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by encoding and enhancing multidimensional data through VAE. It then employs the
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apex of the model's clustering capabilities. In the experimentation, we subject the model
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the model's commendable performance in comparison to publicly available datasets,
surpassing numerous deep clustering networks at this juncture. In the realm of financial
data, the ATT-VAE model, as presented within this treatise, achieves a clustering accuracy
index exceeding 0.7, a feat demonstrably superior to its counterparts in the realm of deep
clustering networks. The method outlined herein provides algorithmic foundations and
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12 Abstract

13 Amid the ever-expanding landscape of financial data, the importance of predicting potential 

14 risks through artificial intelligence methodologies has steadily risen. To achieve prudent financial 

15 data management, this manuscript delves into the domain of intelligent financial risk forecasting 

16 within the scope of system design. It presents a data model based on the variational encoder 

17 (VAE) enhanced with an attention mechanism, meticulously tailored for forecasting a company's 

18 financial peril. The framework embarks on its journey by encoding and enhancing 

19 multidimensional data through VAE. It then employs the attention mechanism to enrich the 

20 outputs of the VAE network, thereby demonstrating the apex of the model's clustering capabilities. 

21 In the experimentation, we subject the model to a battery of training tests using diverse datasets. 

22 The results conspicuously highlight the model's commendable performance in comparison to 

23 publicly available datasets, surpassing numerous deep clustering networks at this juncture. In the 

24 realm of financial data, the ATT-VAE model, as presented within this treatise, achieves a 

25 clustering accuracy index exceeding 0.7, a feat demonstrably superior to its counterparts in the 

26 realm of deep clustering networks. The method outlined herein provides algorithmic foundations 

27 and serves as a pivotal reference for the prospective domain of intelligent financial data 

28 governance and scrutiny.

29 Keywords: CNN; VAE; Attention Mechanism; deep clustering; Finance risk prediction.

30 1 Introduction
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31

32 With the continuous development of the global economy, refined quantitative analysis of 

33 finance has become an indispensable part of decision-making for enterprises and investors. 

34 Financial analysis can help investors and clients evaluate the financial health of a company, 

35 thereby completing corresponding tasks from a more scientific perspective. Traditional financial 

36 analysis methods include financial ratios, financial statement analysis, trend analysis, and 

37 comparative analysis. In the study of financial information, the focus needs to monitor the financial 

38 risks of companies. Once financial risks occur, especially for listed companies, it will bring huge 

39 losses or even bankruptcy to the enterprise. Financial risks may also lead to deterioration of the 

40 company's operating conditions, decline in stock prices, loss of investor confidence, and other 

41 issues, thereby affecting the long-term development and interests of the company. Therefore, 

42 monitoring the financial condition of a company and evaluating its financial health through more 

43 intelligent means has become a research focus in the current financial and financial data 

44 management fields. [2] .

45 The types of financial data are complex, especially for large listed companies, which have a 

46 massive amount of financial data, such as the company's profits, cash flow, liabilities, and revenue 

47 on the same day. In addition to these numerical types of data, it usually includes text and chart 

48 forms of data. Therefore, leveraging the data processing advantages of machine learning and 

49 deep learning methods to achieve multimodal data fusion is very important for intelligent 

50 management of financial data. The task of financial analysis is to identify financial risks through 

51 the clustering method of multimodal data, which is a clustering problem. Traditional machine 

52 learning methods typically rely on manually designed features and have limited ability to handle 

53 massive amounts of data. Some traditional clustering algorithms, such as K-means clustering, 

54 are very sensitive to the selection of initial cluster centers. Different initial values may lead to 

55 different clustering results, and it is necessary to run the algorithm multiple times to obtain stable 

56 results. If financial analysis involves textual data, traditional machine learning methods may not 

57 be as flexible in processing and analyzing textual features as deep learning methods.

58 Deep learning models are usually more suitable for situations with complex data modalities 

59 and diverse properties, such as auto-encoder. Autoencoder is an unsupervised learning model 

60 commonly used for feature learning and data dimensionality reduction [4]. Deep models such as 

61 CNN, LSTM, and other modeling methods that excel in processing time series data [5] can capture 

62 implicit features in time series, thereby completing tasks such as data classification, regression, 

63 and prediction. These methods are used in fields such as stock prediction and futures analysis in 

64 the financial field. For the design of an intelligent financial system data system, in addition to 

65 ensuring basic data storage and visualization functions, it also requires a certain level of intelligent 

66 decision-making ability. Using deep learning methods to identify financial risks based on 

67 multimodal data is crucial for the construction of financial systems. This article proposes a 

68 clustering model based on deep networks for intelligent management of financial data, aiming to 

69 achieve intelligent clustering of financial data risks. The specific contributions are as follows::

70 (1) Synergizing Multiple Techniques: Our method amalgamates the Variational 

71 Autoencoder (VAE) and the attention mechanism, facilitating multi-dimensional data 
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72 clustering and enhancing financial data analysis. The combination of these techniques 

73 maximizes the performance of each method and improves data clustering capabilities.

74 (2) Holistic Financial Data Analysis: Our approach not only enables high-quality clustering 

75 analysis of financial data but also supports intelligent financial system management, 

76 substantially reducing human intervention for sustainable development.

77 (3) Model Validation: We validate our approach against established clustering databases 

78 and benchmark it against common deep clustering network methods. The experimental 

79 results demonstrate the superior performance of the proposed ATT-VAE method in 

80 analyzing financial risk data.

81 The subsequent sections of this paper are organized as follows: Section 2 presents related 

82 work, while Section 3 introduces the proposed methods, VAE, and the Attention mechanism. 

83 Section 4 provides details about the experiments, and Section 5 offers conclusions..

84 2 Related works

85 2.1 Intelligent management of financial data

86 The realm of financial risk early warning holds a pivotal standing within the purview of 

87 financial management and investment decision-making. As the sands of time have drifted by, the 

88 focus of inquiry and the arsenal of analytical tools have undergone a progressive evolution. It has 

89 transitioned from the examination of a scant number of company samples in its nascent stages 

90 to the comprehensive scrutiny of a multitude of companies replete with complete datasets. 

91 Concurrently, the means of analysis has advanced from the rudimentary utilization of financial 

92 indicator ratios to the construction of secondary indicators. It has further embraced the infusion of 

93 mathematical and statistical methodologies to give rise to multivariate discriminant analysis 

94 models, epitomized by the Z models. Presently, the landscape resonates with the widespread 

95 adoption of diverse machine learning and deep learning models [6]. Ohlson's seminal work, 

96 expounded in [7], unveiled a Logistic-based early warning model. This model, distilled through the 

97 meticulous examination of over 2,000 solvent and insolvent companies, aspires to prognosticate 

98 the probability distribution of corporate bankruptcy. Shin and colleagues [8] embarked on a 

99 pioneering exploration into the application of support vector machine models within the sphere of 

100 machine learning for financial risk prognosis. Empirical evidence underscored the supremacy of 

101 the SVM model over traditional multivariate discriminant analysis and Logit models in the realm 

102 of financial risk assessment. With the burgeoning computational prowess, the mantle was passed 

103 to neural network models and CNN models, both of which garnered resounding success within 

104 this domain [9]. Odom et al [10] championed a financial risk early warning model leveraging artificial 

105 neural networks. They painstakingly assembled a dataset teeming with an equitable number of 

106 precarious and stable companies for in-depth analysis, ultimately yielding commendable 

107 predictive outcomes. Marcano et al ventured into the realm of meta plasticity neural networks 

108 (AMMLP) and engineered an enhanced ANN model for credit default risk evaluation [11]. 

PeerJ Comput. Sci. reviewing PDF | (CS-2023:10:91714:0:3:NEW 24 Oct 2023)

Manuscript to be reviewedComputer Science



109 Furthermore, Hosaka introduced a novel approach, transmuting the financial indicators of 

110 insolvent companies into grayscale images. Subsequently, they harnessed a CNN deep learning 

111 model to prognosticate corporate bankruptcy risks with promising outcomes [12].

112

113 2.2 Research on Traditional Clustering Methods

114 Traditional clustering algorithms, often referred to as early clustering algorithms, exhibit 

115 commendable performance on small-scale, low-dimensional datasets. Their development has 

116 reached a mature stage, owing to their intuitively comprehensible principles and straightforward 

117 implementation. These methods find extensive utility across various domains, particularly in the 

118 realm of image processing. Prominent among these traditional clustering algorithms are the K-

119 Means algorithm and the spectral clustering algorithm, among others. Typically, these algorithms 

120 take as input a data matrix composed of image or text features, employing diverse clustering 

121 strategies to gauge the similarity relationships among these features and subsequently generating 

122 clustering outcomes [13].The K-Means clustering algorithm halts when it attains a local optimum 

123 solution. Notably, it is tailored for numerical data clustering. It boasts the virtues of simplicity and 

124 efficiency, characterized by low algorithmic complexity. However, it bears certain drawbacks, such 

125 as sensitivity to predetermined values for the number of clusters, vulnerability to noise and 

126 outliers, and suboptimal performance on datasets with non-spherical clusters. In an endeavor to 

127 enhance the K-Means algorithm's performance, the DIANA split hierarchical clustering algorithm 

128 was introduced, treating the provided data as a cluster structure and progressively partitioning 

129 the most recently formed cluster into smaller clusters based on cluster diameter or average 

130 dissimilarity [14].

131 Guha et al. introduced the CURE algorithm, an improved hierarchical clustering method that 

132 leverages a representative subset of points to depict a cluster, departing from the conventional 

133 approach of using all points or a single center of mass. This modification renders it more resilient 

134 to isolated points and equips it to identify clusters characterized by complex shapes and varying 

135 sizes [15]. The incorporation of fuzzy set theory into hard clustering algorithms, assigning each 

136 sample a certain probability of belonging to a particular class, has birthed fuzzy clustering 

137 algorithms [16]. Krinidis et al. contributed a robust C-mean clustering algorithm for fuzzy local 

138 information, introducing a fuzzy local neighborhood factor to amalgamate local spatial and 

139 grayscale information, thereby diminishing the clustering method's sensitivity to noise [17].

140 Karlekar et al. introduced a fuzzy clustering technique employing nonlinear distances, substituting 

141 s-distance for the Euclidean distance metric, resulting in more robust natural clustering outcomes 

142 [18]. Beyond K-Means approaches, spectral clustering and its derivatives have garnered significant 

143 traction in contemporary clustering methodologies. Wang et al. introduced constrained spectral 

144 clustering, augmenting spectral clustering with additional sub-information to bolster clustering 
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145 results. By leveraging pairwise constraints, this approach tackles challenging segmentation tasks 

146 by determining whether two points are linked based on the introduced edge information [19]. Chen 

147 et al. proposed a parallel spectral clustering approach for deployment in distributed systems [20]. 

148 They juxtaposed two methods for approximating dense matrices to address concerns related to 

149 memory consumption and computational time scalability in spectral clustering. Ultimately, they 

150 opted to retain the nearest neighbors to sparsify the matrix, a strategy applicable to solving 

151 problems within distributed systems. Traditional clustering methodologies can also harness 

152 representation learning techniques for feature extraction, including subspace representation 

153 learning and deep network representation learning. This circumvents the limitations of 

154 conventional methods when confronted with high-dimensional data.

155

156 2.3 Research on clustering algorithms based on deep learning

157 Deep learning based clustering methods are categorized into generative model based 

158 methods and discriminative model based methods based on the nature of the network model and 

159 the results of these two types of methods can be subdivided again as shown in Figure 1:

160

161 Figure 1 The deep clustering methods

162 Deep clustering methods encompass a diverse array of techniques, including those 

163 predicated on VAE, GAN, intricate deep models, and GNN. The architecture of autoencoder-

164 based clustering methods typically comprises two fundamental components: the autoencoder 

165 module and the similarity measure module [21]. Various methods adopt distinct training strategies, 

166 with one of the pioneering approaches being the inception of deep embedding clustering [22]. This 

167 method disentangles the dimensionality reduction process from the similarity metric computation 

168 within the framework. It commences with the acquisition of a proficient encoder model via self-

169 encoder training, subsequently proceeding to joint training of the encoder and similarity metric 

170 modules. However, this approach renders the embedded features overly reliant on the initialized 

171 encoder model, which can exert an impact on clustering outcomes. Building upon this foundation, 

172 a fusion between the traditional K-means method and deep clustering methodology was realized, 

173 culminating in the co-optimization of dimensionality reduction and similarity metrics, thereby 

174 yielding more optimized results [23]. Presently, deep learning-based clustering methodologies 

175 predominantly hinge on similarity metrics. In pursuit of neighborhood relationships, these methods 

176 typically employ local constraints during the similarity metric computation process. While local 

177 constraints effectively ascertain the similarity of points within clusters, they may falter in precisely 

178 distinguishing the class attributes of points positioned at the cluster periphery. Consequently, this 

179 can result in indistinct cluster boundaries within the feature space [24]. Moreover, approaches 

180 grounded in self-coder models can also be amalgamated with spectral clustering, subspace 

181 clustering, and other techniques. The choice of neural networks for encoding can significantly 

182 impact outcomes, with convolutional neural networks often outperforming fully connected neural 

183 networks [25-26].
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184 The evolution of segment clustering research clearly demonstrates that contemporary deep 

185 learning methods offer superior practical utility when juxtaposed with traditional clustering 

186 approaches. Furthermore, the amalgamation of VAE with CNN and other techniques augments 

187 the robustness of self-supervised and semi-supervised models. Given the sheer volume of 

188 financial data, along with the challenges of missing data and the impracticality of manual labeling, 

189 the adoption of advanced deep clustering methods assumes paramount significance in the 

190 domain of financial system management. Consequently, this manuscript proffers a novel 

191 proposition: the enhancement of unsupervised analysis of financial data through the synergistic 

192 integration of VAE and existing CNN methodologies.

193 3 Methodology

194 CNN is an influential deep learning model extensively deployed in computer vision tasks, 

195 encompassing image classification, target detection, and image segmentation. The watershed 

196 moment for CNNs occurred in 2012 with the advent of the AlexNet network [27], which solidified 

197 the standing of convolutional neural networks in the domain of deep learning. In this study, we 

198 opt to employ AlexNet for data analysis. In addition to the convolution operation outlined in 

199 equation (1), AlexNet augments network generalization performance by incorporating local 

200 normalization (LRN). The LRN is computed as depicted in equation (2):

201    (1)( * )( , ) ( , ) ( , )
a b
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203

204 In equation (1), I represents the input data, K is the convolution kernel, i,j are the coordinates 

205 of the convolution kernel, and a and b are the radii of the convolution kernel. For Alexnet's special 

206 link LRN, R in Eq. (2) represents the output response, A is the original unnormalized response, 

207 and the rest of the adjustable parameters are used to control the degree of normalization and 

208 parameters such as the window and the number of channels. In addition to this, models such as 

209 ResNet, GoogleNet, etc. are widely used methods in CNN-like networks [28]. The clustering ability 

210 of the model can be greatly enhanced by augmenting the current information through 

211 convolutional neural networks.

212

213 3.2 Self-Encoder (AE) Models and Variational Self-Encoders (VAE)

214 AE and VAE both belong to the realm of unsupervised learning models that find prominent 

215 utility in deep learning for uncovering latent data representations. They serve a multitude of 
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216 purposes, including feature extraction, data compression, and dimensionality reduction. AE 

217 constitutes a neural network architecture comprising two principal components: an encoder and 

218 a decoder. The encoder serves to map input data into a lower-dimensional representation, while 

219 the decoder endeavors to reconstruct this lower-dimensional representation back into the original 

220 input data. The primary objective of AE is twofold: to achieve accurate reconstruction of the input 

221 data and to distill essential features of the input data within the low-dimensional representation 

222 generated by the encoder. This is illustrated in Figure 2:

223

224 Figure 2 Structure of self-encoder 

225 For encoding and decoding of the encoder is done through function mapping, after 

226 completion, the model training needs to be realized through the definition of the loss function and 

227 objective function, which are defined as shown in equations (3) and (4):

228      (3)�(�,�') =
1�∑��= 1

 (��−�'�)2

229 Where:.  denotes the loss function, representing the original input  and reconstructed input L(x,x
') x

230  mean square error between the original and reconstructed inputs.x
'

231 The goal of this loss function is to minimize the difference between the reconstructed data 

232 and the original input, allowing the AE to learn a valid representation of the data. However, 

233 depending on the specific task and data type, other loss functions can be chosen, such as the 

234 cross-hashing loss. The objective function is then expressed by equation (4).

235     (4)Θ ∗ = arg minΘ  1�∑��= 1
 �(�(�)

,�(�))
236 Where:  denotes the model parameters to be optimized to minimize the loss function.  Θ ∗ N

237 denotes the number of samples in the training dataset.  denotes the loss function that L(x
(i)

,x
'(i))

238 measures the number of samples in the first  original input of the first training sample  and i x
(i)

239 reconstructed input  between the original and reconstructed inputs of the first training sample, x
'(i)

240 and the mean square error or other loss measures. The optimal output of the model can be 

241 obtained by optimizing the objective function and the loss function.

242

243 3.3 Overall framework of the attention-based VAE

244 VAE has the following advantages over ordinary AE: a VAE is a generative model that learns 

245 valid data representations and generates new samples; its latent space is continuous and 

246 interpretable, allowing operations such as interpolation, sampling, and so on, to generate diverse 

247 samples; the latent representations are more easily interpretable, which helps with a variety of 

248 downstream tasks; and the generated samples are typically of higher quality because the VAE 

249 generates samples by learning the latent distributions, rather than just replicating the training data 

250 points. The structure of the VAE is shown in Figure 3:
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251

252 Figure 3 The framework for the VAE

253

254 Figure 3 underscores the key distinction between VAE and AE. In VAE, an additional 

255 statistical module comes into play, which corresponds to the encoder component of the VAE, 

256 while the generator aligns with the decoder, symmetrically positioned with respect to the encoder. 

257 The encoder undertakes the computation of mean and variance for each input, assigning a normal 

258 distribution to each input data point. It's essential to ensure that the variance in this normal 

259 distribution is not zero, as a zero variance would lead to a loss of randomness, making it 

260 challenging for the decoder to effectively reconstruct the samples in the presence of noise. During 

261 the sampling process, as sampling itself is a non-differentiable operation, the sampled result is 

262 not directly amenable to gradient-based optimization. To circumvent this issue, the re-

263 parameterization technique is employed, allowing for the design of a differentiable sampling 

264 operation. This enables the optimization of the mean-variance model in reverse. The probability 

265 distribution of the encoder is encapsulated in equation (5).

266     (5)�Θ(�∣�) =�(�Θ(�),�Θ(�)
2)

267 where  denotes the parameters of the encoder, and  and  denote the mean and Θ μΘ(x) σΘ(x)

268 standard deviation, respectively. Latent space sampling.

269           (6)�= �Θ(�) + �Θ(�) ⋅ �
270 where  is the random noise sampled from the standard normal distribution. The normal ϵ
271 distribution feature is also introduced in the decoder section with the conditions shown in equation 

272 (7):

273                       (7)�Φ(�∣�)
274 This means that given the potential variables  that generates the data in the case of  of the z x

275 conditional distribution. The parameters of the decoder are denoted by .Φ
276 In this paper, in order to enhance the model performance, we add Attention Mechanism, 

277 which is a technique widely used in deep learning to enhance the neural network's attention to 

278 certain parts of the input data, thus improving the model performance. In Attention Mechanism, 

279 there are usually three key components, Query, Key and Value features and the model 

280 enhancement is achieved by Attention Score, Attention Weight and Weighted Sum, Q denotes 

281 the query and K denotes the key, then the Attention Score can be expressed as (8)-(10):

282          (8)Attention (�,�) =
� ⋅ ���

283              (9)Attention_Weights (�,�) = softmax (Attention (�,�))

284       (10)Attention_Output (�,�,�) = ∑� Attention_Weights (�,�)� ⋅ ��
285 where  denotes the dimension of the key. The core idea of the attention mechanism is to dk
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286 assign the weights of the values based on the relationship between the query and the keys in 

287 order to better capture the relevant information of the input data in different tasks and different 

288 contexts. This dynamic attention mechanism enables the neural network to better handle 

289 sequential data and improves generalization ability of the model. The model based on the 

290 attention mechanism established in this paper is shown in Figure 4:

291

292 Figure 4 Framework of the proposed ATT-VAE

293 In Figure 4, after completing the data input, we realized the feature extraction enhancement of 

294 the data by VAE, and completed the final model optimization by using the attention mechanism 

295 on the right side to realize the clustering judgment of the system.

296 4 Experiment setup and Result analysis

297 4.1 Datasets

298 Considering the characteristics of the clustering method and the characteristics of the data 

299 used, the data used in this paper include the following five:

300 AwA (https://cvml.ist.ac.at/AwA/) has a total of 5814 instances and consists of three 

301 modalities, local self-similarity features, SIFT features and SURF features, and contains 10 

302 clusters. Scene-15 [29] has 3000 instances and consists of three modalities consisting of LBP 

303 features, GIST features and CENTRIST features containing 15 clusters. CUB 

304 (http://www.vision.caltech.edu/visipedia/CUB-200-2011.html) contains 50 clusters totaling 2889 

305 data instances. Two modalities consist of 1024-dimensional image features extracted by 

306 GoogleNet and 1024-dimensional corresponding text features [30]. 

307 flowers(http://www.robots.ox.ac.uk/~vgg/data/flowers/102/) contains 50 clusters totaling 3235 

308 data instances. The two modalities consist of GoogleNet extracted 1024-dimensional image 

309 features and 1024-dimensional corresponding text features. Both image features are removed at 

310 the time of input. The specific information of the adopted dataset is shown in Table 1:

311 Table 1 The specification of the Dataset 

312

313 4.2 Experiment details

314 After completing the data collection of the dataset, it is necessary to determine the relevant 

315 details of the paper, mainly including: model evaluation indexes, model training process and so 

316 on. In order to evaluate the experimental results, we adopt three evaluation indexes: Accuracy 

317 (ACC), Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI), all of which are 

318 higher to indicate better performance. , all of which are higher for better performance. ARI)

319 Clustering accuracy Used to compare the clustering assignment labels with the true labels 

320 provided by the data.

321           (11)���=
∑��= 1

  �(��,map (��))�
322 where  denotes the true label of the first  true label of the first sample, and  denotes the si i ci
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323 label assigned by the clustering algorithm to the  the label assigned to the first sample by the i

324 clustering algorithm, and  is the total number of data, and  Calculate  to  The N map⁡(ci) ci si

325 mapping between  is determined by the following formula:δ

326            (12)�(�,�) = {1  if �= �
0  otherwise �

327 NMI is defined as the following equation.

328                 (13)���=
��(�,�)

max(�(�),�(�))

329 where  are two different labels of the same sample, i.e., the true label and the cluster S,C

330 assignment label, and  The NMI results do not change depending on the arrangement of MI(C,C')

331 the clusters, and they are normalized to the cluster assignment labels.  The results of NMI H( ⋅ )
332 do not change depending on the arrangement of the clusters, they are normalized to the range of 

333 0 for uncorrelated and 1 for perfectly correlated.  The results of NMI do not change according [0,1]

334 to the arrangement of clusters, and they are normalized to the range of 0 for no correlation and 1 

335 for perfect correlation.

336 RI (Rand Index) represents the rate of correct decision making and is defined as.

337                   (14)��=
��+ ����+ ��+ ��+ ��

338 where TP is true positive ,TN is true negative, FP is the false positive and FN is the false 

339 negative.The Rand index has values between  The Rand Index (RI) has a value between 1 [0,1]

340 and 2, and the RI is 1 when the two classifications match.

341 Unsupervised Deep Embedding clustering (DEC) [31], improved DEC (IDEC) [32] and Deep 

342 Neural Networks for Spectral Clustering (SpectralNet) [33], Deep canonically correlated auto-

343 encoders (DCCAE) [34] used for clustering analysis in clustering research are the more widely 

344 used methods that are more mature and represent their respective fields. methods, so this paper 

345 chooses the above methods for the comparison. After confirming the dataset and related indexes, 

346 we trained the model, and the training methods used for different models are similar, and the 

347 specific steps are shown in Algorithm1:

Algorithm 1: Training process of ATT-VAE for clustering 

Input: AWA dataset, Scene dataset, CUB dataset, Flower dataset

Initialization. 

Define the ATT-VAE. 

Define the hyperparameters and Initialization. 

Define the loss function. 

Define the optimizer: Adam optimizer. 

Define the number of training epochs. 
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Feature extraction. 

Using the original features in the dataset

Pre-training: Initialize the pre-training step counter.

while pre-training step counter < pre-training steps do 

Sample a batch of data. 

Feed data to the ATT-VAE framework. 

Update model. 

Counter++; 

End

Parameters tuning

Tuning counter definition TT. 

while TT< Preset iteration do 

Feed sample data to the proposed network. 

Loss and gradients calculation.

Model updated. 

Compute ACC, NMI and RI

Save the optimal model

end

Output: Trained ATT-VAE 

348 After completing the model building and training of the relevant data, we performed statistics for 

349 the model.

350

351 4.3 Experiment Result and Analysis

352 Based on the pertinent metrics and model training procedures elucidated in sections 4.1 and 

353 4.2, we subjected the data to diverse test sets and shall now elucidate the detailed clustering 

354 outcomes for each dataset. Table 2 and Figure 5 encapsulate the clustering results for the AWA 

355 dataset. Notably, the introduction of the deep network has manifestly enhanced clustering 

356 performance, with the proposed method showcased in this study surpassing conventional 

357 approaches in the present stage across all three metric categories: ACC, NMI, and RI. Indeed, 

358 the proposed method outperforms common techniques across all three metric types at this 

359 juncture.

360 Table 2 The comparison result of three indicators concerning AWA datasets

361

362 Figure 5 The comparison result of three indicators concerning AWA datasets

363

364 After completing the analysis of the AWA data, we similarly analyzed the data on the three 
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365 datasets SCENE, CUB, and Flower, the results of which are shown in figure 6,7,8, and the 

366 corresponding data results are given accordingly in Table 3,4,5.

367 Table 3 The comparison result of three indicators concerning SCECE datasets

368

369 Figure 6 The comparison result of three indicators concerning SCECE datasets

370

371 Table 4 The comparison result of three indicators concerning CUB datasets

372

373 Figure 7 The comparison result of three indicators concerning CUB datasets

374

375 Table 5 The comparison result of three indicators concerning Flower datasets

376

377 Figure 8 The comparison result of three indicators concerning Flower datasets

378

379 After completing the comparison of multiple methods, this paper also carries out batch size 

380 comparison experiments of the proposed method under different datasets, which are tested 

381 through eight batch sizes ranging from 2 to 128, and the corresponding boxplots obtained are 

382 shown in Figure 9:

383 Figure 9 The ACC for the different datasets using different batch sizes 

384

385 In Figure 9, it's evident that the variance in clustering results across different batch sizes is 

386 relatively modest. This observation underscores the inherent robustness of the method advanced 

387 in this paper.

388 Examining the data presented in the icon, it becomes evident that the ATT-VAE model, as 

389 introduced in this paper, boasts commendable generalization prowess and data clustering 

390 acumen. This is particularly conspicuous in the case of the CUB and Flower datasets, which 

391 feature fewer attributes and categories. In such scenarios, the clustering efficacy is notably 

392 pronounced. This attribute bodes well for the application of this method in the financial analysis 

393 of low-dimensional data characteristic of financial system analysis. As an extension of this 

394 approach, the paper now extends its ambit to the realm of economic and financial research 

395 (https://cn.gtadata.com/). Leveraging solvency, operational capacity, and profitability indicators 

396 as provided by this source, the model undertakes risk analysis through clustering, stratifying 

397 entities into high-risk and low-risk categories. This dataset is denoted as the Finance database. 

398 The results pertaining to ACC and NMI under this database are depicted in Figure 10.

399 Figure 10 The ACC and NMI result with the Finance datasets
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400

401 Figure 10 illustrates a discernible trend: as the complexity of the deep network progressively 

402 intensifies, the clustering accuracy of the model registers a corresponding increase. Notably, the 

403 method proposed in this paper exhibits a notable advantage in terms of accuracy.

404 5 Discussion and Conclusion

405 In this study, we have introduced an innovative deep clustering paradigm utilizing ATT-

406 VAE, with the objective of facilitating the adaptive clustering of financial perils within the realm of 

407 financial data. The model's performance has been exhaustively assessed employing common 

408 high-dimensional, low-dimensional clustering public datasets, along with real-world financial risk 

409 data distinguished by practical relevance. The experimental findings presented herein 

410 substantiate the effectiveness of the approach delineated in this manuscript. By harnessing 

411 diverse clustering methodologies and enhancing the VAE model through the integration of 

412 attention mechanisms, our method achieves significantly enhanced clustering outcomes. The 

413 approach has further demonstrated its prowess in authentic financial data assessments, 

414 boasting a clustering accuracy surpassing 70%. This accomplishment provides robust validation 

415 for future undertakings in financial analysis and data management

416 Anticipating forthcoming work, we envision broadening the adaptability of the model to 

417 embrace a plethora of financial data formats while refining its data processing capabilities. 

418 Furthermore, we intend to delve into advanced optimizations for the clustering network and the 

419 augmentation of model capabilities through the incorporation of techniques such as 

420 reinforcement learning. Although the VAE model employed in this investigation exhibits robust 

421 clustering capabilities, we will explore avenues to render the model more streamlined in the 

422 future. Furthermore, for financial data characterized by judiciously selected and processed 

423 features, the data analysis may potentially be carried out by a more lightweight clustering 

424 model. Thus, the extraction of features from the model proposed in this paper, as well as from 

425 related deep clustering models, constitutes a central focus for future research, with the objective 

426 of attaining more comprehensive features.=.

427 Data Availability

428 The dataset employed in this investigation is made readily available and accessible to interested 

429 parties.

430

431 Conflicts of Interest

432 The author declares that there are no conflicts of interest.

433

PeerJ Comput. Sci. reviewing PDF | (CS-2023:10:91714:0:3:NEW 24 Oct 2023)

Manuscript to be reviewedComputer Science



434 Funding Statement

435 This work received no fundings.

436 Acknowledgments

I would like to thank the anonymous reviewers whose comments and suggestions helped improve 

this manuscript.

437

438 Reference

439 [1] Loughran T, McDonald B. Textual analysis in accounting and finance: A survey[J]. Journal of 

440 Accounting Research, 2016, 54(4): 1187-1230.

441 [2] Goodell J W, Kumar S, Lim W M. Artificial intelligence and machine learning in finance: 

442 Identifying foundations, themes, and research clusters from bibliometric analysis[J]. Journal 

443 of Behavioral and Experimental Finance, 2021, 32: 100577.

444 [3] Goodell J W, Kumar S, Lim W M. Artificial intelligence and machine learning in finance: 

445 Identifying foundations, themes, and research clusters from bibliometric analysis[J]. Journal 

446 of Behavioral and Experimental Finance, 2021, 32: 100577.

447 [4] Karim M R, Beyan O, Zappa A. Deep learning-based clustering approaches for 

448 bioinformatics[J]. Briefings in bioinformatics, 2021, 22(1): 393-415.

449 [5] Shi X, Wang Z, Zhao H. Threshold-free phase segmentation and zero velocity detection for 

450 gait analysis using foot-mounted inertial sensors[J]. IEEE Transactions on Human-Machine 

451 Systems, 2022, 53(1): 176-186.

452 [6] Lin W Y, Hu Y H, Tsai C F. Machine learning in financial crisis prediction: a survey[J]. IEEE 

453 Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2011, 

454 42(4): 421-436.

455 [7] Ohlson J.Financial Ratios And The Probabilistic Prediction Of Bankruptcy[J].Journal of 

456 Accounting Research,1980,18(1):109-131.

457 [8] Shin K S,Lee T S,Kim H J.An Application of Support Vector Machines in Bankruptcy 

458 Prediction Model[J].Expert Systems with Applications,2005,28(1):127-135.

459 [9] Atiya A F.Bankruptcy prediction for credit risk using neural networks:A survey and new 

460 results[J].IEEE Transactions on Neural Networks,2001,12(4):929-929.

461 [10] M.D.Odom,Sharda R.A neural network model for bankruptcy prediction[C]//Neural 

462 Networks,1990.1990 IJCNN International Joint Conference on.IEEE,2012.

463 [11] Marcano-Cedeno A, Marin-De-La-Barcena A, Jiménez-Trillo J, Pinuela J A, Andina D. 

464 Artificial metaplasticity neural network applied to credit scoring[J]. International journal of 

465 neural systems, 2011, 21(04): 311-317.

466 [12] Hosaka T. Bankruptcy prediction using imaged financial ratios and convolutional neural 

467 networks[J]. Expert systems with applications, 2019, 117: 287-299.

PeerJ Comput. Sci. reviewing PDF | (CS-2023:10:91714:0:3:NEW 24 Oct 2023)

Manuscript to be reviewedComputer Science



468 [13] Ahmed M, Seraj R, Islam S M S. The k-means algorithm: A comprehensive survey and 

469 performance evaluation[J]. Electronics, 2020, 9(8): 1295.

470 [14] Patnaik A K, Bhuyan P K, Rao K V K. Divisive Analysis (DIANA) of hierarchical clustering and 

471 GPS data for level of service criteria of urban streets[J]. Alexandria Engineering Journal, 

472 2016, 55(1): 407-418.

473 [15] Guha S,Rastogi R,Shim K.Cure:An efficient clustering algorithm for large databases[J].ACM 

474 Sigmod record,1998,27(2):73�84.

475 [16] Nayak J, Naik B, Behera H S. Fuzzy C-means (FCM) clustering algorithm: a decade review 

476 from 2000 to 2014[C]//Computational Intelligence in Data Mining-Volume 2: Proceedings of 

477 the International Conference on CIDM, 20-21 December 2014. Springer India, 2015: 133-

478 149.

479 [17] Krinidis S, Chatzis V. A robust fuzzy local information C-means clustering algorithm[J]. IEEE 

480 transactions on image processing, 2010, 19(5): 1328-1337.

481 [18] Seal A, Karlekar A, Krejcar O. Fuzzy c-means clustering using Jeffreys-divergence based 

482 similarity measure[J]. Applied Soft Computing, 2020, 88: 106016.

483 [19] Wang X, Qian B, Davidson I. On constrained spectral clustering and its applications[J]. Data 

484 Mining and knowledge discovery, 2014, 28: 1-30.

485 [20] Chen W Y, Song Y, Bai H. Parallel spectral clustering in distributed systems[J]. IEEE 

486 transactions on pattern analysis and machine intelligence, 2010, 33(3): 568-586.

487 [21] Song C, Liu F, Huang Y. Auto-encoder based data clustering[C]//Progress in Pattern 

488 Recognition, Image Analysis, Computer Vision, and Applications: 18th Iberoamerican 

489 Congress, CIARP 2013, Havana, Cuba, November 20-23, 2013, Proceedings, Part I 18. 

490 Springer Berlin Heidelberg, 2013: 117-124.

491 [22] Xie J, Girshick R, Farhadi A. Unsupervised deep embedding for clustering 

492 analysis[C]//International conference on machine learning. PMLR, 2016: 478-487.

493 [23] Yang B, Fu X, Sidiropoulos N D. Towards k-means-friendly spaces: Simultaneous deep 

494 learning and clustering[C]//international conference on machine learning. PMLR, 2017: 3861-

495 3870.

496 [24] Min E, Guo X, Liu Q. A survey of clustering with deep learning: From the perspective of 

497 network architecture[J]. IEEE Access, 2018, 6: 39501-39514.

498 [25] Santhosh K K, Dogra D P, Roy P P. Vehicular trajectory classification and traffic anomaly 

499 detection in videos using a hybrid CNN-VAE Architecture[J]. IEEE Transactions on Intelligent 

500 Transportation Systems, 2021, 23(8): 11891-11902.

501 [26] Xu C, Zhang Y, Chen H, Dong L, Wang W. A fairness-aware graph contrastive learning 

502 recommender framework for social tagging systems, Information Sciences, 640, 119064, 

503 2023.

504 [27] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural 

505 networks[J]. Advances in neural information processing systems, 2012, 25.

506 [28] Targ S, Almeida D, Lyman K. Resnet in resnet: Generalizing residual architectures[J]. arXiv 

507 preprint arXiv:1603.08029, 2016.

508 [29] Fei-Fei L, Perona P. A bayesian hierarchical model for learning natural scene 

PeerJ Comput. Sci. reviewing PDF | (CS-2023:10:91714:0:3:NEW 24 Oct 2023)

Manuscript to be reviewedComputer Science



509 categories[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern 

510 Recognition (CVPR'05). IEEE, 2005, 2: 524-531.

511 [30] Reed S, Akata Z, Lee H. Learning deep representations of fine-grained visual 

512 descriptions[C]//Proceedings of the IEEE conference on computer vision and pattern 

513 recognition. 2016: 49-58.

514 [31] Xie J, Girshick R, Farhadi A. Unsupervised deep embedding for clustering 

515 analysis[C]//International conference on machine learning. PMLR, 2016: 478-487.

516 [32] Guo X, Gao L, Liu X. Improved deep embedded clustering with local structure 

517 preservation[C]// International Joint Conferences on Artificial Intelligence. 2017: 1753-1759.

518 [33] Shaham U, Stanton K, Li H. Spectralnet: Spectral clustering using deep neural networks[J]. 

519 arXiv preprint arXiv:1801.01587, 2018.

520 [34] Wang W, Arora R, Livescu K. On deep multi-view representation learning[C]//International 

521 conference on machine learning. PMLR, 2015: 1083-1092.

522

PeerJ Comput. Sci. reviewing PDF | (CS-2023:10:91714:0:3:NEW 24 Oct 2023)

Manuscript to be reviewedComputer Science



Figure 1
Figure 1 The deep clustering methods
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Figure 2
Figure 2 Structure of self-encoder
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Figure 3
Figure 3 The framework for the VAE
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Figure 4
Figure 4 Framework of the proposed ATT-VAE
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Figure 5
Figure 5 The comparison result of three indicators concerning AWA datasets
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Figure 6
Figure 6 The comparison result of three indicators concerning SCECE datasets
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Figure 7
Figure 7 The comparison result of three indicators concerning CUB datasets
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Figure 8
Figure 8 The comparison result of three indicators concerning Flower datasets
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Figure 9
Figure 9 The ACC for the different datasets using different batch sizes
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Figure 10
Figure 10 The ACC and NMI result with the Finance datasets

PeerJ Comput. Sci. reviewing PDF | (CS-2023:10:91714:0:3:NEW 24 Oct 2023)

Manuscript to be reviewedComputer Science



PeerJ Comput. Sci. reviewing PDF | (CS-2023:10:91714:0:3:NEW 24 Oct 2023)

Manuscript to be reviewedComputer Science



Table 1(on next page)

Table 1 The specification of the Dataset
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Dataset Modal Samples Cluster

AwA 3 5814 10

Scene 3 3000 3

CUB 2 2889 2

Flower 2 3235 2

1
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Table 2(on next page)

Table 2 The comparison result of three indicators concerning AWA datasets
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DEC IDEC SpectralNet DCCAE Proposed

ACC 0.21 0.23 0.21 0.25 0.26

NMI 0.04 0.07 0.04 0.1 0.11

RI 0.14 0.16 0.15 0.17 0.19

1
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Table 3(on next page)

Table 2 The comparison result of three indicators concerning AWA datasets
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DEC IDEC SpectralNet DCCAE Proposed

ACC 0.17 0.25 0.46 0.35 0.52

NMI 0.17 0.19 0.45 00�� 00��

RI 0.14 00�� 00�� 0.27 0.35

1
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Table 4(on next page)

Table 4 The comparison result of three indicators concerning CUB datasets
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DEC IDEC SpectralNet DCCAE Proposed

ACC 0.21 0.31 0.19 0.17 0���

NMI 0.34 0.41 0�	� 0�		 0�
�

RI 0.18 0.23 0.15 0.16 0.46

1
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Table 5(on next page)

Table 5 The comparison result of three indicators concerning Flower datasets
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DEC IDEC SpectralNet DCCAE Proposed

ACC 0.18 0.28 0.27 0.21 0.53

NN� 0.35 0.43 0.42 0.41 0.69

R� 0.15 0.26 0.19 0.18 0.49

1
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