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Recently, the medical image segmentation scheme combining Vision Transformer (ViT)
and multilayer perceptron (MLP) has been widely used. However, one of its disadvantages
is that the feature fusion ability of different levels is weak and lacks flexible localization
information. To reduce the semantic gap between the encoding and decoding stages, we
propose a mixture conv-MLP network with multi-scale features fusion Unet (MCNMF-Unet)
for medical image segmentation. MCNMF-Unet is a U-shaped network based on
convolution and MLP, which not only inherits the advantages of convolutional in extracting
underlying features and visual structures, but also utilizes MLP to fuse local and global
information of each layer of the network. MCNMF-Unet performs multi-layer fusion and
multi-scale feature map skip connections in each network stage so that all the feature
information can be fully utilized and the gradient disappearance problem can be
alleviated. At the same time, MCNMF-Unet designed a solution for the adverse effects
caused by image cropping and reduced the number of parameters and computational
complexity. We evaluated the proposed model on BUSI, ISIC2018 and CVC-ClinicDB
datasets. The experimental results show that the performance of our proposed model is
superior to most existing networks, with an IoU of 84.72% and a F1-score of 91.39%.
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ABSTRACT11

Recently, the medical image segmentation scheme combining Vision Transformer (ViT) and multilayer

perceptron (MLP) has been widely used. However, one of its disadvantages is that the feature fusion ability

of different levels is weak and lacks flexible localization information. To reduce the semantic gap between

the encoding and decoding stages, we propose a mixture conv-MLP network with multi-scale features

fusion U-Net (MCNMF-Unet) for medical image segmentation. MCNMF-Unet is a U-shaped network

based on convolution and MLP, which not only inherits the advantages of convolutional in extracting

underlying features and visual structures, but also utilizes MLP to fuse local and global information of

each layer of the network. MCNMF-Unet performs multi-layer fusion and multi-scale feature map skip

connections in each network stage so that all the feature information can be fully utilized and the gradient

disappearance problem can be alleviated. At the same time, MCNMF-Unet designed a solution for the

adverse effects caused by image cropping and reduced the number of parameters and computational

complexity. We evaluated the proposed model on BUSI, ISIC2018 and CVC-ClinicDB datasets. The

experimental results show that the performance of our proposed model is superior to most existing

networks, with an IoU of 84.72% and a F1-score of 91.39%.
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INTRODUCTION26

In recent years, high-performance methods based on convolutional neural network (CNN) have demon-27

strated superior performance on many tasks (Kadry et al., 2022; Sun et al., 2022; Zamir et al., 2021; Li28

et al., 2021b; Ding et al., 2022b; Kalake et al., 2022). Benefiting from the development of CNN, computer29

vision techniques have been widely used in the field of medical image processing. Image semantic30

segmentation is an important component of medical image processing, especially accurate and robust31

medical image segmentation techniques can play a cornerstone role in computer-aided diagnosis and32

image-guided clinical surgery (Hatamizadeh et al., 2022; Valanarasu and Patel, 2022; Xie et al., 2022).33

Image semantic segmentation can be formulated as a typical dense prediction problem, which aims at34

the pixel-level classification of feature maps. Existing CNN-based medical image segmentation methods35

mainly rely on fully convolutional neural network (FCNN) (Isensee et al., 2021; Jin et al., 2020). The most36

typical of these is the Unet (Ronneberger et al., 2015), which consists of a symmetric encoder-decoder37

and skip connections. With such an elegant structural design, Unet has achieved great success in medical38

image processing. Along this technical line, many algorithms have been developed for various types39

of medical image segmentation. The excellent performance of these Unet-based methods in medical40

image segmentation has demonstrated the strong ability of CNN to learn features. However, the inherent41

localization and weight sharing of the receiver domain in convolutional operations make it difficult for42

CNN-based methods to learn explicit global information and remote semantic information interactions43

(Xie et al., 2021), which to some extent cannot meet the stringent requirements for segmentation accuracy44

in the field of medical image segmentation. Many researchers have noticed this problem and designed45
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some modules to solve it, including Residual learning (He et al., 2016), Dense connections (Huang46

et al., 2017), Self-attention mechanisms (Schlemper et al., 2019; Wang et al., 2018) and Image pyramids47

(Zhao et al., 2017). Nevertheless, these methods still have some limitations and cannot explicitly model48

dependencies over long-distance and often exhibit sub-segmentation results. Applying Transformer to49

computer vision (Wang et al., 2021b; Han et al., 2021; Zheng et al., 2021) can alleviate the long-distance50

dependencies to some extent compared to other traditional CNN-based methods. At the same time,51

Transformer has a powerful global relationship modeling capability that has yielded amazing results in52

medical image analysis tasks. Dosovitskiy et al. (2020) proposed Vision Transformer (ViT) to perform53

image recognition tasks. Taking 2D image patches with location markers as input and pre-trained on54

large datasets, ViT achieves comparable performance to CNN-based methods. Many Transformer-based55

architectures have also been proposed in the field of medical image segmentation, such as Trans-Unet56

(Chen et al., 2021b), Swin-Unet (Cao et al., 2023), ConViT (d’Ascoli et al., 2021) and ScaleFormer57

(Huang et al., 2022).58

Many researchers have demonstrated the great potential of the structure on ViT-based image analysis59

(Azad et al., 2023; Dalmaz et al., 2022; Li et al., 2021a) and also promoted the study of Multi-Layer Per-60

ceptron (MLP) structures, such as MLP-Mixer (Tolstikhin et al., 2021), gMLP (Liu et al., 2021a),RepMLP61

(Ding et al., 2022a) and CycleMLP (Chen et al., 2021c). In particular, MLP-Mixer, an entirely MLP-based62

network, gives comparable performance to Transformer with less computation. In spite of the fact that63

existing Transformer-based and MLP-based methods have proven to be promising for image analysis64

tasks, including medical image segmentation, several daunting challenges remain: (1) the network only65

accepts a fixed image size, and it is necessary to divide the image into a fixed size, which may not capture66

the fine-grained spatial details of the image; (2) it will inevitably cause boundary artifacts when applied67

to larger images (Chen et al., 2021a); (3) it lacks detailed positioning information because the input is68

considered as a one-dimensional sequence and only global information is modeled at all stages. When69

performing semantic analysis, the ability to localize the location of interest may be lacking (Ni et al.,70

2022). These problems are the shortcomings of Transformer and MLP compared to CNN in extracting71

the underlying features and visual structure.72

To solve the above-mentioned problems, we propose a Mixture Conv-MLP Network with Multi-scale73

Features Fusion U-Net for Medical Image Segmentation(MCNMF-Unet). In each module, this network74

combines the advantages of convolution in extracting low-level features and visual structure and the75

advantages of MLP in fusing local and global information. The core of MCNMF-Unet is the Conv-MLP76

module, which incorporates the characteristics of encoder and decoder in a U-shaped network and fuses77

MLP and convolution in each layer, allowing it to make good use of the advantages of both methods. In78

this network, the key technology is MLP Cross Gating (MCG) Block and Multi-axis and Multi-windows79

MLP (MsM) Block. MCG fuses the convolutional block information of different nodes through two80

paths. MsM uses multi-axis and multi-window to capture local and global information from multiple81

dimensions. The branches obtained are equally divided by channel, and the information is mixed by82

different mechanisms on the respective axes. The computational burden of MsM is linearly related to the83

size of the input feature map. MCNMF-Unet has high performance in medical image segmentation with84

smaller parameters and FLOPs. The main contributions of this paper are as follows:85

(1) In order to combine the advantages of convolution and MLP to improve segmentation accuracy, we86

designed a general framework for medical image segmentation called MCNMF-Unet using the U-shaped87

encoder-decoder architecture.88

(2) A Multi-axis and Multi-windows MLP (MsM) module is designed to capture feature map informa-89

tion from multiple layers and multiple dimensions, whose input does not require cropping of images, can90

receive images of arbitrary size, and always has a global receptive field.91

(3) A Conv-MLP module is developed to perform feature cross-fusion on the two outputs of the92

convolution module, which is also a multi-path and multi-information interaction.93

(4) MCNMF-Unet achieves some effect on lightweight while improving partitioning. Compared with94

most Unet-based improved networks, the performance of parameters and FLOPs indicators is better. It95

can achieve better segmentation results with less computing time and space spent.96
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RELATED WORK97

CNN of U-shaped Semantic Segmentation methods98

Most of the early semantic segmentation research was based on traditional machine learning algorithms99

of contours and regions (Zhang et al., 2022; Tsai et al., 2003). In recent years, with the development100

of deep learning, the Unet architecture proposed by borrowing the Fully convolutional neural network101

(FCN) has rapidly become the baseline network for computer vision tasks by virtue of its elegant design102

and superior performance. Based on Unet’s U-shaped architecture, various networks are proposed for103

semantic segmentation. Zhou et al. (2019) proposed the Unet++ network,which integrates Unet structures104

of different sizes into one network, captures features at different layers, and integrates them into a105

shallower Unet structure by feature superposition, resulting in smaller scale differences in the feature106

maps during fusion. Inspired by deep residual learning (ResNet), Zhang et al. (2018) proposed ResUnet.107

The proposed architecture uses a series of stacked residual units instead of ordinary neural units as the108

basic blocks to build deep ResUnet, which allows the network training layers to be deepened effectively.109

Oktay et al. (2018) proposed Attention Unet. The network proposes an attention gates (AGs) mechanism,110

which implicitly generates soft region suggestions and highlighting salient features useful for a specific111

task. By suppressing features of irrelevant regions, the sensitivity and accuracy of the model for dense112

label prediction are improved. Çiçek et al. (2016) proposed 3D Unet and introduced the structure into the113

field of 3D medical image segmentation.114

Vision Transformers115

Transformers, first proposed by Vaswani et al. (2017), is applied to natural language processing (NLP)116

tasks. Its multi-headed self-attentive and feedforward MLP layers are stacked to capture non-local117

interactions between words. In the field of NLP, the method has achieved optimal performance in various118

tasks. Inspired by the success of Transformers, Dosovitskiy et al. (2020) pioneered its introduction into119

computer vision and proposed ViT, which is the first pure Transformer architecture for image recognition.120

Recently, many researchers have tried to introduce ViT into medical image processing tasks and developed121

many Transformer-based models (Heidari et al., 2023; Huang et al., 2021; Wang et al., 2021a). Chen122

et al. (2021b) proposed TransUNet, which integrates the advantages of Transformers and Unet. TransUnet123

uses the local information encoded by CNN and the global context encoded by Transformer to encode124

tokenized image blocks from the CNNs feature map as an input sequence for extracting the global context.125

The decoder upsamples the encoded features and then combines them with the high-resolution CNN126

feature map for accurate localization. Cao et al. (2023) proposed Swin-UNet inspired by the shift window127

mechanism of Swin Transformer (Liu et al., 2021b), and their work is the first pure U-based architecture128

based on Transformer, where the encoder, bottleneck and decoder are built based on Swin-Transformer129

blocks. In the encoder, self-attentiveness from local to global is implemented; in the decoder, global130

features are upsampled to the input resolution for the corresponding pixel-level segmentation prediction.131

MLP Vision132

Recently, many researchers have been considering the necessity of a self-attention mechanism with133

a tremendous amount of computation in the Transformer architecture in computer vision. Tolstikhin134

et al. (2021) proposed the MLP-Mixer architecture (Mixer), an architecture developed entirely based135

on multilayer perceptrons (MLPs), which enables the interaction of two input dimensions through the136

interleaving of channel-mixing MLPs and token-mixing MLPs. MLP-Mixer architecture completely137

replaces the self-attention mechanism in ViT. Liu et al. (2021a) proposed gMLP, which is constructed138

from a basic MLP layer with gating. As an alternative to Transformer without self-attentiveness, gMLP139

consists only of channel and spatial projections with static parameterization. By comparing experimental140

results, it has been proven that the self-attention mechanism is not important for ViT, and gMLP can141

achieve the same accuracy in critical language and vision applications. Ding et al. (2022a) proposed142

RepMLP, which incorporates local prior knowledge into a fully connected (FC) layer while reducing the143

number of parameters and inference time. The architecture takes full account of the global representation144

capability of the fully connected (FC) layer and the local capture property of the convolutional layer,145

using convolution to strengthen FC and make it possess locality and globality. Therefore, RepMLP is146

more suitable for computer vision tasks.147
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METHOD148

The proposed model is a novel architecture combining the advantages of convolution and MLP for149

medical image segmentation. In this section, we introduce the backbone network of MCNMF-Unet150

and also describe the main component modules of the network, including Encoder Conv-MLP (ECM),151

Decoder Conv-MLP (DCM), Bottleneck Conv-MLP (BCM), Output Conv-MLP (OCM), Multi-axis and152

Multi-windows MLP (MsM) and MLP Cross Gating (MCG).153

The main backbone of MCNMF-Unet154

The main framework of MCNMF-Unet follows the most classical U-like architecture, as shown in Fig. 1.155

For medical image segmentation, many studies have demonstrated that the Unet-like network is still a very156

competitive infrastructure (Wang et al., 2022; Wu et al., 2023; Azad et al., 2022). Most of the research on157

Unet-like networks is based on the CNN method, which has great advantages in extracting underlying158

features. However, its local receptive field and long-distance weak dependence still hinder the accuracy of159

complex structure segmentation. In addition to the advantages of Unet, an excellent segmentation network160

should also introduce MLP, which can increase the global receptive field of the network. Based on this161

idea, Encoder Conv-MLP (ECM) module, Decoder Conv-MLP (DCM) module, Bottleneck Conv-MLP162

(BCM) module and Output Conv-MLP (OCM) module are designed to build the U-shaped network. The163

MLP Cross Gating (MCG) in the ECM, DCM, BCM and OCM is used to fuse the information of the two164

convolutional blocks, and the extracted fine local features are then used to obtain the global receptive field165

through MLP. The DCM, BCM and OCM performs skip connection with the ECM. Each DCM module166

will connect with two different ECM modules, and the OCM module and BCM module will connect with167

one ECM module. MCNMF-Unet architecture adopts an end-to-end training strategy that relies on a168

hybrid model design for each block, adaptively acquiring local and global sensory fields at each layer,169

where Conv is used locally and MLP is used for long-distance interaction, which can make full use of all170

feature information.171

ECM

ECM

ECM

ECM

BCM

DCM

DCM

DCM

OCM

Encoder Decoder

neck

Figure 1. The MCNMF-Unet architecture
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The crucial sub-modules172

The core sub-modules of MCNMF-Unet are ECM, DCM, BCM and OCM, which form the encoder and173

decoder of the U-shaped network. The Conv 3×3 block consists of Conv 3×3, BN and ReLU blocks.174

The ECM block references the encoder design concept of a standard U-shaped network, and considering175

the problem of information loss during encoder downsampling, the convolutional block downsampling176

and then upsampling operation is used, so that the information of the next layer can be obtained and at177

the same time as little information can be lost as possible, as shown in Fig. 2. In addition, the output of178

two convolutional blocks is obtained at the same layer and enters the MLP Cross Gating module (MCG),179

which cross-fuses the information from the convolutional blocks. The output of MCG block is used for180

skip connection with the decoder, and it is also downsampled to double the size and is spliced with the181

output of the previously downsampled convolutional block for the operation of the latter module.182

Conv 3×3

 Block

Conv 3×3

 Block

MaxPooling

Conv 3×3

 Block

Conv 3×3 

Block

UpSampling

Conv 3×3

 Block

Conv 3×3

 Block

MCG ConcatMaxPooling

the i-th layer

skip connection

Figure 2. Encoder Conv-MLP (ECM) module

Conv 3×3

Block

Conv 3×3

 Block

UpSampling

Conv 3×3

 Block

Conv 3×3

 Block

MaxPooling

Conv 3×3

 Block

Conv 3×3

 Block

MCGConcat UpSampling

Concat

Concat

the i-th layer

 skip connection

the i-1-th layer

skip connection

Figure 3. Decoder Conv-MLP (DCM) module

In the DCM, to maximize the restoration of image resolution, we use a convolutional block upsampling183

and downsampling operation to obtain more information at a larger resolution from the previous layer.184

This design makes the current layer more forward-looking and can perceive more detailed information.185

Meanwhile, we have a convolution block in each layer that is spliced with the MCG block of the decoder,186

and each DCM module will be fused with two decoders of different layers to recover more information.187

As in the coder design, two convolutional blocks from the same layer are sent to the MCG module for188
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Conv 3×3

 Block

Conv 3×3

 Block

MCG
Conv 1×1

 Block

Concat

the i-th layer

skip connection

Figure 4. Output Conv-MLP (OCM) module

further cross-fusion. The output of this module is upsampled and then spliced with the previous upsampled189

convolutional block output in the channel dimension for the next operation. In the BCM block, we follow190

the same design as DCM. The only difference is that the skip connection of the i-th layer is missing, but191

the skip connection of the i-1-th layer still retains, that is, the information has been gradually restored at192

the bottleneck layer, as shown in Fig. 3.193

In the OCM module, the two convolutional blocks are connected serially and their output is fed to the194

MCG module for information fusion, followed by a 1×1 convolutional block yields the final segmentation195

result, as shown in Fig. 4.196

MLP Cross Gating197

In order to effectively integrate the information from convolution and MLP, we used the MLP Cross

Gating (MCG) module, as shown in Fig. 5. This module can well preserve the ability of convolution

operation to extract local and fine features, and also extend the feature map to the global receptive field.

MCG receives two inputs, which are the outputs of two different convolution blocks. Let the two inputs

be U1 and V1, U1,V1 ∈ R
H×W×C, then U2 and V1 can be obtained as:

U2 = σ(Ds(LN(U1))) (1)

V2 = σ(Ds(LN(V1))) (2)

where LN is the Layer Normalization, Ds is the Dense layers, and σ is the GELU activation. Next, U2

and V2 enter the Multi-axis and Multi-windows MLP modules, respectively, and the data is divided into

four channels for processing, as shown in Eq. (3).

L1,L2,G1,G2 = S(σ(Ds(LN(X)))) (3)

where S is the Split 4 heads operation for the different axes. The output end is concatenated according to

Eq. (4).

M(X) = Do(Ds([Block1(L1),Block2(L2),Global1(G1),Global2(G2)])) (4)

where [·, ·, ·, ·] is the concatenation. M(X) denotes the output of the Multi-axis and Multi-windows MLP

modules and which is used for the fusion of the two paths:

U3 =U2 »M(V2) (5)

V3 =V2 »M(U2) (6)

where » represents corresponding multiplication of corresponding elements, and obtains the output of

each path through the residual connection with the input:

U4 =U1 +(ρ(Ds(U3))) (7)

V4 =V1 +(ρ(Ds(V3))) (8)

where ρ is the Dropout activation. To meet the system requirements and obtain an output of the system,

we add the two paths together.

M =U4 +V4 (9)
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Figure 5. MLP Cross Gating (MCG)

Multi-axis and Multi-windows MLP198

The Multi-axis and Multi-windows MLP (MsM) module is inspired by Zhao et al. (2021), which proposes199

a sparse self-attention operation. The different forms of sparse self-attention on the two axes of the200

block image are performed, which can capture local and global information in parallel. However, the201

test images input by this module need a fixed size, which is easy to cause boundaries blur or artifacts,202

and is not friendly to model training for large-sized images. Based on Tu et al. (2022), we proposed the203

Multi-axis and Multi-windows MLP framework, which established a basic framework for 4-axis feature204

map information fusion, as shown in Fig. 6.205

MsM module divides the input feature map into four heads by channel, and uses MLP in each206

head to fuse the corresponding information, two of which are sent to the local branch and the other207

two to the global branch. In the local branch, two heads are fed into two axes, each with an input208

tensor of (H,W,

C
4
). Meanwhile one of the axes is divided into (H

b
)× (W

b
) non-overlapping patches209

by window size [b,b], and the tensor of (H
b
× W

b
,b× b, C

4
) is obtained by blocking; the other axis is210

divided into ( f racH2b× f racW2b) non-overlapping patches by window size [2b,2b], and the tensor211

of ( H
2b

× W
2b
,2b×2b, C

4
) is obtained by blocking. In the global branch, one of the axes uses a [b,b] grid212

division to get window of (H
b
,

W
b
) and the tensor of (b×b, H

b
× W

b
,

C
4
) obtained by griding; similarly the213

other axis uses a [2b,2b] grid division to get window of ( H
2b
)× (W

2b
) and the tensor of (2b×2b, H

2b
× W

2b
,

C
4
)214

obtained by griding.215

In Fig. 6, we set b = 2 as an example, with the top half representing the local branch and the bottom216

half representing the global branch. As shown in Fig. 6, the input feature map is divided into 4-axis evenly217

by channel, where the one half goes into the local header and another half goes into the global header. In218

both local and global branches, different size block is used to divide and MLP is used for different levels219

of information mixing. Local branches correspond to local blending, global branches correspond to global220

blending, and the different colored squares in the diagram represent the degree of information blending221
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Figure 6. Multi-axis and Multi-windows MLP (MsM)

within the windows. The final processed 4-axis is concated and output. The module is designed to be222

completely end-to-end from input to output, without the need for specific size and cropping of the images,223

which will not have any negative effects due to cropping, and the complexity of the model is linear.224

EXPERIMENTS225

Datasets226

The Breast Ultra Sound Images (BUSI) (Al-Dhabyani et al., 2020) is a medical images dataset of breast227

cancer by ultrasound scans. The BUSI dataset collected included breast ultrasound images of women aged228

25 to 75 collected in 2018. The number of patients is 600 women. The dataset consists of 780 images, all229

of which are cropped to different sizes to remove unused and unimportant borders from the images. The230

images are in PNG format and divided into three categories: normal, benign and malignant. Each image231

has its ground truth (masked image). We use the benign and malignant images, a total of 647 images are232

adjusted to 256×256 RGB images.233

The International Skin Imaging Collaboration (ISIC 2018) (Codella et al., 2019) is the world’s largest234

skin image analysis challenge and has organized the world’s largest public dermoscope image library.235

There are 2594 images in the dataset, which contain three different categories, including 20.0% melanoma,236

72.0% nevus, and 8.0% seborrheic keratosis. The dataset consists of images of various resolutions, and237

we adapt all images to 512×512 RGB images.238

The CVC-ClinicDB (Tajbakhsh et al., 2015) is a data set of colonoscopy images composed of239

endoscope images. These images are extracted from the video sequence of the colonoscopy. The Ground240

Truth image consists of a mask corresponding to the area covered by the polyp in the image. So the241

segmentation task only considers the images of polyps, a total of 612 images from 31 colonoscopy242

sequences were obtained. We resize all images to 256×256 RGB images.243
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Implementation details244

All experiments were conducted using an RTX3090 (24GB) graphics card and implemented with the245

Python 3.8 framework. The batch size was set to 8, and a total of 100 epochs were run. The dataset was246

randomly combined into training and validation sets with a ratio of 7:3, in order to increase the diversity247

of training samples and improve the generalization ability of the model. Data augmentation was also248

applied, including random image rotation, hue and brightness adjustments, and cropping.249

MCNMF-Unet employs a loss function that combines Binary Cross-Entropy and Dice coefficients.250

The loss function is described as:251

BCELoss(Y,Ŷ ) =−
N

∑
i=1

Y (xi) · logŶ (xi) (10)

DiceLoss(Y,Ŷ ) = 1−
2 · |Y ∩ Ŷ |

|Y |+ |Ŷ |
(11)

L = 0.5BCELoss(Y,Ŷ )+DiceLoss(Y,Ŷ ) (12)

In order to evaluate the performance of our proposed framework relative to the baseline approach, we

use the F1 score coefficient and the IOU coefficient as evaluation metrics. The F1-score is a measure

of classification problems, and it is often used as the final measure in binary classification or multi-

classification problems. F1 score is harmonic average of accuracy rate and recall rate, with a maximum

value of 1 and a minimum value of 0. F1 score is defined as shown in equation (13):

F1 = 2 ·
Y · Ŷ

Y + Ŷ
(13)

The Intersection over Union (IoU) score is a standard metric for the performance of object segmentation

problems, and its definition is shown in equation (14). Given a set of images, the IoU measure provides

the similarity between the predicted and ground truth regions of the objects in the set of images.

IoU =
|Y ∩ Ŷ |

|Y |∪ |Ŷ |
(14)

Verification of model performance252

The MCNMF-Unet is compared with existing models in this section to verify the effectiveness of the253

method. We chose classical medical image segmentation algorithms and the more popular models254

nowadays for comparisons, such as Unet (Ronneberger et al., 2015), Unet++ (Zhou et al., 2019), Res-Unet255

(Zhang et al., 2018), Attention-Unet (Oktay et al., 2018), MultiResUnet (Ibtehaz and Rahman, 2020), and256

Trans-Unet (Chen et al., 2021b).257

The evaluation of the MCNMF-Unet model is mainly compared in terms of the number of parameters,258

computational complexity and segmentation accuracy. Table 1 shows the comparison results. Compared259

with the base line model (Unet), Params only increased by 2.12M, and GFLOPs decreased by 2.04. It is260

worth noting that compared with the most popular TransUnet, Params is more than three times smaller261

with a reduction of 72.07M, which greatly reduces the memory usage during the training process and262

reduces the computational complexity. In terms of validating segmentation performance, we compare IoU263

and F1 scores in three public datasets: BUSI, ISIC2018 and CVC-ClinicDB.264

MCNMF-Unet shows the best performance on all three datasets. In the BUSI dataset, the IoU and265

F1 scores of MCNMF-Unet reached 70.59% and 81.60%, respectively. Compared with the results of the266

other six models, the IoU coefficients increased by 3.67% ∼ 8.68%. the F1 scores increased by 2.30%267

∼ 6.58%. In the ISIC 2018 dataset, MCNMF-Unet achieved IoU and F1 scores of 80.66% and 89.06%268

respectively, and improved the IoU coefficients by 0.15% ∼ 7.97% compared to the other six models. the269

F1 score improved by 0.15% ∼ 5.34%. In the CVC-ClinicDB dataset, the IoU and F1 scores of 84.72%270

and 91.39%, respectively. The IoU coefficients improved by 1.02% ∼ 7.02%. The F1 score improved by271

0.62% ∼ 4.64%. The comparative results indicate the better segmentation performance of MCNMF-Unet.272

As the results of the evaluation metrics in Table 1, MCNMF-Unet achieves the best results, but273

visual observations are needed to determine whether the proposed model works as expected. To this end,274
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Table 1. Performance comparison of different networks in BUSI, ISIC2018 and CVC-ClinicDB dataset.

Networks
Params

(in MB)
GFLOPs

BUSI ISIC 2018 CVC-ClinicDB

IoU(%) F1 score(%) IoU(%) F1 score(%) IoU(%) F1 score(%)

Unet 31.13 55.84 62.05 76.02 72.69 83.72 83.32 90.59

Unet++ 9.16 34.75 62.72 76.43 74.24 84.76 83.27 90.55

Res-Unet 62.74 94.56 64.82 77.47 73.16 84.07 82.57 90.12

Attention-Unet 51.99 56.95 65.25 77.50 75.10 85.38 83.70 90.77

MultiResUnet 7.25 18.60 61.91 75.02 74.71 85.07 77.70 86.75

Trans-Unet 105.32 38.52 66.92 79.30 80.51 88.91 82.63 90.19

MCNMF-Unet 33.25 53.80 70.59 81.60 80.66 89.06 84.72 91.39

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 7. Qualitative comparisons. Row 1: ISIC dataset, Row 2: BUSI dataset, Row 3: CVC-ClinicDB.

(a)Input, (b)Ground Truth, (c)Unet, (d)Unet++, (e)Res-Unet, (f)Attention-Unet,(g)MultiResUnet,

(h)Trans-Unet, (i)MCNMF-Unet.

In Fig. 7, we also give examples of visual comparisons of the segmentation in BUSI, ISIC 2018 and275

CVC-ClinicDB.276

MCNMF-Unet obtains better results compared to other more popular networks. These visual results277

show that MCNMF-Unet can successfully recover finer segmentation details. For complex scenes, it is278

not prone to unexpected segmentation results.279

Ablation experiments280

We conduct extensive ablation experiments to verify the performance of MCNMF-Unet. All experimental281

evaluations are performed on the BUSI dataset, and the experimental parameter settings are described282

in Section 4.2. The experiment verifies the superiority of our proposed module while controlling other283

variables the same.284

Importance of MCG285

In the experiment, the MCG module is replaced with convolution and attention modules(replacing the286

corresponding modules in Fig. 2), and the details are shown, including the Params and GFLOPs after287

replacing these modules, as well as the IoU and F1 scores on the BUSI dataset. We mainly used the288

convolution module (Conv), Position Attention Module (PAM), Channel Attention Module (CAM),289

Convolutional Block Attention Module (CBAM) and Coordinate Attention Module (CoordAM). The data290

in Table 2 shows that the MCG module still achieves the best segmentation performance while keeping291

the learnable parameters of the model and the lowest computational complexity.292

Effects of Multi-axis and Multi-windows MLP approach293

The experiments also further explored the impact of the proposed Multi-axis and Multi-windows MLP294

approach. As shown in Table 3, we mainly made changes to the Multi-axis and Multi-windows MLP295

module (Fig. 3) and conducted comparative experiments between the single-axis Block branch (Block),296

the single-axis Grid branch (Grid), the single-axis Block followed by Gride serial branch (Block-Grid),297
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Table 2. The impact of MCG modules on network performance.

Variant Params GFLOPs IoU(%) F1 score(%)

Conv 38.43 57.79 68.47 79.0

CAM 38.43 58.86 69.11 79.32

PAM 38.98 257.21 69.28 79.51

CBAM 34.62 52.94 69.12 79.95

Coord.AM 34.96 52.94 68.98 79.78

MCG(Ours) 33.25 51.80 70.54 81.53

the single-axis Grid followed by Block branch (Grid-Block), the two-axis Block-Grid branch(2-Axis) and298

Multi-axis and Multi-windows MLP (Ours). Through these experiments, it can be seen that the Multi-axis299

and Multi-windows MLP approach achieves the optimal segmentation results, with the IoU and F1 score300

improvement reaching 1.07%-1.8% and 1.04%-1.75%, respectively.301

Table 3. Effect of Multi-axis and Multi-windows MLP on network performance

Variant IOU(%) F1 score(%)

Block 68.86 79.96

Grid 69.28 80.42

Block-Grid 69.14 80.05

Grid-Block 68.72 79.78

2-Axis 69.47 80.49

MsM(Ours) 70.54 81.53

CONCLUSIONS302

In this paper, we design a novel deep neural network architecture based on U-shaped structure for medical303

image segmentation. The core idea is to fuse the advantages of CNN and MLP into each encoder and304

decoder layer, while capturing feature map information from multiple windows and multiple dimensions,305

and always having a global receptive field. Our proposed MCNMF-Unet is essentially an improved306

network based on Unet, which can be effectively modeled with a small amount of parameters and307

computation. The experimental results show that MCNMF-Unet outperforms the state-of-the-art baseline308

on various benchmarks for the segmentation of biomedical images from different types. Moreover, our309

network achieves very excellent results for image segmentation with complex backgrounds. For future310

work, we plan to explore more scientific and effective ways of information fusion between convolution311

and MLP, and extend our method to 3D medical image segmentation.312
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