1964). However, in the design phase presentation, their project
s co-advisor suggested using a different multiplication approach since implementing an 8-bit

302

4 \ D . 27 Wallace Tree multiplier is costly and hard to implement in a laboratory environment. Since
Ve~ e the implementation of an 8-bit Wallace Tree multiplier requires more than 100 gates, it would
S w9 be tough for students to implement it, Hence DoMe Architecture designers decided to use a

;0 multiplication algorithm suggested by t uSe Architecture in section 3.2.1.
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sn  3.3.2 DoMe Architecture: The Instruction Set and Format
sz While designing the CPU, DoMe Architecture designers were also inspired by traditional MIPS
a3 architecture just like MuSe Architecture, since the MIPS architecture js simple and easy to
s use (MIPS, 2001). Table 1 shows the instruction format of the DoMe Architecture. DoMe .
315 Architecturé\instruction format differs in certain ways from MuSe Architecture asgivenbelow } ‘L
s1s 1) DeMe-Arehiteeture’s instruction format uses a 5-bit function code. 2) has additionally a 1-bit /
/-—"317) control_bit. 3) does not have a register address for the destination register (Rd). 4) uses an 8-bit
sie immediate veduewhile(MuSe Architecture uses a 5-bit value) 5) does not allocate extra bits for A
/? & \’ \\55 sis isimm and is_jump fields fields. 6) does not use an extra type for jumping instructions.
L i 320 In R-type instruction format, the most significant 4-bits represent opcode,amé-it determingsa.
s2 the type of instruction. If it is an R-type instruction, then the CPU determines ipstruction x
322 according to the function code. Otherwise, it determines the instruction according to the
) 33 just like in the MIPS."Following T bit 1s for specifying the resulting registeg
Xt 32« specifying the source and target registerssSince the are eight general-purpose
beTepresented 1 3-bits. The least significant five bits are for function codesto determin

Ty~
é—*\"“‘fx b

sz there is an immediate field in I-type instruction format instead Msource register and function ) LU()":
s code fields. s

329 The DoMe Architecture shares commbn feature
s existence of function code. However, '§
sn ,inadequate to support more instructia’@n Tasingle opcode. Although this approach is not a
s32[ problem, to increase diversity in the pjojects the approach of the students is supported by the
- Q,(L/_;(jnstructor. Therefore, students proposg[reducing one of the register addresses in ipstruction for-
3¢ mat to gain more bits in the function code field. DoMe Architecture prefers using a pe
eev 35 resulting register among eight general-purpose registers instead of letting the user determine
33  the register. In other words, if a user wants to make an addition operation with the values of 1,
537 and r2 registers, and store the summation of these values in the 73 register, a user first should
s make an addition operation using 71 and r2. As a result of the addition operation, the CPU
539  stores the result in a default register called Rd. Eventually, the user needs to move the resulting
5\\& 30 value in Rd to the intended reﬁﬁ%&ﬁthermore, DoMe Architecture proposed another result
e s storage approach for users. According to this approach, a user will be able to store the result in
o B i sz the target register using the control_bit specified in Fig. 5 which helps the user to select one of
ss these storage approaches. If a user wants to store the result in the destination register, then the
sas  control_bit must be set to 1, otherwise 0. DoMe Architecture designers provide the “-¢” suffix to
34 their instruction set to distinguish where the result is stored. This issue only applies to R-type

34 instruction and danot support I-type instructions since I-type instructions use one register.
347 The way of thinking behind the lack of a J-type instruction set is that the instruction memory

s 1s limited to 256 Bytg and DoMe Architecture’s I-type format has its immediate part

s which makes them rfach any instruction in th ory. Furthermoré;having an
350 8-biffifhmediate part rather than 5-bit} helps users to make calculations with constani%w _
31 than 32 &asier. Morg detyils about instructions in DoMe Architecture can be found in the V1

L&'QV" »2 supplementary. ¢ e,

353 3.3.3 DoMe Architecture: The ALU Design %(\y
' 354 » DoMe Architecture is designed to support more instructions than MuSe Architecture. Therefore
__Sﬁgk\,@g 357 DoMe Architecture instructions contain division and exclusive or (xor) operations besides the
s other eight operations. Since it is not possible to represent 10 different operations with three
357 control lines, DoMe Architecture designers added one more control line (F3), as shown in Fig. 3
s to their design and left the rest of the six signals unused. More details regarding ALU operations
ﬂ\Xx.» , 35 and their corresponding control line values can be found in supplementary.

o

30 3.3.4 DoMe Architecture: The Data-path & Control Signals

ss1  In this section eview DoMe Architecture’s approach to designing a data-path and con-
w2 trol signals. As stated emskizrin section 3.2.4, there are eight different control signals in the
33 traditional MIPS architecture, and with MuSe Architecture this has increased to 11. On the
s« other hand, DoMe Architecture decreased control signals to seven, by eliminating Register

7126
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%s Destination (RegDst) and Memory to Register (MemtoReg) control signals. Students used an
s extra control signal, which is called jump, to adjust jumping instructions. All unit and control
%7 signal connections in MIPS data-path are revised accordingly to support DoMe architecture
ss and the resulting data-path is depicted in Fig. 6.

369 More about control signal values to replicate DoMe Architecture are provided in the supple-

370 t .
mentary. \&E&Q’T.
= 4 THE SIMULATOR 3

w2 CA s one of the complex courses that is enriched by topids from other fields of computer science,
73 such as operating systems, programming languages, etc {Leibovitch and Levin, 2011). To make
w4 sure students get the most benefit, this course is often cohducted with lab sections where they
s can gain practical experience (Nikolic et al., 2009). Mot of the activities performed in CA
7 course lab can be easily completed using simulators. Thats\whi simulators are one of the best
practices teaching CA coursete-epersen (Burch, 2002; Djordjevic et al., 2005; Vollmar and
son, 2006). Therefore, at different stages of the project, students are asked to create and
ws  present their own simulators which must support the following features: 1) a section in which
380 the user can give inpput 2) ability to parse M assembly code into machine code eensistent
ign 3) ability to visualize current values of registers and memory Cwlls 4)
interpret code either step by step or fully automatlcally 5) students are free to use
ogramming languages and tools they want.i~ “¥w Stk 1‘4'*‘14 e
0 et al., 2014 propose visualization of the MIPS data-path, MIPS X-Ray, rather than
ating the full system. However, since students will experience this in the HDL de51gn
Phase, they are expected to create a simulator i
;7 depietedin Fig. 7 (Wikipedia Contributors, 2022).

e the simulator and it is expected to cgmprise 4 main units..Instruction parser ge
:e  assembly instructions supported by “Students’ architecture fro user via a user interface.
390 Aftz:}qy@w instruction parser forwards the output to the contrd anager The control

1 mapager manages the ALU manager and register & memory manager. It also vxdes the flow

etween these managers~ALU manager is responsible from perform ari thmetic ¢ ulatlons
On the other hand, the regist manager stores the contentlsr&{eglsters and m
s« and delivers thds§ data.to the user interface. Do

rface controls and visualizes

393

305 Before the design phase, students were requested to develop a MIPS sxmulator that runs
»s with 32-bit MIPS instructions and supports all features of the original MIPS processor (MIPS,
37 2001). This simulator helped students to understand the MIPS architecture better and have a
»s  programming background for future simulators. There are two primary reasons for assigning
s90  this task: a) it is planned to let students develop desktop simulators for their architectures from
«wo this MIPS simulator. Hence students have more time in the design and verification phase b)
a1 MIPS is an ea
w02 _scratch for students:
403 In the following section,
204 on simulator design are analyzed.

dents had three weeks to to develop a simulator for their archltectures
ences between simulators and the effect of public

.S % \“V\xw-w» x\\ (W“ %5\3
a5 4.1 MuSe Architecture: The Simulator
w0s MuSe Architecture designers used Java programming language to develop the simulator an \
407 JavaFX for the graphlcal user interface. The Pphain simulator shows data memory Trra-single
address and value in that address in binary format. Fhesedsan extra -
wo  seetiem-for instruction memory whieh-s-similar-to-date-memonyto visualizethe machine code.
a0 In the register visualization part, the simulator shows the current reglster names and their
an values in a signed decimal format. Additionally, MuSe Architecture designers arranged a section
a2 to display the statu§ of control signals in.urrent instructiony. When an instruction is being
a3 executed, the necessary control signals are highlighted. Furthermore, the current program
ounter and an LC 'splay showing opcode, juthp, and immediate value of current instruction

@Flg 8). MyfSe
existence ¢f LCD
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a7 visualized, §tudents preferred to design the LCD Display section as a software tool showing

as  details about'instruction currently being executed in their simulator. .

75 ~MuSe simulator is composed of several classes which are ALU, Controller Unit, In%ructions,
A

0 Instruction Memory, Data Memory, Register File, Program Counter, and Processor. InALU class,
az  designers preferred to use simple operators for calculations rather than implementing logic
«22  circuits such as full adders and multiplication logic. The Controller Unit class is responsib
«3 for assigning control signals of each instruction by comparing opcodes, is_jump, and is_imm
42 values. MuSe simulator is driven by three particular instruction types which are R-type, I-type,
a5 and J-type instructions. Since all these instructions share common attributes such as opcode,
a2 registers, etc., the MuSe simulator extends these instructions from an abstract class called
a7 Instruction. Instruction Memory is composed of an array of instructions and initialized as the
«s program starts. Data Memory stores a two-dimensional byte array with a stack pointer. All
4z necessary read and write operations in memory are handled in this class. Register File class
w0 stores a list of registers with eight pre-defined registers. Register read and write operations are
«n  handled in this class according to control signals. Program Counter is such 4 5
42 stores only an integer value for the program counter value and is responsible for-manipfilating
a3 this value. The Processor class uses an object of previously mentioned classes and is responsible
s« for managing and organizing the workflow of these modules HrertraTony. :gprogram start
43 instruction memory is loaded and the processor starts to fetch instructions in a loop. Since

Manuscript to be reviewed

a6 there is no pipeline implementation in MuSe architecture, unless current i tion is operated~._ 7

s successfully, the simulator does not progress to the next instruction. The program is terminated
all instructions are executed or the simulator encotnters an error. Students and tutors

a5 could Tasily analyze the architecture ofxiesign using the simulator and can change as they

440 WlSh[1] ‘“‘J/

441 Lmseetieﬂ-’:,.it—i-s—mantieaed—t-hatgach student group makes a presentation that also informs

«:2 other groups about their project. These presentations contributed to MuSe Architecture in,

sz simulator design as well. While creating the MIPS Simulator swhich- i i i

s 4-MuaSe Architecture designers did not use control signals and LCD display section in their

ass simulator. They enhanced their MIPS simulator by adding new features while converting it to a

s simulator that supports their architecture.

5N NS
47 4.2 DoMe Architectury; The Simulator
«s  Although MuSe Architecture designers did an excellent job in creating a plain graphical user

) CE{L}‘j

s interface, DoMe Simulator focused more on the representation of data in both memory cellsand KT

0 registers rather than creating a plain interface, which can be seen in Fig. 9. DoMe Simulator

rogramming Tanguage fer-general-architeeture and wsedPyQt5 for the graphical
s user interface. The most significant advantage of the DoMe Simulator is the visualization of
3 both memory and stack. Users can examine and visualize changes in both the memory and
w4 stack at the same time. Furthermore, the representation of the memory cells in the DoMe
sss  Simulator is not only in binary form but also in decimal format. Also, DoMe Architecture
sss designers preferred more than one way to represent data in the registers. The data is visualized
57 in hexadecimal, si irtteger, and unsigned integer forms, making it easier to analyze. On the
ass  other ; DoMe Simulator lacks visualization of control signals and the LCD display section

“mentioned in MuSe Architecture Simulator in the previous section.

460 DoMe Simulator has a bunch of classes, some of which are similar to the ones used in the
41 MuSe simulator. DoMe Simulator uses the following classes: Registers, Instructions, Data
w2 Memory, Instruction Memory, Definitions, Instruction Functions, Assembler, and Processor.
w3 Registers, Instructions, Data Memory, Instruction Memory, and Processor. These classes have
s+ been designed with the same approach used in MuSe Simulator which results in that they have
w5 the same function. Instructions are stored in an array and fetched by the Processor class in a
s loop accordingly. Registers are also stored in an array and are initialized here. Data Memory
«7 is responsible for memory operations and memory in this class is stored in an array as well.
s Unlike MuSe Simulator, DoMe Simulator does not have an ALU class. Instead of using a class
s that simulates the ALU in a datalpath, they preferred to use stch a class, Instruction Functions,
w0 that defines a function for each'instruction operation and creates a link between function

[1] Ay
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«n  and instruction. The simulator directly acce\ses these function\ and executes the necessary

a2 operation. Assembler class is a variant of Coltrol Unit class in MuSe simulator. It assigns -
ez controltbits, opcodes, registers, and other values. Definitions class is a kisd-of look-up table that
Spie-defines the propepties ofgach instruction. It is used by the Assembler class to set ins
attributes”Overall, although DoMe Simulator does not implement éxact componefts imrthrefr

. 476 dﬂu:\p-a‘rff@are aware of this part of the project focuses on more~apability and workflow ;

a7 of their architeure. Students and instructors could is simulator by not only’using)

s and replicating th&gimulator but also contributing to this open-source project by adding new @

o9 functionalities.[!] -

@ 5 VERIFYING THE CPU DESIGN USING A HARDWARE DESCRIPTION LAN-

481 GUAGE » \[:Jﬁ“" %'yfh 4& Weollin
482 Hp-&niél—ﬁew,Students learned MCA?s\designed and }?ﬂginstructionsb‘e handled ically.
@3 Atthis-peint, Students have completed the processor design with the given ISA including
s+ the CPU, ALU, instruction format, and data\path. hrihe-naxtst-ep’,‘t’he simulator willbeused vgay WS
4«5 to demonstrate the execution of the code. Before-implementing-the-design-in-a_laborator

3 . - - - pyeypeyes
A_De QWdre 1evera a arawdrc T PT1O a

DL poject

487 (fI‘B{zj\.’SU, studentsfocus Toreon hardware Prﬁﬁces. Students v
ing their architecture. at-5im O—ensy T, ,
: : : ¥
-‘However, students are free to use some conveniences provided by .

ions | This phase of the project lasted four weeks whichis thetomgest S’}\
phase because studen DL background was at the elementary level and-theyneeded-tinme L‘L;}

— w2 te-practice-as-mentioned-n-section3» In Mm, groups pa-e-femd.to.use(-;k ‘
ot w3 “thg Verilog hardware description language and implemented their HDTeode § ilinx ISE

e w0+ Design Suite development environment (Xilinx, 2007). The Xilinx ISE Design St ovides e
a5 users with a simulation application which is called ISim. Users can examine their desig )
s step by step and module by module in ISim. Although Xilinx provides a new development \\"'NM

7t & ruTrate=staaen -Gata—Pa o= et

s environment called Vivado and no longer supports ISE Design Suite, ISE Design Suite

-requires fewer System Requirements a
e /::MD ign-Suite instead-of- Vivado-There-is-no-ISE-project-template-giverrtostudents-and-they-are

e S . - . |
s01 Students-are-asked-to-implement multiplication operation ifrtheir €PY-design. There are

. w02 —different-methods and ways to implement multiplication operand, especially while implenrent-

so3 “imrg-in-Verileg. Both groups preferred to use the multiplication method proposed by Patterson

s« and Hennessy, 2016 which deals with negative values b converting the negative values to

sos positive and deciding the sign bit at the end H'Yﬁ'rvwn‘héig. 2 Since students make Verilog NoT

sec implementation for validating the hardware design, MuSe Architecture designers implemented ‘

s this multiplication method in Verilog implementation part as well. Hewever; DoMe Architecture

ss designers chose to implement this instruction using the “*” operand in Verilog implementation

so  to avoid potential hazards during the simulation.

cture are described.
s 5.1 MuSe Architecture: The Verilog Design
=5 Verilog design of MuSe Architecture shown in Fig. 1Q utilizes eight different Verilog modules:
’ s6 ) Instruction Memory module containing instructions fed by a user in binary format. The
W s module takes the program counter as the input and ret\rns the instruction which is going to
sis  be executed. b) Data Memory module helps us to contrd] data in the memory. This module

&\ (¥ s takes data, addresses, and some control signals as input and returns data read from memory.
sz ¢) Register File module contains registers, and users can pe{form changes on registers using

e \S

% ’7’ sz2 this module. d) ALU module performs almost all operations §uch as summation, subtraction,

W,},WW) s22 multiplication, address calculation, etc. As described in the d ta-path, the ALU module takes

S""YY . =3 two source inputsand one ALU control lines. According to these{nputs, the ALU module carries
— T
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(>Y s+ out necessary calculations and returns an output value. e) Control Unit module takes opcode,

j s is_jump, is_.imm values as input, and it updates all control signals accordingly. f) The processor

? Y7 V'S / sz module is the main module that calls other modules and makes them work in harmony. g) The
f\‘6~ s2 LCD module is a module that helps users to examine the content of registers and memory cells.

1\ &6 .
BLk DTy Seu z&\s\ SRR =

v ‘\ s 5.2 DoMe Architecture: The Verilog Design (/
() s DoMe Architecture’s Verilog design shown in Fig. 11 utilizes more Verilog modules than MuSe
v @ s Architecture. The followin& are modules that DoMe Architecture designers created for their
. s HDL project: a) Instruction Memory module contains instructions that are fed by a user in
\/75\.\,%‘; ‘%R«w s binary format. The module takes the program cour@s input and returns the instruction which

is going to be executed. b) GPRs module describes eight general-purpose registers and stores the
values. This module helps us to read and write in registers. c) Data Memory module contains an 7
array with a length of 256 where each element represents 1-byte of data just like in the simulator. i
As in the GPRs module, the Data Memory module provides us with reaching and changing the
content of given memory cells. d) ALU is a module where all the operations are done, such as
summation, subtraction, multiplication, etc. As described in the data-path, the ALU module

takes two source inputs and one ALU control line array. According to these inputs, the ALU
\r\/:\)t{k s0  module carries out the necessary calculations and returns an output value. e) ALU Control
& ) s« module determines the ALU Control Lines values for the specified instruction. It uses opcode,
)( s function code, and ALU operation code to decode ALU control lines. f) Control Unit updates
Q\A\—w\v (% s<s the control signals and ALU operation codes for every instruction according to their opcode and
\ ‘ s« function code. The updated control signals are used in other modules like Data Memory, GPRs,
Y~ § s¢s etc. g) Data-path unit manages the program counter’s updating process and in-out operations
s« from either memory or register. This module is a unit where almost all process is done. h) RISC
~ Neaov s 16-Bit module is a container module to run the control unit module and data-path unit module

See- Sy . s« together. These modules work simultaneously under the control of the RISC 16-Bit module.

[ OM‘*“"\'\,“V 549 Students shared their Verilog codes on GitHub.l2]

L OWT of 10 MAX - Q\r\w\&nk

s 6 RESULTS

ssi To achieve quantitative resulks about students’ experiences and thoughts during the project,
ss2 21 students answer a ten-poinj Likert scale questionnaire (Likert, 1 32) whose questions and
ss3 average results are shown in Tabje 2, respectively. Students took this duestionnaire twice, one at
s the beginning and the other at the end of the semester. Students are“fed.with random questions
Q i sss to avoid order effects bias. Furthermore, students had afair Aot teftime HrrtTisTaSe; one
&f‘f\’\;\ 5 sss  hour, to complete the questionnaite and avoid any procedural bias. Lastly, questions are made \_
, \ s as clear as possible and neutral to favoid leading question bias.
o~ \{3 @R\;\b\};& 55 The results of the questionnaife show that students had a hardware design knowledge of
*‘ e ) ss» 4.33 points on average and after taking the CA course with the approach presented in the paper; \/
Tt # seo this knowledge has risen to 7 pofnts. Moreover, students state that if they were exposed to
— s an efdinary recitation or documents and tools shared online rather than a 3-p hased project
N o1 s approach,.their hardware design knowledge would be limited oi-a Q average,
w s3 respectively. Furthermore, Tesults indicate-that-the-hands-on-practices and impleenting
& s« design from the scratch hav€§ignificantly)increased the knowledge obtained in this course.
ses  Howgver, teamworkhad less effect om ts” performance compared to hands-on practiges P‘
chitegture from the scratch. Yhe reason for this might be that students couldy e\%
se7 pgssess prior knowlelge before the course has kegun.
e of the questiony in the questionnaire 1 about future job fialds. Results show that
: . (s”fﬁden would want to work with “low-level systems” before they took the CA course witha
(}w%\\, %@M, . i

<

o
%

L)

. However, after they~ave taken the CA co\yrse, their interest indreased up to 5 points &

e

e which means a 25% indgase in general. Baged on this re it §an be assumed that o "y L
i ing jobs'y pe {riven not only by /ﬁd
e,

i¢s, but also due to their ehjoyment during\the course: 1,
G‘v(j

lysis of the questionnaire,students and intructors had a one\hour meeting to b

worth noting:
N 57 a) Implementing theWIIPS simulator before the CP{ design\phase made studdnts confident
[ MuSe-Architeetus

aXaElab
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and aware of what they are doing in the CPU design phase. b) Since the project includes bot\’\ﬂ)’x
programming and electronic skills, students preferred to perform their studies as a gro
rather than work individually. c) Students state that having discussions and presentation
each phase of the project made them better understand the topics, although this appré
incurred more workload for them during the studies. d) Although students could not ffiish the
physical implementation part due to COVID-19 conditions, they believe that implementing the
designs in an FPGA board instead of using ICs and breadboards would4 them learn about,l"
embedded systems. Furthermore, since university laboratories have enough FPGA boards for

m

PrOj

618
619 The-stady-showed-that studentsinvelved-mriardware design and implementation have a very

ssembly languagé, as they simulate the instructions ,\)Q —

students, the implementation part would be cost-free compared to TTL implementation.
tudents claim that they made thes ]TK

»

7 DISCUSSION \ers

The CA course has extensive course content sych that it is hard to complete all details and fun-

>

damentals of the course in a duration of 14 weeks. While the 3~phase\q processor design project \\\SEV)

covers the basics and fundamentals of course content, it also transformed the information that
could be very abstract in students’ minds into a concrete experience thanks to the discussions,
peer reviews, presentations, and interviews used during the project. ;
T i ipe\line i scope can be extended or
limited by instructors according to students’ capabilities and backgrounds. It would be better if
students have intermediate-level programming, logic design, and HDL development skills to
achieve the most benefit.

The result of the questionnaire conducted with students after the project is consistent with

597,
/T;Grevious statements and related works. Students mainly point out the importance of simulator

and processor design phases. Simulators contributed to students in terms of theoretical knowl-
edge and the processor design phase forced them to question and address the abilities of main :
units in Von Neumann architecture. HDL implementation gai

different perspective to i:
students but it is important to remark that there is a comprehensive effort o ents. However,

as students state in the questionnaire, the workload of this approac migh

have negative effects on the learning process in some snecial situations.
Previous studies generally built their research questi

performance CPU or designing CPUs and tools for education.

surveys for different courses including CA to evaluate students’ opinions a

‘ments to chronic problems. These surveys shed light on the need for practica
theoretical courses Howev d course professor could take this approach, includ-
ing documents and videos ch are publicly available, and use it in their class. Furt

While we tried to fill the gap in Tmproving\eaching CA course, the present study lacks
physical implementation phase~The physical implementation of design in the laboratory is one
efded asks that give '§¢§1dents a chance to evaluate their design

performance statistically. AlthougQ this was the fina{ task of the project, students could not

NS by considering extra workload.

good understanding of the fundamentals o
required for assembly language, which impxoves their ability to understand hardware and
i to work in buNding complex computational
systems. Furthermoreffesults staty that studying &A course has a dgnificant effect on students’
choices in their careers. -

4

8 CONCLUSION & FUTURE WORK

Recent developments in various computer science fields attract students and make them work
on more programming and related topics, although in these fields people usually get paid
less compared to hardware engineers. Furthermore, several courses that are hard to teach
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s A SUPPLEMENTARY

ess Al MuSe Architecture

7 MuSe Architecture instructions whose format is given in Table 1 are shown in Table 3 with a
s corresponding explanation. MuSe Architecture designers have an instruction called syscall,
sss which was not mandatory, for enabling programmers to display the contents of registers on
o the LCD screen when it was called. It does not have an effect on the simulator but it would be
ser useful in physical implementation. jr and syscall instructions are exceptions that do not utilize
s> target and destination registers, but they are categorized as R-Format due to their use of source
663 registers

664 Table 4 shows mathematical operations supported by MuSe Architecture and corresponding
sss control line values. There are eight different operations represented by three different control
sss lines in MuSe Architecture ALU design.

667 Control signal values for each instruction in MuSe Architecture are provided in Table 5 to
ss help researchers to replicate the MuSe Architecture design.

ees A.2 DoMe Architecture

v Instructions in DoMe architecture are shown in Table 3 with usage in desktop simulators. It
sn  remarks that suffix “-c” can be used only in R-type instructions. Furthermore, the ALU operation
o7z list for DoMe Architecture shown in Table 4 contains more operation and ALU control lines (F3)
7 than the one in MuSe Architecture’s ALU Design.

674 Just like MuSe Architecture, control signal values used in DoMe Architecture are shared in
675 Table 6.
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Table 1. Instruction Format of each Architecture

_
|
_
g
_
_
_
|
|
_

| | Field | opcode | is_jump | isimm | rs | 1t | rd | unsued | Total |
| 5P B | s | 1 | 3 [313] 3 | 2 [ 16 |
| | Field | opcode | is_jump | issimm | rs | rt | immediate _ | Total |
MuSe Architecture _ I-Type | Bit | 3 _ 1 | 1 | 3 | 3] 5 | 16 |
| | Field | opcode | isjump | isimm | label | Total |
PP B | 3 | 1 | 1 _ 11 | 16 |
_ | Field | opcode | control_bit | rt |rs| function code | Total |
5P B | 4 | 1 | 3 | 3| 5 | 16 |
DoMe Architecture | | Field | opcode | control_bit | ot | immediate | Total _
| P i | e | 1 | 3 8 | 16 |

90UBI0S Jeindwo) ruesd
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Table 3. Instruction List (*Not a MUST instruction)

| | | 000 | 0 | 0 |rs|rt]|rd|unused | ADD
| | | oo1 | 0 | 0 ]rs|rt|rd|unused | SUB
| | | 100 | 0 | 0 |rs|rt|rd|unused | MUL
| | | 010 | 0 | O rs|rt|rd|unused | AND
| | | o011 | 0 | O |rs|rt|rd| unused | OR
R-Type
| | | 101 | 0 | 0 ]rs|rt]|rd|unused | SLL
| | | 110 | 0 | O ]rs|rt|rd|unused | SRL
| | | 101 | 1 | 0 |rs|rt]|rd| unused | *SYSCALL
| | | 111 | 0 | 0 rs|rt|rd|unused | SLT
, MuSe Architecture I | 0ol l ! I g I | I rd I unused , IR
| [ | 101 | 0 | 1 [rs|rt| imm[40] | LUI
| | | 111 | 0 | 1 |rs|rt| imm[40] | SLTI
| | | 100 | 0 | 1 ]rs|rt| imm[40] | MULI
y | IType | oor | 0 | 1 ]rs|rt| imm[40] | BEQ
| | | o011 | 0 | 1 ]rs|rt] imm[40] | BNE
| | | 000 | 0 | 1 |rs|rt| imm[40] | sSw
| | | 010 | 0 | 1 ]rs|rt| imm[40] | 1w
| | | 000 | 1 | 0| imm([10:0] | JAL
[ | TIPe oo | 1 [0 | imm(10:0] |
| | | 1000 | controlbit | rt | rs | 00010 | AND(C)
| | | 1000 | controlbit | rt | rs | 01000 | OR(C)
} | | 1000 | controlbit | rt | rs | 00000 | ADD(C)
| | | 1000 | controlbit | rt | rs | 01101 | SUB(C)
[ | | 1000 | controlbit | rt | rs | 01010 | SLT(C)
| | | 1000 | controlbit | rt | rs | 00110 | SRL(C)
| ; | 1000 | controlbit | rt | rs | 00101 | MUL(C)
| | P 77000 | controlbit | 1t | 15 | 01011 | SLL(C)
| ] | 1000 | control bit | rt | rs | 11010 | *SLLV(C)
| | | 1000 | controlbit | rt | rs | 11011 | *XOR(C)
| | | 1000 | controlbit | rt | rs | 10110 | *SRLV(C)
| | | 1000 | controlbit | rt | rs | 10111 | *SRAV(C)
| | | 1000 | controlbit | rt | rs | 11111 | *DIV(C)
| DoMe Architecture | | 1110 | 1 | rt | imm(7:0] f LUI
| | | 1100 | 1 | rt | imm([7:0] |  SLTI
{ | | 1101 | 1 | rt | imm(7:0] |  MULI
| | | 0000 | 0 | rt | imm(7:0] | BEQ
| | | 0000 | 1 | rt | imm(7:0] | BNE
| | | 1111 | 1 | rt | imm(7:0] | W
| | I-Type | 0011 | 1 | ot | imm(7:0] | sw
| | | 0001 | 0 | rt | imm(7:0] | J
| | | 0001 | 1 | rt | imm(7:0] | IR
| | | 1001 | 1 | rt | imm(7:0] | JAL
Peer] Comput. Sci. reViewing PDF | (C5-2020:10:54761 112 b5 Aug2023) | ™t | imm(7:0] | "SRA 21/26
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Table 4. Operation Control Values

Group Name

| Operation | Operation Control

| |
| | add [ofojof - |
| | sub jojoj1| - |
| | and [of1fo] - |
| | or jof1fr] - |
]MuSe Architecture lmul ]1[0 I 0] - |
| | sl jrfofr] - |
| | stl [1f1fof - |
l | slt RERUEN
I | add |ojojo] o |
| | sub Jojojo] 1 |
| | and fojoj1] o |
| | or [ofjofr] 1 |
| | mul jof1]o] o |
| DoMe Architecture | sl [0]1]0] 1 |
I | sl jof1f1] o |
| | slt Jof1]1] 1 |
] | div [1]o]o| o |
l [xor ’1|0|0’ 1 '
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