PyRINEX: a new multi-purpose Python
package for GNSS RINEX data

Jinzhen Han', Seung Jun Lee', Hong Sik Yun', Kwang Bae Kim' and
Sang Won Bae’

! Department of Civil, Architectural & Environment Engineering, Sungkyunkwan University, Suwon, Korea
?Korea Ministry of the Interior and Safety, Sejong, Korea

ABSTRACT

Since the first receiver independent exchange format (RINEX) version was released in
1989, it has gone through several versions, making the existing software, such as TEQC,
incompatible with certain later versions. This study proposes a new Python package
named PyRINEX, which is developed to batch process the most generally used versions
of RINEX files, namely 2.0 and 3.0. The proposed package can be used to manage and
edit numerous RINEX files as well as perform a data quality check function. PyRINEX
can be easily imported into any Python IDE similar to any other open-source Python
package, it also makes secondary development easy for users.

Subjects Data Science, Databases, Spatial and Geographic Information Systems, Software
Engineering
Keywords RINEX, Python, GNSS, GPS, GLONASS, Galileo, SBAS, Quality check

INTRODUCTION

RINEX is a standard format that designed for management and disposal of the measures

generated by GNSS receiver, whatever the manufacturers of the receivers (Gurtner ¢ Estey,
2007). The RINEX format is widely used in GNSS-related research and engineering projects
for positioning purposes. However, not all RINEX files can be used successfully due to

Submitted 3 August 2023 various reasons. Firstly, some RINEX files do not meet the format requirements due to
Accepted 15 December 2023

. user errors, examples include incorrectly naming the RINEX file, entering non-standard
Published 16 January 2024

formatting in it, and misspelling receiver and antenna type, which makes them incompatible
with programs such as GAMIT/GLOBK (Herring, King ¢» McClusky, 2010), Bernese (Dach
& Walser, 2015). Secondly, poor observation conditions may result in large errors in the

Corresponding author
Seung Jun Lee, issue7942@naver.com

Academic editor

Stefan Steiniger data recorded in the RINEX file, such as clock-related errors, multipath errors, and system

Additional Information and errors (Karaim et al., 2018). Therefore, it is necessary to perform data cleaning and quality

E:géa:?ions can be found on checks on the dataset before using RINEX files in both research and practical engineering
projects.

DOI10.7717/peerj-cs.1800 Existing programs for pre-processing RINEX files, such as TEQC (Estey ¢ Meertens,

© Copyright 1999), do not work well for performing both data cleaning and quality check simultaneously.
2024 Han etal. TEQC’s editing functions are difficult to use for data cleaning, and its quality check function
Distributed under is limited by unsatisfactory visualization and inability to handle RINEX files of version
Creative Commons CC-BY 4.0 . "

3.0 (Gurtner ¢ Estey, 2007). While additional tools have been developed to complement
TEQC, they mostly focus on improving one aspect of TEQC and lack comprehensive

How to cite this article Han J, Lee SJ, Yun HS, Kim KB, Bae SW. 2024. PyRINEX: a new multi-purpose Python package for GNSS
RINEX data. Peer] Comput. Sci. 10:¢1800 http://doi.org/10.7717/peerj-cs. 1800

https://peerj.com/computer-science
mailto:issue7942@naver.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1800
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj-cs.1800

PeerJ Computer Science

solutions for both data cleaning and quality check. Examples of such tools include a
MATLAB program to process TEQC output and obtain more detailed reports of multipath
effects (Ogaja & Hedfors, 2007), and a C/C++ program that provides increased flexibility
for viewing and printing TEQC plot files (Hilla, 2002). Some newer programs, such as
GPSQC (Lee et al., 2012) and G-Nut/Anubis (Vaclavovic ¢ Dousa, 2016), focus on quality
control and multi-GNSS data monitoring, but they also lack data cleaning and RINEX file
editing capabilities.

This article introduces PyRINEX, a new multi-purpose Python package for managing
and processing GNSS RINEX format. It allows for easier and quicker management of
large numbers of RINEX files, as well as data cleaning and data quality checks for GPS,
GLONASS, Galileo, SBAS data.

Unlike other preprocessors for RINEX files, PyYRINEX first reads the native RINEX file
and then stores it in JSON format into a new, easier to read and call format. This lightweight
format is named LITE RINEX, and this translation will help future researchers to conduct
other research on RINEX data, this has been difficult to achieve in previous programs,
which have tended to provide the user with the final results without taking into account
the user’s requirement to actually perform more detailed calculations on the observations
in the RINEX data.

Previously, programs such as TEQC have ignored the needs of researchers when dealing
with large amounts of RINEX data at once, which is urgently needed in studies or specific
projects dealing with tens of thousands of RINEX. PyRINEX fills this gap by supporting
the user to optimize the file storage structure for a RINEX dataset. It also provides the
function of self-correction of formatting errors in the header part of RINEX observation
files. Compared with TEQC, the biggest difference of this part of the function is that the
user does not need to specify each kind of error modification method one by one and
errata each RINEX data one by one, but the program has the internal judgment to replace
the manual operation, which greatly improves the efficiency. After completing the data
cleaning part mentioned above, it also outputs a CSV file with the latitude and longitude
coordinates of each RINEX data where it is observed, which can be imported by the user
into the GIS software to complete the geo-visualization of the RINEX dataset.

In the quality check section, PyRINEX provides three outputs for the user to choose
from. The first one is the quality check results of each satellite under each epoch stored
as an array in Numpy, which can be helpful for some researchers who want to program
further. The second is to output the array to a CSV file for researchers who only need the
results. The third is the visualization of the quality check results out of the graphs, which
was not available in previous programs such as TEQC.

As an open-source Python package, all of PYRINEX’s code is publicly available, making
it ideal for building on for secondary development to be applied to other studies by
researchers in greater detail and depth.

Structure and operation mechanism of PyRINEX
PyRINEX provides three main functions, the first is the function to read and translate into
JSON format, the second is the function to manage a large number of RINEX files, and

Han et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1800 219

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1800

PeerJ Computer Science

DataManagement Reader QualityCheck
DataFinding(path) gps_pos(path)
#Find the RINEX oheader(path) #GPS postions
files in a path of #Read the header. caluculations.
folder. call observations(path) call ion_mp(path)
DataCleaning(path) #Read the #Calculate
#Data cleaning for a observation data. ionospheric and
RINEX file. multipath effect.

Figure 1 Modules of PyRINEX.
Full-size G DOI: 10.7717/peerjcs.1800/fig-1

the third is the function to check the data quality of RINEX files. These three functions are
stored in three different modules called Reader, Data managements and Quality check.

As shown in Fig. 1, under each of the three modules there are functions written to
achieve different purposes, and the common feature of all these functions is they all need
absolute path of the input RINEX file as an argument. The Reader module provides the
function to read RINEX files, and the other two modules need to call functions from the
Reader module to implement the functions in them.

The biggest advantage of PyRINEX as a package is that the functions can be called freely
by the user to control the process of the any purpose, just like any other package. Figure 2
shows how the three main functions in PyRINEX are implemented. The user can enter
the absolute path of a single RINEX file to be processed into a function under the Reader
module.

PyRINEX also provides the ability to allow users to batch process large amounts of
RINEX data. As shown in Fig. 3, the DataFinding function implements the function of
retrieving and filtering the RINEX data under a certain path. The function is implemented
based on Python’s os library, which is used to interact with the operating system, including
file and directory operations. To use this function the user needs to enter the specified root
directory, a list of keywords to filter its subfolders, and a extension representing the type of
RINEX data file. After that, it will traverse all the files under the path, and then determine
whether it meets the conditions, it is worth noting that even if the input extension is “080”,
some files with “080” as extension will still be output in the result list because the RINEX
standard format does not specify the extension case.

The list can be used as an input parameter to other functions for subsequent processing of
these RINEX data, like reading, data cleaning and quality check. This method of processing

Han et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1800 319

https://peerj.com
https://doi.org/10.7717/peerjcs.1800/fig-1
http://dx.doi.org/10.7717/peerj-cs.1800

PeerJ Computer Science

single
path

{path of; | ‘[LITE
folder DataManagement No—» Reader 'KRINEX

- uTE

DataManagement [Reader 'KRINEXSJ

Reading of RINEX data

cleaned \
RINEX

DataManagement [«
cleaned

RINEX
_Sj Data cleaning of RINEX data

A

v

QualityCheck :{ report

» Reader

Quality check of RINEX data .

Figure 2 Operation mechanism of PyRINEX.

Full-size & DOI: 10.7717/peerjcs.1800/fig-2

by filtering the specified RINEX files allows the user to perform more detailed operations
in processing the data than is possible with other existing programs such as TEQC.

Reading and translation of RINEX data

With PyRINEX, the RINEX data can be translated into a format called LITE RINEX, which
is stored in JSON format. The native RINEX data format is difficult to read and recall due
to the large differences between versions of the RINEX format and the subtle differences
between even the same version of the RINEX format. Therefore, PyRINEX provides the
conversion of the native RINEX data format into a new RINEX data format called LITE
RINEX, which is stored in JSON format, for the sake of implementing the functions of
other modules and for reading RINEX data in later studies.

As shown in Fig. 4, the header section of the RINEX observation file is transformed into
more readable dictionary data. This contains some of the most important information in
the header section in both categories, such as the version of the RINEX file, information
about the type of observation recorded, efc. The second type of information is the marker
name, receiver type, efc. The most important feature of this type of information is that it
can be edited according to the user’s needs, and it can be seen that this type of information
is stored in a list, which is because the number of rows where these information are located
is not fixed, so the line number is stored in the first item of the list for the purpose of
modifying the information later on in the original file.

Han et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1800 419

https://peerj.com
https://doi.org/10.7717/peerjcs.1800/fig-2
http://dx.doi.org/10.7717/peerj-cs.1800

PeerJ Computer Science

DataFinding(| D://RINEX |, | [SWUN, 0001,...] |, 08o

y

D://RINEX//SUWN//0001//00013050.080

D://RINEX//SUWN//0001//00013060.080

D://RINEX//SOUL//0001//00013050.080

D://RINEX//MUJU//00043050.080

["D://IRINEX//SUWN//0001//00013050.080",
"D://RINEX//SUWN//0001//00013060.080",...]

Other
functions

Figure 3 Schematic diagram of the DataFinding function used to implement batch processing.

Full-size ka4l DOI: 10.7717/peerjcs.1800/fig-3

{"version": "2.0",

"type": "M",

"MARKER_NAME": [6, "KHAJ"],

"MARKER_NUMBER": [7, "12361M001"],

"receiver_type": [9, "TPS E_GGD ",

"antenna_type": [10, "JPSREGANT_SD_E NONE"],

"APPROX POSITION XYZ": [-2995264.1836, 2990444.0945, 4755574.7083],
"TIME OF FIRST OBS": ["2008-1-12-0-0-0.000000"],

"END OF HEADER": 17,

"PRNS": ["G01", "G02", "G03", "G04", "G05"],

"ObsTypes™: ['C1", "P1", "P2", "L1", "L2", "D1", "D2"]}

}

Figure 4 The header section of the RINEX observation file after translation to LITE RINEX format.

Full-size Gl DOI: 10.7717/peerjcs.1800/fig-4

Han et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1800

5/19

https://peerj.com
https://doi.org/10.7717/peerjcs.1800/fig-3
https://doi.org/10.7717/peerjcs.1800/fig-4
http://dx.doi.org/10.7717/peerj-cs.1800

PeerJ Computer Science

{08 1 12 23 20 0.0000000": {'sat_num": 11,

'GO3" {P1:' 20100224.7174 ", 'P2":* 20100228.2534 ', 'L1": ' 105627409.520 &', 'L2": ' 82307089.57047",
'GO8": {P1" ' 23822390.0484 ', 'P2": ' 23822394.0044 ', 'L1": ' 125187502.159 5', 'L2": ' 97548727.500421,
'G09": {...},

‘G {1,

'G15" {...},

Wb
'08 1 12 23 20 30.0000000" {...}
!

Figure 5 The observations section of the RINEX observation file after translation to LITE RINEX for-
mat.
Full-size Gl DOI: 10.7717/peerjcs.1800/fig-5

Table 1 Common errors in the header section of RINEX observation files and how to modify them.

Error Part Description Correction

File name 4 character station name designator does not match the First modify the marker in the file, then recalculate the
marker in the file and “doy” is incorrect. “doy”, and then stitch these together into a new file name.

Encoding Some non-English characters that cause the file not be Remove the non-English characters and rewrite the file with
stored according to the utf-8 encoding. utf-8 Encoding.

Receiver/Antenna type Not written in a standard way Modify it after comparing it with the content in the

provided CSV file.
Marker name Not following the 4 characer requierment Modify it to 4 characters by deleting or adding.

As shown in Fig. 5, the same logic applies to the translation of the logged portion of
the observations. PYRINEX provides the ability to translate RINEX observations and GPS
navigation files into LITE RINEX format. This is extremely helpful for a number of studies
that aim to process GNSS observation data.

After the above steps, if the user just needs to read it, the process can be finished in this
stage, but if data cleaning or quality checking is required, the LITE RINEX data processed
in Reader can be fed into the corresponding functions in DataManagemt and QualityCheck
for this purpose.

Data cleaning

Only the header section of the observation file can be specified by the user; thus, only this
section can cause formatting errors. However, the consequences of formatting errors in
this section can be very serious, as GAMIT/GLOBK and other commonly used programs
that handle RINEX files read the files strictly according to the standard RINEX file format;
therefore, the slightest error can cause these programs to report errors. Table 1 presents
the most frequently occurring errors and how to correct them.

Han et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1800 6/19

https://peerj.com
https://doi.org/10.7717/peerjcs.1800/fig-5
http://dx.doi.org/10.7717/peerj-cs.1800

PeerJ Computer Science

Input RINEX paths and
specify the output path
[

v
Read in "utf-8" and
translate to LITE
RINEX
Find non-
English characters and
delete
Compare with the Ll Compare and
MARKER DOY 0.080 first observation time correction
Check if it is four characters, Ll Compare with Ll Compare and
if not, make change marker name correction
IRIMBLEATO0 2 TRIMBLE 4700 {*TRIMBLE4700":"
IRIMBLESTO0 2 TRIMBLE 5700 "
mwm;w 2 TRIMBLE 5800 TRIMBLE 4700",
Example of csv files convertd } Compare and
ReceiverLibrary.csv Receiver dictonary correction
&Antennalibrary.csv &Antenna dictonary
Get receiver type and antenna type modification scheme
APPROX POSITION XYZ convet— |ongitude and latitude

Output to new

paths and
report

Figure 6 Diagram of how the DataCleaning function works.
Full-size &4 DOI: 10.7717/peerjcs.1800/fig-6

As shown in Fig. 6, the basic logic for PYRINEX to modify the four aforementioned
errors is similar. The DataCleaning function in DataManagement provide automatic errata
for LITE RINEX after reading. It should be noted that for receiver type and antenna
type corrections, the CSV files ReceiverLibrary and AntennaLibrary need to be read first,
and PyRINEX will store the incorrect spelling and correct spelling as keys and values,
respectively, as dictionaries in Python after reading them. After that, PyRINEX will check
if there is a key in dictionray when it reads the corresponding line of the two contents, and
if there is, it will replace it with the corresponding value, so that it can correct the specific
contents in this way. The two CSV files can be freely edited by the user, which makes the
processing of the data more customizable.

For the protection of raw data, the new RINEX file after data cleaning will be written to
a specified new path, user needs to specify the root path of the output. After that, PyRINEX
will use the mkdir function in the os library to create a new folder with the corresponding

Han et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1800 719

https://peerj.com
https://doi.org/10.7717/peerjcs.1800/fig-6
http://dx.doi.org/10.7717/peerj-cs.1800

PeerJ Computer Science

Table 2 Criteria for calculable quality checks supported in PyRINEX and their corresponding functions.

System Signal reception Azimuth and Multipath effect Ionospheric delay effect Cycle slip effect

SatelliteSignal Plot elevation ION_MP ION_MP cycleslip

(path) aziele (path) (path) (path)

(path)

GPS supported supported For the L1 and L2 band. For the L1 and L2 band. For the L1 and L2 band.
GLONASS supported unsupported For the G1 and G2 band. For the G1 and G2 band. For the G1 and G2 band.
Galileo supported unsupported For the E1 and E5a band. For the E1 and E5a band. For the E1 and E5a band.
SBAS supported unsupported For the L1 and L5 band. For the L1 and L5 band. For the L1 and L5 band.

“doy” name and write it to it, and then when there are RINEX data observed on the same
date that are cleansed by the data, they will also be written to this folder, which can help to
organize a large amount of unorganized RINEX data.

A CSV file is also output after data cleaning, which records some important information
from the original RINEX file and the new RINEX file that after data cleaning (a sample
report CSV file can be found in File S1). The fields in CSV file also includes longitude
and latitude of where the data observed, they are converted from the approximate XYZ
position from the header. The latitude and longitude recorded in the CSV file allows the
file to be imported into a GIS program for visualization, which can help the user to quickly
understand the geographic location of observations for a set of RINEX data.

Quality check

The QualityCheck module in PyRINEX provides the function of quality check for the
observation data and supports the processing of data from four satellite systems: GPS,
GLONASS, Galileo and SBAS.

As shown in Table 2, the quality checks for signal reception, multipath effect, ionospheric
delay effect and cycle slip effect are supported for all four satellite systems, and only azimuth
and elevation calculations are supported only for GPS satellite systems (this is because
PyRINEX does not have support for navigation data from other satellite systems). The
quality check is similar to data cleaning in that the program reads the translated LITE
RINEX and starts the calculation. The ability to visualize the results of all quality check
calculations using the matplotlib library is provided in PyRINEX.

In the SatelliteSignalPlot function, a visualization of the satellite models received by
the receiver in each time slot is provided. The function outputs a schematic diagram,
which allows the user to visualize the type of satellites received during each time period
and, more importantly, to know which satellites have had interruptions in the reception
of their signals, which means that it is possible that poor observing conditions have
triggered difficulties in the reception of the signals. Figure 7 shows schematic output of the
SatelliteSignalPlot function.

Figure 8 shows schematic output of the azi_ele function. In the azi_ele function, it
will calculate the coordinates of GPS satellites in the Earth-centered and Earth-fixed
coordinate system of the corresponding epoch (please refer to the Appendix S1 for specific
calculations). Subsequently, the approximate coordinates of the geocentric coordinate

Han et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1800 819

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1800#supp-4
http://dx.doi.org/10.7717/peerj-cs.1800#supp-1
http://dx.doi.org/10.7717/peerj-cs.1800

PeerJ Computer Science

02283200 Signal Plot

SATELLITE NO

15 00:00 15 01:00 15 02:00 15 03:00 15 04:00 15 05:00 15 06:00 15 07:00 15 08:00

Figure 7 Schematic output of the SatelliteSignalPlot function.
Full-size & DOI: 10.7717/peerjcs.1800/fig-7

system recorded in the RINEX observation file will be converted into latitude and longitude
coordinates, and the azimuth and elevation of GPS satellites in the epoch can be calculated
by these two equations. Equations (1) and (2) show the calculation of azimuth and elevation,
respectively. ¢R and AR are the longitude and latitude of the receiver, respectively. AX,
AY, and AZ are the geometrical differences between the receiver and GPS satellites.

a:tan_l(—sin ARAX +cos ARAY)

—sin prcos ARAX —sin ggsin ARAY +cosprAZ
o COSQRCOSARAX 4 cOSQRSINARAY +SinARAZ

p=sin < VAXTTAYZ+AZ2 >

(1)

(2)

ION_MP and cycleslip functions have the same basic idea, They all start by using the
Numpy library to construct a 3D array with a size of the number of recorded satellites
multiplied by the number of recorded epochs multiplied by N (N being the number of
results to be computed), the results of the quality checks of the satellites corresponding to
each epoch are then stored in that array.

As shown in Fig. 9, assuming that a particular RINEX file has recorded signal data from
four satellites observed over six epochs, such a Numpy array would be output. A zero
in this array indicates that the corresponding satellite’s signal was missing at that epoch,
resulting in no computational results. Output like this makes it easy for users to perform
more customized analysis and statistics on quality inspection results.

ION_MP function can simultaneously calculate the below two sets of values:

(a) Multi-path effect values (MP1 and MP2) that occur in L1 and L2 bands in each epoch
(corresponding to the GPS system, and corresponding to other satellite systems these band
names will be slightly different, but in the following they will both be referred to by L1 and
L2.). The calculations for MP1 and MP2 are presented in Eqs. (3) and (4). Here, P1 and P2
denote the pseudo-range of L1 and L2, respectively, while ®1 and ®2 represent the phase
measurements of L1 and L2, respectively. The parameter o corresponds to the square of

Han et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1800 919

https://peerj.com
https://doi.org/10.7717/peerjcs.1800/fig-7
http://dx.doi.org/10.7717/peerj-cs.1800

PeerJ Computer Science

02283200SkyPlot
00

e GO02
e GO3
e GO4
e GO6
e GO7
e GO08
e Gl11
e GI13 90°
e Gl16
e G17
e GI19
e G20
e G21
e G23
G25
G27
G28
G31

180°
G32

Figure 8 Schematic output of the azi_ele function.
Full-size tal DOI: 10.7717/peerjcs.1800/fig-8

the ratio of frequencies between L1 and L2 (For example, for the GPS satellite system, the
frequencies of the L1 and L2 bands are 1575.42 Mhz and 1227.60 Mhz, respectively, so «
is about 1.653).

2

MP1=P1—<D1+E(¢1—<D2) (3)
20

MP, =P2—¢2+m(q’1 — o)) (4)

(b) Ionospheric delay (ion) and the temporal rate of change in ionospheric delay
manifest during observations using a dual-frequency receiver.

The ion at one epoch is (The « in both Egs. (5) and (6) are consistent with the o
mentioned above):

ion=a (P, — D). (5)

Han et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1800 10/19

https://peerj.com
https://doi.org/10.7717/peerjcs.1800/fig-8
http://dx.doi.org/10.7717/peerj-cs.1800

PeerJ Computer Science

GO1 G02 GO03 GO04

[MP1, MP2, [MP1, MP2,
EPOCH1| [0,0,0, 0] JON. 10D] ON. 10D] [0, 0, 0, 0]
[MP1, MP2, [MP1, MP2, [MP1, MP2,
EPOCH2 | "IoN, 10D] ION, 10D] [0,0,0,0] ION, 10D]
[MP1, MP2,
EPOCH3| [0, 0,0, 0] [0, 0, 0, 0] [0, 0, 0, 0] |ON. 10D}
epocHa | [MP1, MP2, [MP1, MP2, [MP1, MP2, [MP1, MP2,
ION, 10D] ION, 10D] ION, 10D] ION, 10D]
epocHs | [MP1, MP2, [MP1, MP2, [MP1, MP2, [MP1, MP2,
ION, 10D] ION, 10D] ION, 10D] ION, 10D]
epocHs | [MP1, MP2, [MP1, MP2, [MP1, MP2, [MP1, MP2,
ION, 10D] ION, 10D] ION, 10D] ION, 10D]

Figure 9 Schematic of the Numpy array calculated by ION_MP and cycleslip functions.
Full-size Gal DOI: 10.7717/peerjcs.1800/fig-9

The temporal rate of change as the time derivative of the ionospheric delay (iod) at a
specific epoch tdata is

N L T e 2P
a—1 tdata — tdata—1 .

The cycleslip function calculates the value of the cycle slip effect, determined using the
Turbo Edit algorithm established by Blewitt (1990). In this algorithm, cycle slip detection
relies on M-W combination (Melbourne, 1985) and geometry-free combination, as outlined
by Cai et al. (2013).

The M-W combination observation can be defined as:

firli®1—f- 2P fi-Pi+fi- P
= =h Y = AwrNwr. (7)

In Eq. (7), AW L = ¢/(fl1 -f2) ~0.86 m (Take the GPS system as an example.) and NW
L = N1-N2 are the widelane wavelength and widelane ambiguity, respectively. Where NW

(6)

iod =

Lyw

L can be regarded as a cycle slip test quantity, due to the fact that it is close to a constant
when no cycle slip occurs.
The wide-lane ambiguity can be obtained from Eq. (7) as

L -P -P
MW:d>1—<I>2—f1 1+f-P;

AWL e (fi+f)
The stability of the widelane ambiguity persists over time, provided that the phase

(8)

Ny =

observations are devoid of cycle slips. In Blewitt’s TurboEdit algorithm, a recursive

Han et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1800 11/19

https://peerj.com
https://doi.org/10.7717/peerjcs.1800/fig-9
http://dx.doi.org/10.7717/peerj-cs.1800

PeerJ Computer Science

02283200 MP1 plot

15

E G02 . G19

a GO3 . G20

= Go4 . G21

G06 . G23

GO7 G25

Go8 G27

G11 G28

G13 G31

15 G16 G32
G17

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00

Figure 10 Sample output from ION_MP and cycleslip functions. A sample output of a complete quality
check is available in the Supplemental Files.
Full-size Gl DOTI: 10.7717/peerjcs.1800/fig-10

averaging filter is employed for cycle slip detection utilizing the M-W combination,
however, the final result provided in PyRINEX is the difference between the calculated
NW L corresponding to each epoch and the NW L of the two neighboring epochs, and this
difference is calculated after two difference calculations. If the difference is large it means
that cycle slip has occurred, and the calculation results of each epoch can also be used to
judge the quality of the observed signal of that epoch by the magnitude of the value.

Figure 10 shows a sample output MP1 computation result for the ION_MP function,
where the computation result for each satellite of each epoch is plotted as a point in the
result plot. In PyRINEX the ION_MP and cycleslip functions output a result plot for each
of the five calculations MP1, MP2, ion, iod and cyc (with the difference in NW L between
two neighboring epochs).

Unlike TEQC, PyRINEX supports quality checking of RINEX files from version 3.0
onwards. The output of quality check results are more intuitive. PyRINEX also outputs
the Numpy array shown in Fig. 9 in CSV mode (A sample output CSV file is found in
supplemental files along with the quality check results), which is more convenient for
users who are more accustomed to working with CSV data. These CSV files are especially
important when using Excel or similar software if users who want to produce more
customized visual quality check results.

Testing of PyRINEX

To test PyRINEX, in this article applied it to a research project from the Korea National

Geographic Information Institute (NGII), in which NGII attempted to organize data from
GPS observations taken at unified control points in Korea over the past decade or so and
to apply it to a number of follow-up studies. In this article, use the data from 2008 as an

Han et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1800 12/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1800#supplemental-information
https://doi.org/10.7717/peerjcs.1800/fig-10
http://dx.doi.org/10.7717/peerj-cs.1800

PeerJ Computer Science

District Point type Observation date Data type Station File
—> 0392
— RINEX _W
’——{ 20081123 |—— > 0393
Umﬂedlcontro\ 20081124 Ll RAW
point
—
—>| Gyeonggi - ™ RINEX SUWN3280.08N
20081123 m l» SUWN H
2008 | Satellite .retference 20081124
points —» RAW SUWN3280.080

—» Chungcheong

Figure 11 Structure of the dataset.
Full-size Gal DOI: 10.7717/peerjcs.1800/fig-11

example, which was chosen because the dataset from that year is relatively old, and at that
time the dataset from that year was of lower quality due to unskilled surveyors.

As shown in Fig. 11, the biggest problem encountered in the first step of processing the
data is that the structure of the data set is very complex, with six levels of paths, which
are initially divided into larger administrative areas, and the biggest problem is that at the
second level they are divided into two types of unified control points and satellite reference
points. The former is a total of 5,588 measurement reference points spread throughout
Korea, GNSS observations will be made at these points from time to time. The latter is a
total of 92 satellite reference points on which GNSS observation receivers are installed for
24-hour observation (The number of data in the dataset is less than the number of sites
because not every site is observed every year). If the researcher just use file manager simply
searches by the suffix “080”, the results of observations at satellite reference points that are
not needed will be mixed in.

We first filtered this dataset using the file filter in DataManagement module and wrote it
under a new path, performing an errata on the file format at the same time in the process.
As shown in Fig. 12, the new dataset has much cleaner paths and is easier to call.

As shown in Table 3, the frequency of occurrence of various types of formatting errors
in the dataset can be counted after data cleaning. It can be seen that the percentage of
non-English characters errors is the highest, a total of 411 files out of 898 files have wrong
file names, accounting for 45%. In total, there were 663 files with one or more formatting
errors, accounting for 73% of the total, and more than half of the files could not be directly

applied to programs such as GAMIT, Bernese, and so on. In the past, these errors would

Han et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1800 13/19

https://peerj.com
https://doi.org/10.7717/peerjcs.1800/fig-11
http://dx.doi.org/10.7717/peerj-cs.1800

PeerJ Computer Science

03923280.08N

328
03923280.080
» 03933280.08N

2008 329
03933280.080

Figure 12 Structure of the new dataset.
Full-size Gal DOI: 10.7717/peerjcs.1800/fig-12

Table 3 Statistics on the results of data cleaning.

Error part Filename Non-English Receiver Marker Total
characters type name formatting
errors
Amount 285 411 227 2 663
Percentage 32% 45% 25% 2% 73%

have been corrected manually by a researcher spending a lot of time, but it only takes a
minute to process about a thousand files in PyRINEX.

As shown in Fig. 13, the spatial distribution of observations in this dataset can be
analyzed after inputting the data cleaned report CSV file into the GIS software. It can be
clearly seen that the distribution of the stations with problems in RINEX format has a
clear distribution tendency according to administrative divisions, this is because all the
observations are divided into administrative regions for different operators to carry out
observations, and if a surveyor keeps the same error habit when generating RINEX files, it
will lead to the problems of the RINEX files of a region.

Subsequently, in order to test the reliability of the satellite data quality check, data
obtained after observations at a group of sites in Korea in November of that year were
chosen as a test. Figure 14 shows the sites that were chosen for testing.

Han et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1800 14/19

https://peerj.com
https://doi.org/10.7717/peerjcs.1800/fig-12
http://dx.doi.org/10.7717/peerj-cs.1800

PeerJ Computer Science

o Site
® Correct site
Y Incorrect site

N~ District
[General area
[J High frequency error area

1:964,601.73567

Figure 13 Distribution map of observation sites. Base map source: National Spatial Data Infrastructure
Portal.
Full-size Gl DOI: 10.7717/peerjcs.1800/fig-13

o'7230 ’
10230 /
P .
00221 ///
4
»
o’SUWN o0231
7291
0001 °
NG
W
o
2
/
P 0'0291 Site type
e ® Satellite reference point
1:58,115.654475 e Unified control point

Figure 14 Sites chosen for testing. Base map source: National Spatial Data Infrastructure Portal.
Full-size Gal DOI: 10.7717/peerjcs.1800/fig-14

Han et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1800 15/19

https://peerj.com
https://doi.org/10.7717/peerjcs.1800/fig-13
https://doi.org/10.7717/peerjcs.1800/fig-14
http://dx.doi.org/10.7717/peerj-cs.1800

PeerJ Computer Science

Table 4 Quality check results for the SUWN site.

PARAMETERS MP1(m) MP2(m) CYCLESLIPS ION 10D
Criteria <0.35 <0.46 <£0.59 <+£6.58 <+£0.05
Allowance 90% 90% 90% 90% 90%

Table5 Results of quality check.

SITE MARKER MP1 MP2 ion iod cyc
0001 91.4% 90.2% 99.9% 93.5% 77.9%
0221 90.4% 87.2% 97.7% 92.3% 60.95%
0228 91.1% 90.9% 97.2% 93.7% 71.3%
0230 90.8% 91.1% 99.9% 93.9% 72.4%
0231 88.7% 86.6% 95.5% 94.0% 78.0%
0291 90.5% 90.3% 97.7% 93.8% 70.1%
7221 61.3% 67.4% 100.0% 93.3% 30.9%
7230 65.2% 66.6% 92.9% 92.3% 43.0%
0184 68.6% 70.2% 99.7% 96.0% 37.7%

The selected sites are near Suwon, Gyeonggi-do, because there is a site’s marker named
“SUWN?”, which was set up by NGII, with a good receiver and good observation condition,
and is part of the IGS global network, so the quality of the data obtained from the station
can be trusted.

In this experiment the observation at the SUWN site were first quality checked and the
results of the quality check were used as the signal quality standard for that time period.
Because there is currently no common standard for quality check indicators. The data for
the SUWN site are available in the Crustal Dynamics Data Information System (CDDIS),
and since this database provides daily data, this RINEX data was first clipped to set the time
period of its observations to coincide with the observations made at the unified control
point.

The results of the quality checks performed on the SUWN sites are shown in Table 4.
The results of all the quality checks in this study were limited to a distribution range of
90%, and then the upper and lower limits of this distribution range were obtained and
designated as the criteria for the quality check results when observations were made in the
area during that time period.

The results of the quality check of the RINEX data in the test set are presented in Table 5.
It can be noticed that for the four results MP1, MP2, ion and iod at most of the sites, the
data obtained from the observations at these unified control points are not much worse
than those at the SUWN site, but the results for cyc are clearly very different, which is due
to the differences in the observation conditions.

After that, the best quality check resolution 0001, 0230 and 0231 were taken as a set of
data and the worst 7,221, 7,230 and 0184 were taken as a set of data. These two sets of data
were subjected to network adjustment together with the data from SUWN sites, and these
data needed to be designated as control points.

Han et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1800 16/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1800

PeerJ Computer Science

Table 6 Comparison of SUWN coordinates calculated by two network adjustments and coordinates

provided by NGIIL.

Source Longitude Latitude

Provided by NGII 37°16/31.8529 N 127°03'15.2638 E
Adjustment with bad data 37°16/31.86561"N 127°03'15.27481"E
Adjustment with good data 37°16'31.86300' N 127°03'15.25229"E

Table 6 shows the results of the two network adjustment, the exact coordinates of SUWN
in the first row is provided by NGII. The difference between the two results and the exact
coordinates is then calculated using the Haversine formula as follow

Distance =

.1 . ALatitude)) . ALongitude
2-R-sin sin2 — + cos(Latitude,) - cos(Latitude,) - sin2 — (9)

where A Latitude and A Longitude are the latitude difference and longitude difference
between the two points, latitudel and latitude2 are the latitudes of the two points,
respectively, and R is the radius of the Earth, which is taken to be 6,371 km.

The final result obtained was that when the network adjustment was done with the
worse sites, the obtained SUWN’s stations differed from the actual coordinates by about
369 m, compared to about 6 m when it was done with the better sites. This proves that the
quality check function of PyRINEX is reliable and can distinguish between good and bad
quality RINEX data.

CONCLUSIONS

A Python package was developed for preprocessing GNSS RINEX files, including data
cleaning and quality checking for satellite data, and supporting batch processing of large
amounts of data. This package has the following features:

1. It can read the most common RINEX file versions (2.0 and 3.0) and automatically
extract important information to a new JSON format to make it easier for subsequent
users to analyze RINEX files.

2. It can handle errors in file format caused by user mistakes in the header section of
RINEX observation files, allowing normal processing by programs like GAMIT.

3. It supports quality checking of GPS, Galileo, GLONASS and SBAS satellite data,
including elevation and azimuth (just for GPS sensing data), MP1, MP2, ion, iod, and
cyc, with visualization of the quality check results. To support further research, quality
check results can be exported to a CSV file.

The datasets obtained from the NGII observations in 2008 were processed, and it was
found that the program can be used in practical research and engineering projects to
efficiently process numerous RINEX files for data cleaning. Accordingly, its quality check
function can be used as a tool to assess the quality of data in practical GNSS observation
projects and positioning.

At this stage, there are not many free programs that can be used to perform quality
checks on RINEX data, and the most prestigious one, TEQC, has ended its life cycle (EOL)

Han et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1800 1719

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1800

PeerJ Computer Science

after the final version was released on February 25, 2019, and its last version is still not
able to process RINEX data from version 3.0 and above. Researchers are faced with the
problem of either continuing to use unmaintained TEQC or paying hundreds or thousands
of dollars for commercial software. At the same time, PyRINEX offers the ability to manage
large amounts of RINEX data in a way that existing programs, including TEQC, do not.

PyRINEX demonstrates its superiority when dealing with tens of thousands of RINEX
data for nation-based studies. The built-in automatic conditional judgment function that
enables data cleaning to be performed automatically is also an innovative point. The ability
to output multiple data types with its quality checking feature also allows researchers to
conduct more detailed and in-depth studies. PyRINEX as the next potential alternative,
which is open source and makes all code public. This package, written 100% in Python, has
a good readability that allows researchers to quickly understand it and develop it. It can
be used in any IDE like Numpy or matplotlib and other prestigious libraries. This means
that the package is very easy to use. Its expandability allows it to be used for a variety of
different purposes in research and practical engineering.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This research was supporled by the National Research Foundation of Korea (NRF) grant
funded by the Korean Government (MSIT) (no. 2021R1A2C201231913). The funders had
no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

National Research Foundation of Korea (NRF) by the Korean Government (MSIT):
2021R1A2C201231913.

Competing Interests
The authors declare there are no competing interests.

Author Contributions

e Jinzhen Han conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

e Seung Jun Lee performed the experiments, prepared figures and/or tables, and approved
the final draft.

e Hong Sik Yun conceived and designed the experiments, authored or reviewed drafts of
the article, and approved the final draft.

e Kwang Bae Kim performed the experiments, authored or reviewed drafts of the article,
and approved the final draft.

e Sang Won Bae analyzed the data, authored or reviewed drafts of the article, and approved
the final draft.

Han et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1800 18/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1800

PeerJ Computer Science

Data Availability
The following information was supplied regarding data availability:

All source code is avaialble at GitHub and Zenodo. The data is available at Zenodo
(PyRINEX_TestData):

https:/github.com/geum;jin99/PyRINEX

geumjin99. (2023). geum]jin99/PyRINEX: v3.0.1 (v3.0.1). Zenodo. https:/doi.org/10.
5281/zenodo.10288240.

Supplemental Information
Supplemental information for this article can be found online at http:/dx.doi.org/10.7717/
peerj-cs.1800#supplemental-information.

REFERENCES

Blewitt G. 1990. An automatic editing algorithm for GPS data. Geophysical Research
Letters 17(3):199-202 DOT 10.1029/GL017i003p00199.

Cai G, Liu Z, Xia P, Dai W. 2013. Cycle slip detection and repair for undifferenced
GPS observations under high ionospheric activity. GPS Solutions 17:247-260
DOI 10.1007/s10291-012-0275-7.

Dach R, Walser P. 2015. Bernese GNSS Software Version 5.2. Available at https://citeseerx.
ist.psu.edu/document?repid=rep 1 &type=pdferdoi=abaalf824259ccced6ca660d5cc883
bd50£76552.

Estey LH, Meertens CM. 1999. TEQC: the multi-purpose toolkit for GPS/GLONASS
data. GPS Solutions 3(1):42—-49 DOI 10.1007/PL0O0012778.

Gurtner W, Estey L. 2007. RINEX: the receiver independent exchange format version
2.11. Available at hitps://epic.awi.de/id/eprint/35979/1 /rinex211.ixt .

Herring TA, King RW, McClusky SC. 2010. Introduction to gamit/globk. Cambridge:
Massachusetts Institute of Technology.

Hilla S. 2002. A new plotting program for Windows-based TEQC users. GPS Solutions
6(3):196-200 DOT 10.1007/s10291-002-0027-1.

Karaim M, Elsheikh M, Noureldin A, Rustamov RB. 2018. GNSS error sources. In:
Multifunctional Operation and Application of GPS. London, 69-85.

Lee D, Cho J, Suh Y, Hwang J, Yun H. 2012. A new window-based program for quality
control of GPS sensing data. Remote Sensing 4(10):3168-3183
DOI 10.3390/rs4103168.

Melbourne WG. 1985. The case for ranging in GPS-based geodetic systems. In: Pro-
ceedings of the first international symposium on precise positioning with the Global
Positioning System. Maryland: 373-386.

Ogaja C, Hedfors J. 2007. TEQC multipath metrics in MATLAB. GPS Solutions
11:215-222 DOI 10.1007/s10291-006-0052-6.

Vaclavovic P, Dousa J. 2016. G-Nut/Anubis: open-source tool for multi-GNSS data
monitoring with a multipath detection for new signals, frequencies and constel-
lations. In IAG 150 Years. In: Proceedings of the IAG scientific assembly in postdam,
Germany, 2013. Cham: Springer International Publishing, 775-782.

Han et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1800 19/19

https://peerj.com
https://github.com/geumjin99/PyRINEX
https://doi.org/10.5281/zenodo.10288240
https://doi.org/10.5281/zenodo.10288240
http://dx.doi.org/10.7717/peerj-cs.1800#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1800#supplemental-information
http://dx.doi.org/10.1029/GL017i003p00199
http://dx.doi.org/10.1007/s10291-012-0275-7
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=abaa1f824259ccced6ca660d5cc883bd50f76552
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=abaa1f824259ccced6ca660d5cc883bd50f76552
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=abaa1f824259ccced6ca660d5cc883bd50f76552
http://dx.doi.org/10.1007/PL00012778
https://epic.awi.de/id/eprint/35979/1/rinex211.txt
http://dx.doi.org/10.1007/s10291-002-0027-1
http://dx.doi.org/10.3390/rs4103168
http://dx.doi.org/10.1007/s10291-006-0052-6
http://dx.doi.org/10.7717/peerj-cs.1800

