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ABSTRACT
Fault diagnosis of rolling bearings is a critical task, and in previous research,
convolutional neural networks (CNN) have been used to process vibration signals
and perform fault diagnosis. However, traditional CNN models have certain
limitations in terms of accuracy. To improve accuracy, we propose a method that
combines the Gramian angular difference field (GADF) with residual networks
(ResNet) and embeds frequency channel attention module (Fca) in the ResNet to
diagnose rolling bearing fault. Firstly, we used GADF to convert the signals into RGB
three-channel fault images during data preprocessing. Secondly, to further enhance
the performance of the model, on the foundation of the ResNet we embedded the
frequency channel attention module with discrete cosine transform (DCT) to form
Fca, to effectively explores the channel information of fault images and identifies the
corresponding fault characteristics. Finally, the experiment validated that the
accuracy of the new model reaches 99.3% and the accuracy reaches 98.6% even under
an unbalanced data set, which significantly improves the accuracy of fault diagnosis
and the generalization of the model.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Neural Networks
Keywords Fault diagnosis, Rolling bearings, Gramian Angular Difference Field, Channel attention
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INTRODUCTION
Rolling bearings, as typical components of rotating machinery, play an indispensable role
in practical equipment and production. Because they normally work under complex
working conditions such as load variations, they are prone to faults, resulting in costly
downtime and catastrophic consequences. To ensure the normal operation of mechanical
equipment, real-time monitoring (Zhang et al., 2019) of vibration signals generated by
rotating machinery is necessary.

CNN is a type of deep learning network that plays a crucial role in the field of fault
diagnosis by utilizing its unique convolutional layers to extract distinct features. In the
study conducted by Chen, Zhang & Gao (2021), they employed a one-dimensional
convolutional neural network (1D-CNN) and a long short-term memory network (LSTM)
to process signals, and achieved excellent classification results through training and
classification tasks. Wang et al. (2020) first de-noised the signal, then input the processed
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signal into CNN for automatic feature extraction, and finally performed feature
partitioning and classification. However, these methods have limitations in solely
deepening the network layers for feature extraction, as they may suffer from degradation
issues. To address this, the ResNet was introduced. Kong & Wang (2021) introduced the
residual structure into the Inception network to form a parallel structure, to alleviate the
degradation problem caused by network deepening, which fully demonstrated the
performance of fault classification. Che et al. (2021) proposed a novel approach that utilizes
a deep residual contraction network to handle multiple faults and long-term sequences of
vibration signals in rolling bearing systems. This method demonstrates excellent
robustness in dealing with noisy samples and maintains a high accuracy in fault diagnosis.

The emergence of attention mechanisms further enhances the feature extraction
capability of residual networks. Xie, Wang & Shi (2023) proposed a diagnostic method that
integrates multi-scale convolution and attention mechanisms, which can maintain a high
diagnostic accuracy even under variable load and noise interference conditions. Li, Wang
& Xie (2023) introduced the Convolutional Block Attention Module (CBAM) into residual
networks, of which the result shows that this method has a simple structure, easy to
implement, and can effectively extract features. However, such methods only utilize the
original signals as inputs, which may lead to incomplete feature extraction. Therefore, Zhu
et al. (2022) proposed a novel approach where they transformed a series of fault signals
into two-dimensional gray-scale images using wavelet transform. And then they feed these
images into a residual attention network for classification. This network can automatically
learn and highlight the key features in image input, so as to improve the accuracy
classification. On the other side, Qiu, Tao & Cheng (2022) employed a different approach.
First, they transformed the vibration signals of rolling bearings into two-dimensional
frequency domain feature gray-scale images using fast Fourier transform. Then they
utilized an auxiliary classifier generative adversarial network (ACGAN) to classify these
images. Research results indicate that using two-dimensional feature images as input is
more suitable for the recognition task of CNN.

The fault diagnosis method proposed in this article fully utilizes the three-channel
encoded images of the Gramian angular difference field (GADF) and designs a residual
network model with an embedded frequency channel attention module. Combining the
advantages of both, can fully exploit fault information and improve diagnostic accuracy.
Firstly, the signal is transformed into a two-dimensional image by using GADF encoding.
Secondly, it is fed into the Fca-ResNet model for fault classification. Finally, through
validation with bearing data from the Western Reserve University, it shows that this
method performs best, compared with different models with a sufficient amount of
balanced samples. Even under imbalanced data samples, this model still demonstrates
excellent generalization capabilities.

GRAMIAN ANGULAR DIFFERENCE FIELD
GADF is an encoding method that can transform one-dimensional signals into RGB three-
channel images (Wang & Oates, 2015). This encoding method generates three channels
during the data preprocessing stage, aligning with the characteristic of Fca-ResNet’s
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emphasis on channel information. When performing fault diagnosis, we aim to extract
more useful information. GADF, while generating two-dimensional images, also preserves
temporal information. Therefore, we choose to use GADF as the encoding method.

Normalize the one-dimensional data by rearranging the measured values
X ¼ fx1; x2;…; xng within the interval ½�1; 1�.

�xi�1 ¼
xi �maxðXÞ þ ðxi �minðXÞð Þ

maxðXÞ �minðXÞ (1)

The rearranged time series is denoted as �X. The numerical values are encoded as angular
cosine and displayed in polar coordinates.

fi ¼ arccosð�xiÞ; �1 � �xi � 1; �xi 2 �X

ri ¼ ti
N
; ti 2 N

(
(2)

The formula contains a constant N used to regulate the span and ti represents the
radius. In order to retain temporal information, the values corresponding to time are
distributed at certain angles on the span circle. GADF constructs a new feature
representation by calculating the angular differences between different time points in a
time series. These angular differences can be used to represent the dynamic changes in the
time series data. Mapping these angle differences onto a circle can enable time information
to be encoded in a more intuitive way, as the circular structure can effectively represent
periodic changes and trends. Consequently, even with reduced data dimensions, GADF
can still preserve key dynamic features within the time series.

After converting to a polar coordinate system, taking into account the triangular
differences between each point, the correlation within different time intervals is
represented using the angle perspective method. Therefore, the definition of GADF is as
follows.

GADF ¼ ½sinðfi � fjÞ�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I � �X02

q
� �X � �X0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
I � �X2

p (3)

In the above equation, I represents a unit row vector, while �X and �X0 are two distinct
row vectors.

Figure 1 (GADF encoding process) illustrates the encoding process of GADF. As we can
see that the encoding follows the trend of the time-series signal, moving from the top left to
the bottom right. This method allows the changes along the time axis to be naturally
mapped onto the encoded representation, thereby facilitating subsequent data analysis and
model training. Moreover, it can retain information in the temporal dimension. When the
one-dimensional vibration signal fluctuates, the corresponding GADF encoding image will
show prominent cross patterns, and the larger the fluctuation amplitude, the more obvious
the cross is. Therefore, GADF images can reflect impulsive signals and capture the fault
characteristics of the vibration process.
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RESIDUAL STRUCTURE
The most commonly used method for traditional CNN models to achieve stronger feature
extraction capabilities was to increase the depth of the model. However, when the model’s
depth reaches a certain level, further increasing the number of layers can lead to a decrease
in accuracy, resulting in a phenomenon known as model degradation. The introduction of
residual networks has largely addressed this problem (He et al., 2016). By using residual
blocks, the depth of the model can reach over 1,000 layers without experiencing model
degradation.

The basic principle of residual networks is to use a shortcut connection channel between
convolutional layers, which allows the effective features extracted from the previous layer
to be directly transmitted to the subsequent layers through this channel. This approach
prevents the convolutional layers from redundantly extracting the features already
captured by the previous layers. After passing through the shortcut channel x, the features
obtained from the main channel FðxÞ are fused with the features from the shortcut
connection, to gain the output features HðxÞ of the residual unit.
HðxÞ ¼ FðxÞ þ x (4)

This structure effectively reduces the impact of poorly extracted features from the upper
layers on the subsequent convolutional layers, thereby reducing the likelihood of the model
getting trapped in local optima during training. The model structure is illustrated in Fig. 2
(Residual connections).

FREQUENCY CHANNEL ATTENTION MODEL
The channel attention model enhances the accuracy of classification tasks by adaptively
focusing on useful channel information. The introduction of this model enables neural
networks to better comprehend and leverage crucial features within the input data, so as to
improve performance across various application domains. Qin, Zhang & Wu (2021)
utilized the DCT from the signal processing field and proposed a multi-spectral attention
module. This method allows for better aggregation of frequency energy. And the principle
of this method aligns with the fundamental concept of the channel attention model.
Therefore, incorporating it into the channel attention model is a highly effective attempt.
This article uses 2D DCT, and the working principle is briefly explained as below.

Figure 1 GADF encoding process. Full-size DOI: 10.7717/peerj-cs.1807/fig-1
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The basic principle of 2D-DCT is defined as follows.

f 2dh;w ¼
XH�1

i¼0

XW�1

j¼0

x2di;j cos
ph
H

iþ 1
2

� �� �
cos

pw
W

jþ 1
2

� �� �
(5)

In the equation, f represents the spectrum of the DCT, x denotes the input, H refers to
the height of the feature map, and W represents the width of the feature map.

As depicted in Fig. 3 (Fca module), let X represent the input feature map, and C denote
the number of channels. Divide the channels into n groups, with each group containing C0

channels.

C0 ¼ C
n

(6)

In order to simplify the equation, the symbol B is used to represent the basic form of the
2D-DCT in Eq. (6).

Bi;j
h;w ¼ cos

ph
H

iþ 1
2

� �� �
cos

pw
W

jþ 1
2

� �� �
(7)

Figure 2 Residual connections. Full-size DOI: 10.7717/peerj-cs.1807/fig-2
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The parameter u; v½ � represents the allocated frequency components for each group,
and these parameters are pre-defined. The basic form of the multi-spectral attention
module is a C0 dimensional vector denoted as Freqi.

Freqi ¼
XH�1

h¼0

XW�1

w¼0

Xi
:;h;wB

u;v
h;w (8)

The overall pre-processing vector Freq is formed by concatenating these basic vectors
together.

Freq ¼ cat Freq0; Freq1;…; Freqn�1
� �� �

(9)

The above describes the squeezing operation. It is precisely due to the multi-spectral
attention module enables Fca to obtain more comprehensive channel information during
the squeezing phase.

During the excitation phase, in order to reduce computational complexity, compression
is performed through a fully connected layer. After activation by the ReLU function, it is
passed through another fully connected layer and activated by the Sigmoid function to
obtain the S:

S ¼ Fex Z;Wð Þ ¼ r g Z;Wð Þð Þ ¼ r W2d W1Zð Þð Þ (10)

In the equation, Fex represents the activation of the Sigmoid function, serving as the
excitation operation. W1 denotes the compression through the first fully connected layer.
dð�Þ represents the activation by the ReLU function. Lastly, W2 corresponds to the release
through the second fully connected layer.

The operation Fscaleð�Þ in Fig. 3 multiplies the reassembled S with the original feature
matrix groups, to obtain a new set of feature matrix groups.

CONSTRUCTION OF FCA-RESNET MODEL ARCHITECTURE
The base model used in this article is a 34-layer ResNet. Frequency channel attention
modules are embedded in the convolutional blocks of the intermediate layers, forming the
Fca-ResNet model. The input images are processed into 224� 224 images in the
preprocessing stage. Therefore, in order to obtain a larger receptive field, the first
convolutional layer uses a convolutional kernel with the size of 7� 7. The convolutional

Figure 3 Fca module. Full-size DOI: 10.7717/peerj-cs.1807/fig-3
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kernels in the intermediate layers are set to the size of 3� 3. After average pooling, the
input is passed to fully connected layers for classification, and the results of classification
diagnosis are obtained through the Softmax layer. The specific design of model parameters
is shown in Table 1. The overall structure of the model is illustrated in Fig. 4.

EXPERIMENTAL RESULTS AND ANALYSIS
Data preprocessing
The data used in the experiment was obtained from the Case Western Reserve University
(CWRU) (Case Western Reserve University, 2013). Taking the drive-end rolling bearing
SKF-6205 as an example, researchers created single-point damages of 0.007, 0.014, and
0.021 in (1 in = 25.4 mm) by electric discharge machining at the locations of inner ring,
outer ring (at 3, 6, and 12 o’clock positions), and rolling element respectively.

To validate the superiority of the Fca-ResNet model, the experiment divided the load of
the motor into four categories (0, 1, 2, 3 hp), while this article selected the condition of 1 hp
(approximately 0.735 kw) and a speed of 1,772 r/min; And selected three different fault
diameters of three types, namely outer ring (@6, where @6 indicates the fault location at
6 o’clock), inner ring, and rolling element as data samples, as well as one sample of normal
state data, 10 categories in total. The number of sampling points of a cycle of the bearing is
400, and 300 data points were selected each time (the points collected within 3/4 cycles)
(Tong, Pang & Wei, 2021). The original vibration signals were processed using a sliding
window approach with a step size of 150. Using the overlapping sampling method, 400
samples were constructed for each category. These samples were then divided into training
and validation sets in accordance with a specific ratio, as shown in Table 2. The specific
model training parameters are detailed in Table 3. The transformed fault graphs are
illustrated in Fig. 5.

Table 1 Fca-ResNet parameter settings.

Layout Feature dimension Hierarchy design

Input 224 × 224 × 3 ——

Convolutional layer 112 × 112 × 64 7 × 7 × 64, s = 2

Maximum pooling layer 56 × 56 × 64 3 × 3, s = 2

Fca ×1 56 × 56 × 64 3� 3� 64� 3
3� 3� 64� 3

Fca ×2 28 × 28 × 128 3� 3� 128� 4
3� 3� 128� 4

Fca ×3 14 × 14 × 256 3� 3� 256� 6
3� 3� 256� 6

Fca ×4 7 × 7 × 512 3� 3� 512� 3
3� 3� 512� 3

ReLU 7 × 7 × 512 ——

Average pooling layer 1 × 1 × 512 7 × 7, s = 1

Fully connected layer 1 × 1 × 1,000 ——

Softmax 10 ——
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Analysis of experimental results
To validate the reliability of our model, we conducted experiments using a partitioned
dataset. The comparative experimental models selected were ResNet, ResNet with SE
attention modules, group-processed ResNeXt, and traditional CNN models such as
GoogleNet and AlexNet. Figure 6 clearly demonstrates the validation accuracy and
training loss variations of different models during the training process. As shown in the
graph, ResNet, SE-ResNet, and ResNeXt achieved the highest validation accuracies of
98.5%, 98.8%, 98.5%, 98%, and 96.5% respectively. The fluctuation stability was average
and the accuracy was not high. While, after 50 rounds of training, Fca-ResNet model

Figure 4 Fca-ResNet model architecture. Full-size DOI: 10.7717/peerj-cs.1807/fig-4

Table 2 Fault samples.

Fault type Label Fault diameter/in Training set Validation set

Normal 0 – 360 40

Inner ring failure 1 0.007 360 40

Rolling element failure 2 0.007 360 40

Outer ring failure (@6) 3 0.007 360 40

Inner ring failure 4 0.014 360 40

Rolling element failure 5 0.014 360 40

Outer ring failure (@6) 6 0.014 360 40

Inner ring failure 7 0.021 360 40

Rolling element failure 8 0.021 360 40

Outer ring failure (@6) 9 0.021 360 40

Total – – 3,600 400

Table 3 Model training parameters.

Batch size Loss function Optimizer Learning rate Epoch

32 CrossEntropy loss Adam 0.001 300
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tended to stabilize, reaching a peak validation accuracy of 99.3%, and exhibited the lowest
training loss compared to other models in the first 100 rounds. This indicates that our
model possesses strong robustness and feature extraction capabilities, far superior to the
other models considered.

In Fig. 7, we compared the classification results of multiple models on the validation set.
By observing the confusion matrix, we can gain a visual understanding of how the models
perform in different categories. Each node on the horizontal and vertical axes of the
confusion matrix represents a different fault type, and the values on the diagonal indicate
the degree of correspondence between the correct labels and predicted labels. From
Fig. 7A, it can be observed that Fca-ResNet only misclassified three images, that is, two
labels of the 4th class (0.014 in inner ring failure) were misclassified as the 5th class (0.014
in rolling element failure) and the 6th class (0.014 in outer ring failure (@6)) labels; and

Figure 5 (A–J) Coding diagram of different fault types. (A) 0.007 in inner ring failure; (B) 0.014 in inner ring failure; (C) 0.021 in inner ring
failure; (D) 0.007 in rolling element failure; (E) 0.014 in rolling element failure; (F) 0.021 in rolling element failure; (G) 0.007 in outer ring failure;
(H) 0.014 in outer ring failure; (I) 0.021 in outer ring failure; (J) normal. Full-size DOI: 10.7717/peerj-cs.1807/fig-5

Figure 6 Validation accuracy and training loss of different models.
Full-size DOI: 10.7717/peerj-cs.1807/fig-6
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Figure 7 (A–F) Confusion matrices for different models’ classification. (A) Confusion matrix for Fca-
ResNet classification; (B) confusion matrix for SE-ResNet classification; (C) confusion matrix for
ResNeXt classification; (D) confusion matrix for ResNet classification; (E) confusion matrix for Goo-
gleNet classification; (F) confusion matrix for AlexNet classification.

Full-size DOI: 10.7717/peerj-cs.1807/fig-7
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one label of the 9th class (0.014 in outer ring failure (@6)) was misclassified as the 7th class
(0.021 in inner ring failure) label. However, all other data achieved a perfect classification
result. Although several other models achieved full classification for multiple fault types,
their individual performance for certain faults was inferior to that of this model.

Visualization experiment results of different models
This section will validate the effectiveness of various model architectures for different
features’ extraction, using the t-distributed stochastic neighbor embedding (t-SNE)
method to visualize the training set in the dataset. The main purpose of t-SNE is to reduce
the feature space. Similar categories are modeled by nearby points, dissimilar categories are
modeled by high-probability distant points, to simplify a high-dimensional dataset into a
low-dimensional feature map that retains a large amount of original information, and
clustering to visualize the distribution of different features.

Figure 8 illustrates the distribution of high-dimensional feature information in the
original dataset, while Fig. 9 presents the visual clustering effects of the fully connected
layers in different models. From Fig. 8, it can be observed that the high-dimensional
feature information of the original dataset is scattered throughout the sample space, and
each type of feature information is randomly mixed together. Figure 9A shows that the
clustering effect of the last fully connected layer in Fca-ResNet almost completely separates
the data samples of different fault types, and directly clustered samples of the same type.
Only a few categories are incorrectly clustered into other categories. The visualization of
features aligns perfectly with the confusion matrix. From Figs. 9B–9F, it can be observed
that SE-ResNet and ResNeXt exhibit significant overlap between two fault classes, while
ResNet, GoogleNet, and AlexNet demonstrate substantial overlap among several fault
classes. Though all these models achieve the accuracy of over 96.5%, their dimensionality

Figure 8 Distribution of high-dimensional feature information in the original dataset.
Full-size DOI: 10.7717/peerj-cs.1807/fig-8
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Figure 9 t-SNE dimensionality reduction visualization. (A) Clustering diagram of the fully connected
layer for Fca-ResNet; (B) clustering diagram of the fully connected layer for SE-ResNet; (C) clustering
diagram of the fully connected layer for ResNeXt; (D) clustering diagram of the fully connected layer for
ResNet; (E) clustering diagram of the fully connected layer for GoogleNet; (F) clustering diagram of the
fully connected layer for AlexNet. Full-size DOI: 10.7717/peerj-cs.1807/fig-9
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reduction effect is notably inferior to that of Fca-ResNet. This suggests that Fca-ResNet
possesses very powerful feature extraction and classification capabilities.

Comparison of different diagnostic algorithms
In order to demonstrate the effectiveness of the proposed method in this article, a
comparison was conducted with other methods, using the highest accuracy as a
benchmark for validation. Chen, Zhang & Gao (2021) directly input vibration signals into
1D-CNN and LSTM for training and classification; Yan, Kan & Luo (2022) transformed
the vibration signals into two-dimensional images using the Markov transition field
(MTF), and then utilized ResNet for training and classification; Wang & Cheng (2021)
combined ResNet with LSTM to enable ResNet to capture the long-term correlations in
time series, and achieved better classification performance.

In the field of deep learning fault diagnosis, the evaluation of models is very important.
Only by selecting an evaluation method that matches, can problems in the algorithm
model or training process be quickly discovered. Standard measures such as accuracy (Ac),
precision (Pr), recall (Re), and F1 score (Eqs. (11)–(14)) are widely employed to evaluate
model performance. The comparative results are as shown in Table 4.

Ac ¼ TP þ TN
TP þ FP þ TN þ FN

(11)

Pr ¼ TP
TP þ FP

(12)

Re ¼ TP
TP þ FN

(13)

F1 ¼ 2Pr � Re
Pr þ Re

(14)

The above equation defines TP (true positives) and TN (true negatives) as the counts of
correct predictions within the i categories, whereas FP (false positives) and FN (false
negatives) represent the counts of incorrect predictions within the same i categories.

Table 4 Evaluation metrics for different network models.

Method Accuracy % Precision % (average) Recall % (average) F1 score

Proposed method 99.3 99.28 99.25 99.26

SE-ResNet 98.8 98.78 98.75 98.76

ResNeXt 98.5 98.56 98.5 98.53

ResNet 98.5 98.63 98.5 98.56

GoogleNet 98 98.05 98 98.02

AlexNet 96.5 96.63 96.5 96.6

LSTM-1DCNN 98.46 98.21 98.45 98.06

MTF-ResNet 98.52 98.27 98.56 97.7

ResNet-LSTM 99.1 99.02 98.98 99.10
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Verification of model generalization under imbalanced data sets
In this section, we continue to consider the case of 1 hp with a speed of 1,772 r/min. Taking
into account the imbalance in the dataset that can occur in practical conditions, we divide

Table 5 Imbalanced data sample division.

Fault type Fault diameter (in) Label Datasets A1 Datasets A2 Datasets A3

Inner ring failure 0.007 1 100 300 200

Inner ring failure 0.014 2 100 300 200

Inner ring failure 0.021 3 100 300 200

Rolling element failure 0.007 4 200 100 300

Rolling element failure 0.014 5 200 100 300

Rolling element failure 0.021 6 200 100 300

Outer ring failure 0.007 7 300 200 100

Outer ring failure 0.014 8 300 200 100

Outer ring failure 0.021 9 300 200 100

Normal 0 0 400 400 400

Figure 10 Validation accuracy and loss curves for different datasets. (A) Validation accuracy and loss
curves for the A1 dataset; (B) validation accuracy and loss curves for the A2 dataset; (C) validation
accuracy and loss curves for the A3 dataset. Full-size DOI: 10.7717/peerj-cs.1807/fig-10
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the imbalanced datasets in different proportions. Datasets A1, A2, and A3 all simulate
scenarios where there are adequate healthy samples and imbalanced faulty samples in
actual working conditions. Imbalanced data samples are divided into training and
validation sets, according to the ratio of 9:1, the division results are shown in Table 5.

Set the same training parameters according to Table 3, and set the number of training
epochs to 200 for data validation under unbalanced datasets. The validation accuracy and
loss curves are shown in Fig. 10. From the figure, it can be observed that, across different
imbalanced datasets, the model’s validation accuracy and loss tend to converge after
approximately 30–50 training epochs. The highest validation accuracies are as follows: A1:
98.6%, A2: 98.2%, A3: 99.1%, with an average validation accuracy of 98.6%. The lowest
training loss is consistently 0.03, achieving convergence effect, which demonstrates that
this model exhibits a certain level of stability when dealing with imbalanced datasets.

Figure 11 displays the confusion matrices for different datasets. It can be observed that
there are some misclassifications in individual categories for each class, while the rest

Figure 11 Confusion matrices for different datasets. (A) Confusion matrix for the A1 dataset;
(B) confusion matrix for the A2 dataset; (C) confusion matrix for the A3 dataset.

Full-size DOI: 10.7717/peerj-cs.1807/fig-11
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achieve full classification. Therefore, this model exhibits good generalization performance
under various data conditions.

CONCLUSION
(1) Our research employs the GADF coding technique for data preprocessing, which

innovatively transforms one-dimensional fault data into a two-dimensional RGB image
with three-channel encoding. This approach not only preserves the temporal
characteristics of fault signals but also bolsters feature extraction and recognition in
concert with the frequency channel attention module.

(2) Embedding the frequency channel attention module with discrete cosine transform
on the basis of residual network to construct the Fca-ResNet model. This sophisticated
model excels at extracting fault information, significantly enhancing the precision of fault
diagnosis. The model’s robustness is demonstrated by its remarkable 99.3% accuracy rate
in diagnosing 1 hp load bearing faults using the rolling bearing data from CWRU.

(3) Comparative analysis with other models underlines the superior accuracy and swift
convergence of the Fca-ResNet model. Through analysis methods such as t-SNE
dimensionality reduction, confusion matrix, and model evaluation indicators, the strong
classification performance of the model has been proven.

(4) In simulating several situations of unbalanced data sets in actual working conditions,
the average accuracy of this model is 98.6%, which shows that this model still has good
generalization in unbalanced samples.

PROSPECTS
Future research in rolling bearing fault diagnosis will focus on improving the
interpretability of deep learning models and combining multiple techniques to enhance
model performance and reliability for better application of rolling bearing fault diagnosis
in industrial production practice.

(1) To direct attention towards developing more interpretable deep learning models,
such as using gradient or activation visualization methods to explain the model’s decision-
making process. Such techniques can help engineers understand the key features and
rationale of the model in the diagnostic process, to enhance trust and reliability.

(2) To leverage transfer learning and incremental learning to improve the model’s
generalization ability, enabling it to better adapt to different types and scales of rolling
bearing fault data, so as to enhance the model’s robustness and reliability.

(3) To employ self-supervised learning and weakly supervised learning methods to
reduce reliance on a large amount of labeled data, improve the model’s performance in
data-scarce scenarios, and enhance the model’s interpretability.

(4) To establish a comprehensive model trustworthiness measurement system,
including metrics and methods for model performance evaluation, error analysis, and
model robustness assessment, to help engineers better understand and assess the reliability
and applicability of the model in rolling bearing fault diagnosis.
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