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ABSTRACT
HumanAction Recognition (HAR) is an essential topic in computer vision and artificial
intelligence, focused on the automatic identification and categorization of human
actions or activities from video sequences or sensor data. The goal of HAR is to teach
machines to comprehend and interpret human movements, gestures, and behaviors,
allowing for a wide range of applications in areas such as surveillance, healthcare, sports
analysis, and human-computer interaction. HAR systems utilize a variety of techniques,
including deep learning, motion analysis, and feature extraction, to capture and analyze
the spatiotemporal characteristics of human actions. These systems have the capacity to
distinguish between various actions, whether they are simple actions like walking and
waving or more complex activities such as playing a musical instrument or performing
sports maneuvers. HAR continues to be an active area of research and development,
with the potential to enhance numerous real-world applications by providingmachines
with the ability to understand and respond to human actions effectively. In our study,we
developed a HAR system to recognize actions in tennis using an attention-based gated
recurrent unit (GRU), a prevalent recurrent neural network. The combination of GRU
architecture and attention mechanism showed a significant improvement in prediction
power compared to two other deep learning models. Our models were trained on the
THETIS dataset, one of the standard medium-sized datasets for fine-grained tennis
actions. The effectiveness of the proposedmodel was confirmed by three different types
of image encoders: InceptionV3, DenseNet, and EfficientNetB5. The models developed
with InceptionV3, DenseNet, and EfficientNetB5 achieved average ROC-AUC values
of 0.97, 0.98, and 0.81, respectively. While, the models obtained average PR-AUC
values of 0.84, 0.87, and 0.49 for InceptionV3, DenseNet, and EfficientNetB5 features,
respectively. The experimental results confirmed the applicability of our proposed
method in recognizing action in tennis and may be applied to other HAR problems.

Subjects Human-Computer Interaction, Artificial Intelligence, Computer Vision, Data Mining
and Machine Learning, Neural Networks
Keywords Computer vision, Deep learning, Action recognition, Tennis

INTRODUCTION
Action recognition is one of the essential tasks in computer vision and artificial
intelligence, aiming to understand and classify human actions from video or sequences of
pictures (Krüger et al., 2007). This field has witnessed significant advancements in recent
years, driven by the availability of large-scale annotated datasets, powerful deep learning
methods, and enhanced computational resources (Abu-Bakar, 2019). Convolutional
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neural networks (CNNs) (Yao, Lei & Zhong, 2019) and recurrent neural networks
(RNNs) (Richard & Gall, 2017) have been widely employed to extract spatiotemporal
features and model the temporal dependencies within action sequences. State-of-the-art
methods, such as two-stream CNNs (Zhu et al., 2019; Zhao et al., 2020; Xiong et al., 2020)
and 3D CNNs (Ji et al., 2013; Yang et al., 2019; Ouyang et al., 2019), have demonstrated
remarkable performance in recognizing actions in diverse contexts, including sports
analysis, surveillance (Lin, Wang & Li, 2022), and human–computer interaction (Jannat
et al., 2023; Lim et al., 2020). However, there are challenges (e.g., fine-grained action
recognition, real-time processing, etc.) that continue to drive research in this dynamic
field (Jegham et al., 2020; Pareek & Thakkar, 2020). Therefore, the exploration of novel and
more efficient methods to further improve the recognition ability of intelligent systems is
necessary.

Deep learning (DL) has emerged as a powerful technique for extracting discriminative
and salient features in high-level action and behavior recognition from video data (Dai et
al., 2019; Zhang et al., 2021; Chen et al., 2022). Present DL methods employed in human
action recognition (HAR) are constructed based on basic CNNs for extracting features
from video frames through the utilization of pre-trained models. These convolutional
layers are responsible for capturing spatial features essential for model classification (Lu
et al., 2023). However, traditional CNN models exhibit comparatively lower performance
than manually crafted features when applied to sequential data (Khemchandani & Sharma,
2016). Notably, widely used CNN architectures like AlexNet (Krizhevsky, Sutskever &
Hinton, 2017), VGGNet (Simonyan & Zisserman, 2014), and ResNet (He et al., 2016)
primarily focus on extracting spatial features from individual input images, thus proving
to be less effective in capturing temporal information critical for HAR within video
sequences. Dai, Liu & Lai (2020) introduced long short-term memory (LSTM) networks
incorporating spatiotemporal information learned through CNNs for action recognition.
To address the challenge of capturing dynamic information in sequential data, Kwon
et al. (2018) used advanced video-based HAR techniques with two-stream approaches
characterized by two separate modules dedicated to learning spatial and temporal features.
These modules were specially designed with mechanisms for fusion aimed at capturing
the evolving information within video sequences. Meng, Liu & Wang (2018) have tackled
spatiotemporal aspects by employing LSTMmodels explicitly designed for long-term video
sequences to capture and process temporal features in the context of HAR in surveillance
systems. Most recently, Muhammad et al. (2021) proposed using attention-based LSTM
with dilated CNN features for action recognition. Accurately recognizing human actions in
real-world videos remains a challenge due to the lack of crucial information about motion,
style, and background clutter. Traditional methods struggle with continuous actions,
crowded scenes, and noise issues (Baccouche et al., 2011). Similarly, current computational
methods have improved sequence learning using RNNs, LSTM, and gated recurrent
units (Le et al., 2019), but they often overlook important details within sequences, which
are essential for connecting preceding and succeeding frames.

Sports analytics is the application of data analysis and statistical techniques to gain
valuable insights and make informed decisions in the world of sports. It involves the
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collection and analysis of various data sources, including player performance statistics,
game metrics, and even fan engagement data. Sports analytics has revolutionized the way
teams, coaches, and organizations approach player recruitment, game strategy, and injury
prevention. By leveraging advanced analytics tools and techniques, sports professionals
can optimize player performance, make data-driven decisions, and enhance the overall
sports experience for both athletes and fans. It has become an integral part of modern
sports, driving innovation and competitiveness in the industry. The field of sports analytics
is experiencing significant growth, largely due to the explosion of accessible big data in
this domain (Morgulev, Azar & Lidor, 2018; Apostolou & Tjortjis, 2019; Sarlis & Tjortjis,
2020). Traditionally, sports data was gathered manually and primarily comprised match
outcomes and basic statistics, like the percentage of successful first serves in tennis.
However, in recent times, the availability of spatiotemporal data, such as player positions
and higher-level information, has expanded the possibilities for in-depth analysis (Mora &
Knottenbelt, 2017). Under the scope of our study, we focus on tennis action recognition.
Several published works were done on this topic with interesting findings. Zhu et al.
(2006) introduced the HAR system to classify actions as ‘left-swing’ and ‘right-swing’
using support vector machines (SVM) and video descriptors based on optical flow. In
another study, FarajiDavar et al. (2011) developed a classification system to distinguish
tennis actions, including ‘non-hit’, ‘hit’, and ‘serve’. Unfortunately, these experiments
were conducted using the ACASVA Actions dataset (De Campos et al., 2011), which is not
allowed for re-distribution. This dataset provides features and labels but lacks access to
the RGB videos. Hence, to conduct our study, a publicly available dataset is more suitable
for model development as well as comparisons with other relevant methods. Among the
various datasets available for action recognition in tennis, THETIS (Gourgari et al., 2013) is
a suitable dataset conveniently aligned with our objectives. In this study, we propose using
an attention-based gated recurrent unit (GRU) architecture to perform action recognition
in tennis. Our primary objective is to construct a model that is capable of effectively
classifying these videos into the 12 fine-grained action categories.

EXPERIMENTS
Dataset
Introduced in 2013, the THree dimEnsional TennIs Shots (THETIS) dataset is one of
the standard medium-sized datasets for fine-grained tennis actions, encompassing video
clips featuring 55 different individuals executing 12 distinct tennis maneuvers multiple
times (Gourgari et al., 2013). These videos are captured in the RGB format, characterized by
low-definition quality, monocular perspective, and in-the-wild settings, featuring dynamic
backgrounds and occasional occlusions. In the THETIS dataset, tennis shots were executed
by a combination of 31 novice and 24 skilled players. Multiple repetitions of each shot
were recorded, yielding a total of 8,734 videos (each cropped to a single period) that were
subsequently converted into AVI format. These videos collectively span 7 h and 15 min.
In our study, we used a subset of THETIS data consisting of 1,980 RGB videos of size
640×480. In each video, a player performs an action that corresponds to one of 12 possible
tennis strokes.
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Table 1 Information about the datasets used in the study.

Data Number of
samples (videos)

Training 1,584
Validation 204
Test 192
Total 1,980
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Figure 1 Number of video samples for each class.
Full-size DOI: 10.7717/peerjcs.1804/fig-1

Data sampling
To simplify the classification task, we grouped 12 categories of actions (labels) into six
new categories representing fundamental tennis strokes, including ‘forehand’, ‘backhand’,
‘forehand volley’, ‘backhand volley’, ‘serve’, and ‘smash’. For each action, 16 cropped
frames were obtained to represent the entire video. For each video, the cropped frames
were carefully checked to ensure they were arranged in precise order to avoid failures in
learning. We split all the videos into three datasets: a training set, a validation set, and a
test set. Table 1 shows the number of video samples in each set, and Fig. 1 presents the
distribution of number of videos corresponding to each class.

Proposed model
Model architecture
Figure 2 describes the model architecture proposed in our study. Each video is cropped
into 16 frames for action recognition. These frames are then embedded using pre-trained
encoders (Szegedy et al., 2016) to create corresponding vectors of size 15×2048. Three
different pre-trained models, including InceptionV3 (Szegedy et al., 2016), DenseNet
(Huang et al., 2017), and EfficientNetB5 (Tan & Le, 2019), were used for featurization.
These vectors then enter two gated recurrent unit (GRU) layers of hidden dimension sizes
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Figure 2 Architecture of the proposed HARmodel.
Full-size DOI: 10.7717/peerjcs.1804/fig-2

of 256, respectively. The output features are learned in the attention layer to selectively
learn essential characteristics. Finally, the attended features are transferred to the fully
connected (FC) layer to return final outcomes. The model was trained over 100 epochs
with a batch of 32 samples. The learning rate was fixed at 0.0001, and the training time per
epoch is estimated to be about 0.2 s.

Attention layer
An attention layer constitutes a pivotal component within DL architectures, prominently
featured in natural language processing and computer vision domains (Vaswani et al.,
2017). This layer facilitates the selective weighting of input data elements, enabling models
to emphasize pertinent informationwhile diminishing the significance of extraneous details.
This mechanism closely mirrors human attention mechanisms, rendering it particularly
efficacious in tasks such as machine translation, sentiment analysis, and image captioning.
Adding attention layers to models helps them understand context better and capture
long-range dependencies. This is a key part of getting better results in many AI tasks.

In this work, the attention layerwas designed to detect which source objects are associated
with the next target object and assign suitable attentionweightswhen computing the context
vector cj . Given embedded source representation H = {h1,h2,h3,...,hn} and the previous
decoded state sj−1, cj can be simply expressed as:

cj =Attention(H ,sj−1). (1)

Initially, the attention weight αj,i is computed to estimate the degree of association of a
source object xi when predicting the target object yj via a feed-forward network:

αj,i=
exp(ej,i)∑
k exp(ej,k)

, (2)
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where the association score ej,i is derived from Bahdanau, Cho & Bengio (2014) as:

ej,i= vTα � tanh(Wα · sj−1+Uα ·hi). (3)

Basically, the greater attention weight αj,i refers to the higher importance of object xi for
the next object prediction. Hence, Attention computation creates cj by directly assigning
weights for the source representations H with their corresponding attention weights αni−1:

cj =
∑
i

αj,i ·hi. (4)

Image embedding
Image embedding in DL refers to the process of transforming high-dimensional image
data into a lower-dimensional representation that retains essential information about the
image’s content and characteristics. This lower-dimensional representation, known as
an image embedding or feature vector, is designed to capture semantically meaningful
features and patterns within the image. Image embeddings are valuable because they
facilitate various computer vision tasks, such as image retrieval, object detection, and
image similarity analysis. Deep learning models, especially CNNs, are commonly employed
to generate image embeddings by extracting hierarchical and abstract features from the
input image. The resulting image embeddings are not only more compact but also contain
valuable semantic information, making them suitable for applications where efficient and
meaningful image representations are required.

InceptionV3 is a pre-trained CNN model developed by Google (Szegedy et al., 2016). It
is now known as one of the effective inception modules that facilitate multi-scale feature
extraction. These modules enable the network to effectively recognize objects and patterns
of different sizes within images. InceptionV3 also incorporates optimizations like batch
normalization and factorized convolutional layers to enhance training stability and reduce
computational complexity. Trained on large datasets like ImageNet (Deng et al., 2009),
InceptionV3 is widely used in computer vision for tasks such as image recognition and
object detection due to its efficiency and robust performance.

DenseNet is another pre-trained CNNmodel designed for computer vision tasks (Huang
et al., 2017). Its unique feature is dense connectivity, where each layer directly connects
to every other layer, enabling efficient feature reuse and better gradient flow. DenseNet
models, like DenseNet-121 and DenseNet-169, have gained popularity for their ability to
learn rich features effectively, making them a top choice for tasks like image classification,
object detection, and segmentation due to their superior performance and parameter
efficiency.

EfficientNet, a pioneering deep learning architecture developed by Google, has
been known for its exceptional computational efficiency and concurrent model
performance improvement (Tan & Le, 2019). This innovation relies on compound scaling,
simultaneously optimizing network depth, width, and resolution, resulting in notable
advancements in various computer vision tasks. Its capacity to strike a delicate balance
between model complexity and predictive accuracy has made EfficientNet a preferred
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choice for machine learning practitioners, offering quicker training and deployment while
maintaining competitive state-of-the-art performance. This scalability and adaptability
have profound implications for resource-efficient and versatile deep learning solutions
across diverse applications in artificial intelligence.

Metrics
We used a series of metrics to assess the performance of models, including Area under the
ROCCurve (ROC-AUC), Area under the PRCurve (PR-AUC), Accuracy (ACC),Matthews
Correlation Coefficient (MCC), F1 score (F1), Recall (REC), and Precision (PRE). The
mathematical formula of these metrics are expressed as:

ACC =
TP+TN

TP+TN +FP+FN
, (5)

MCC =
TP×TN −FP×FN

√
(TP+FP)(TP+FN )(TN +FP)(TN +FN )

, (6)

REC =
TP

TP+FN
, (7)

PRE =
TP

TP+FP
, (8)

F1= 2×
PRE×REC
PRE+REC

, (9)

where TP, TN, FP, and FN are the numbers of True Positive, True Negative, False Positive,
and False Negative samples.

RESULTS AND DISCUSSION
Model performance
Table 2 provides information on the performance of models on the test set across three
types of features. To assess the performance of our proposed model, we implemented two
conventional machine learning models, including Random Forest (RF) (Breiman, 2001)
and SVM (Cristianini & Ricci, 2008), and two other deep learning models based on LSTM
and CNN architectures. These two architectures are commonly employed to construct the
HAR systems. In general, models developed using EfficientNetB5 work less effectively than
those developed using InceptionV3 and DenseNet features. For InceptionV3, the LSTM
and CNN models achieve equivalent performance with ROC-AUC and PR-AUC values of
0.93 and 0.70, respectively. Except for MCC, these two models’ other metrics are equal.
Our model obtains ROC-AUC and PR-AUC values of 0.94 and 0.75, which are higher than
those of the LSTM and CNN models. Besides, in terms of other metrics, our model shows
higher values. While the SVM model achieves an equivalent ROC-AUC value as ours, the

Gao et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1804 7/14

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1804


Table 2 The performance of models on test set. Bold indicates the highest value corresponding to a
specific pair of feature type and evaluationmetric.

Feature type Model ROC-AUC PR-AUC ACC MCC F1 REC PRE

RF 0.88 0.60 0.66 0.57 0.42 0.46 0.46
SVM 0.94 0.72 0.69 0.61 0.48 0.51 0.49
CNN 0.93 0.70 0.76 0.70 0.65 0.64 0.70
LSTM 0.93 0.70 0.76 0.69 0.65 0.64 0.70

Inceptionv3

Ours 0.94 0.75 0.77 0.71 0.66 0.67 0.72
RF 0.88 0.61 0.65 0.55 0.39 0.44 0.41
SVM 0.94 0.73 0.63 0.52 0.36 0.42 0.32
CNN 0.95 0.74 0.80 0.74 0.72 0.70 0.77
LSTM 0.96 0.80 0.79 0.73 0.73 0.73 0.73

DenseNet

Ours 0.97 0.82 0.82 0.78 0.76 0.74 0.79
RF 0.82 0.54 0.61 0.50 0.48 0.48 0.62
SVM 0.75 0.40 0.34 0.13 0.19 0.23 0.18
CNN 0.80 0.45 0.47 0.32 0.39 0.40 0.40
LSTM 0.79 0.46 0.48 0.32 0.36 0.37 0.51

EfficientNetB5

Ours 0.82 0.49 0.55 0.42 0.47 0.45 0.55

RF model shows limited predictive power. For other metrics, the SVM model is not as
good as our proposed model. For DenseNet features, our model still outperforms the other
two models with ROC-AUC and PR-AUC values of 0.97 and 0.82, respectively. The LSTM
model trained with DenseNet features works better than the corresponding CNN model.
The results demonstrate that the attention-based GRU (our proposed model) works more
efficiently compared to these other deep learning models for recognizing actions in tennis.
The performance of the SVM and RFmodels trained with this feature is not significant. For
EfficientNetB5, our model and the RF model both achieve an equivalent ROC-AUC value
of 0.82. However, the RF model achieves all recorded metrics with higher values compared
to the others, including ours.

InceptionV3 (Szegedy et al., 2016), DenseNet (Huang et al., 2017), and EfficientNet
(Tan & Le, 2019) are prominent pre-trained models based on CNN architectures in
the field of computer vision, yet they exhibit distinct characteristics. The key similarity
between them lies in their effectiveness for image classification tasks. Both networks have
demonstrated remarkable performance in various image-related challenges, benefiting from
their deep architectures and pre-trained model variants. However, a notable difference is
in their architectural design. DenseNet employs densely connected blocks, enabling direct
connections between all layers within a block and fostering feature reuse and gradient
flow. In contrast, InceptionV3 relies on innovative inception modules, incorporating
multiple filter sizes to capture features at different scales efficiently. Additionally, DenseNet
tends to be more parameter-efficient due to its dense connectivity, while InceptionV3
emphasizes computational efficiency with factorized convolutional layers. The choice
between these architectures often depends on the specific requirements of the task at hand,
as both DenseNet and InceptionV3 offer strong capabilities but excel in different aspects.
Compared to InceptionV3 and DenseNet, EfficientNet stands out for its parameters
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Table 3 The performance of our models on the test set over multiple trials.

Feature type Trial ROC-AUC PR-AUC ACC MCC F1 REC PRE

1 0.96 0.83 0.83 0.79 0.77 0.76 0.80
2 0.97 0.88 0.85 0.82 0.82 0.81 0.83
3 0.98 0.86 0.88 0.84 0.82 0.81 0.84
4 0.96 0.81 0.83 0.79 0.78 0.79 0.80
5 0.97 0.83 0.81 0.77 0.79 0.82 0.77
6 0.98 0.89 0.85 0.81 0.79 0.79 0.81
7 0.96 0.79 0.82 0.77 0.77 0.78 0.76
8 0.98 0.87 0.87 0.84 0.81 0.82 0.83
9 0.97 0.83 0.85 0.81 0.79 0.76 0.86
10 0.97 0.84 0.88 0.84 0.82 0.79 0.90
Mean 0.97 0.84 0.85 0.81 0.80 0.79 0.82
SD 0.01 0.03 0.02 0.03 0.02 0.02 0.04

Inceptionv3

95%CI (0.97, 0.97) (0.82, 0.86) (0.84, 0.86) (0.79, 0.83) (0.79, 0.81) (0.78, 0.80) (0.80, 0.84)
1 0.97 0.87 0.86 0.83 0.82 0.81 0.86
2 0.97 0.87 0.87 0.84 0.84 0.81 0.92
3 0.97 0.85 0.85 0.82 0.80 0.79 0.83
4 0.97 0.83 0.80 0.76 0.76 0.76 0.77
5 0.98 0.88 0.89 0.86 0.85 0.84 0.87
6 0.98 0.91 0.90 0.87 0.86 0.86 0.87
7 0.98 0.87 0.89 0.85 0.86 0.87 0.86
8 0.98 0.88 0.89 0.86 0.86 0.87 0.87
9 0.97 0.86 0.89 0.85 0.86 0.85 0.86
10 0.98 0.88 0.89 0.86 0.85 0.86 0.84
Mean 0.98 0.87 0.87 0.84 0.84 0.83 0.85
SD 0.01 0.02 0.03 0.03 0.03 0.03 0.03

DenseNet

95%CI (0.98, 0.98) (0.86, 0.88) (0.85, 0.89) (0.82, 0.86) (0.82, 0.86) (0.81, 0.85) (0.83, 0.87)
1 0.85 0.56 0.57 0.45 0.49 0.49 0.53
2 0.79 0.46 0.51 0.38 0.43 0.43 0.50
3 0.83 0.49 0.55 0.43 0.43 0.44 0.44
4 0.87 0.55 0.61 0.51 0.52 0.51 0.60
5 0.83 0.48 0.55 0.42 0.40 0.41 0.45
6 0.84 0.54 0.51 0.38 0.45 0.45 0.50
7 0.76 0.42 0.54 0.40 0.42 0.42 0.55
8 0.76 0.44 0.57 0.43 0.38 0.39 0.45
9 0.79 0.47 0.52 0.37 0.41 0.41 0.49
10 0.79 0.47 0.56 0.43 0.45 0.45 0.45
Mean 0.81 0.49 0.55 0.42 0.44 0.44 0.50
SD 0.04 0.04 0.03 0.04 0.04 0.04 0.05

EfficientNetB5

95%CI (0.79, 0.83) (0.46, 0.52) (0.53, 0.57) (0.39, 0.45) (0.42, 0.46) (0.42, 0.46) (0.47, 0.53)

and computational efficiency, making it an excellent choice for resource-constrained
environments. However, the choice between these models should still consider the specific
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A B C

Figure 3 Class clustering across different feature types. (A) InceptionV3, (B) DenseNet, (C) Efficient-
NetB5.

Full-size DOI: 10.7717/peerjcs.1804/fig-3

needs of the task at hand, as each has its own strengths and trade-offs. Figure 3 visualizes
class clustering across these three feature types.

Performance variation assessment
Table 3 summarizes the variation in performance of models developed with InceptionV3,
DenseNet, and EfficientNetB5 features. For themodel developedwith InceptionV3 features,
the average ROC-AUC and PR-AUC values are 0.97 and 0.84, respectively. The standard
deviations of ten trials are also small. Other metrics are higher than 0.8, with standard
deviations of about 0.02. In terms of the model developed with DenseNet features, the
average ROC-AUC and PR-AUC values are 0.98 and 0.87, respectively. Models developed
with EfficientNetB5 obtained the lowest values for all metrics. Besides, for other metrics,
their measured values for the models developed with DenseNet are higher than those
recorded in those developed with InceptionV3 and EfficientNetB5. The standard deviations
of metrics recorded on the EfficientNetB5 are the highest, followed by DenseNet’s and
InceptionV3’s.

CONCLUSIONS
HAR systems employ computer vision and machine learning techniques to automatically
detect, classify, and analyze human actions and gestures in video sequences or sensor data.
In our study, we developed a HAR system for recognizing actions in tennis. The results
indicated that our proposed model is an efficient framework that can perform recognition
tasks. Compared to other deep learning methods, the attention-based GRU model showed
better performance. Briefly, although our model showed higher performance in both
conditions, DenseNet features are more suitable than InceptionV3 and EfficientNetB5
features for building our HAR system in our study. The effectiveness of attention-based
GRU demonstrated its application in addressing other action recognition tasks in the
future.
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