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ABSTRACT
Recently, the medical image segmentation scheme combining Vision Transformer
(ViT) and multilayer perceptron (MLP) has been widely used. However, one of its
disadvantages is that the feature fusion ability of different levels is weak and lacks
flexible localization information. To reduce the semantic gap between the encoding
and decoding stages, we propose amixture conv-MLPnetworkwithmulti-scale features
fusion Unet (MCNMF-Unet) for medical image segmentation. MCNMF-Unet is a U-
shaped network based on convolution andMLP, which not only inherits the advantages
of convolutional in extracting underlying features and visual structures, but also utilizes
MLP to fuse local and global information of each layer of the network. MCNMF-Unet
performs multi-layer fusion and multi-scale feature map skip connections in each
network stage so that all the feature information can be fully utilized and the gradient
disappearance problem can be alleviated. Additionally, MCNMF-Unet incorporates
a multi-axis and multi-windows MLP module. This module is fully end-to-end and
eliminates the need to consider the negative impact of image cropping. It not only fuses
information frommultiple dimensions and receptive fields but also reduces the number
of parameters and computational complexity. We evaluated the proposed model on
BUSI, ISIC2018 and CVC-ClinicDB datasets. The experimental results show that the
performance of our proposed model is superior to most existing networks, with an IoU
of 84.04% and a F1-score of 91.18%.

Subjects Bioinformatics, Artificial Intelligence, Neural Networks
Keywords Medical image segmentation, Unet, Vision transformer, MLP

INTRODUCTION
In recent years, high-performance methods based on convolutional neural network (CNN)
have demonstrated superior performance on many tasks (Kadry et al., 2022; Sun et al.,
2022; Zamir et al., 2021; Li et al., 2021b; Ding et al., 2022b; Kalake et al., 2022). Benefiting
from the development of CNN, computer vision techniques have been widely used in
the field of medical image processing. Image semantic segmentation is an important
component of medical image processing, especially accurate and robust medical image
segmentation techniques can play a cornerstone role in computer-aided diagnosis and
image-guided clinical surgery (Hatamizadeh et al., 2022; Valanarasu & Patel, 2022; Xie et
al., 2022).
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Image semantic segmentation can be formulated as a typical dense prediction
problem, which aims at the pixel-level classification of feature maps. Existing CNN-
based medical image segmentation methods mainly rely on fully convolutional neural
network (FCNN) (Isensee et al., 2021; Jin et al., 2020). The most typical of these is the
Unet (Ronneberger, Fischer & Brox, 2015), which consists of a symmetric encoder–decoder
and skip connections. With such an elegant structural design, Unet has achieved great
success in medical image processing. Along this technical line, many algorithms have been
developed for various types of medical image segmentation. The excellent performance of
these Unet-based methods in medical image segmentation has demonstrated the strong
ability of CNN to learn features. However, the inherent localization and weight sharing of
the receiver domain in convolutional operations make it difficult for CNN-based methods
to learn explicit global information and remote semantic information interactions (Xie et
al., 2021), which to some extent cannot meet the stringent requirements for segmentation
accuracy in the field of medical image segmentation. Many researchers have noticed this
problem and designed some modules to solve it, including residual learning (He et al.,
2016), dense connections (Huang et al., 2017), self-attention mechanisms (Schlemper et
al., 2019; Wang et al., 2018) and image pyramids (Zhao et al., 2017). Nevertheless, these
methods still have some limitations and cannot explicitly model dependencies over
long-distance and often exhibit sub-segmentation results. Applying Transformer to
computer vision (Wang et al., 2021b; Han et al., 2021; Zheng et al., 2021) can alleviate
the long-distance dependencies to some extent compared to other traditional CNN-based
methods. At the same time, Transformer has a powerful global relationship modeling
capability that has yielded amazing results in medical image analysis tasks. Dosovitskiy
et al. (2020) proposed Vision Transformer (ViT) for image recognition tasks. Taking
2D image patches with location markers as input and pre-trained on large datasets, ViT
achieves comparable performance to CNN-based methods. Many Transformer-based
architectures have been proposed in the field of medical image segmentation, such as
Trans-Unet (Chen et al., 2021b), Swin-Unet (Cao et al., 2023), ConViT (d’Ascoli et al.,
2021) and ScaleFormer (Huang et al., 2022).

Many researchers have demonstrated the great potential of the structure on ViT-
based image analysis (Azad et al., 2023; Dalmaz, Yurt & Çukur, 2022; Li et al., 2021a) and
also promoted the study of Multi-Layer Perceptron (MLP) structures, such as MLP-
Mixer (Tolstikhin et al., 2021), gMLP (Liu et al., 2021a), RepMLP (Ding et al., 2022a) and
CycleMLP (Chen et al., 2021c). Despite the notable advancements in image analysis tasks,
particularly in medical image segmentation, challenges persist when employing current
methods that rely on transformer and MLP: (1) the network only accepts a fixed image
size, and it is necessary to divide the image into a fixed size, which may not capture the
fine-grained spatial details of the image; (2) it will inevitably cause boundary artifacts when
applied to larger images (Chen et al., 2021a); (3) it lacks detailed positioning information
because the input is considered as a one-dimensional sequence and only global information
is modeled at all stages. When conducting semantic analysis, these models may lack the
ability to accurately localize regions of interest (Ni et al., 2022). These problems are the
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shortcomings of Transformer and MLP compared to CNN in extracting the underlying
features and visual structure.

To solve the above-mentioned problems, we propose a Mixture Conv-MLP Network
with Multi-scale Features Fusion Unet for Medical Image Segmentation (MCNMF-Unet).
In each module, this network combines the advantages of convolution in extracting
low-level features and visual structure and the advantages of MLP in fusing local and global
information. The core of MCNMF-Unet is the Conv-MLP module, which combines the
encoder and decoder characteristics in a U-shaped network and fusesMLP and convolution
in each layer, enabling it to leverage the benefits of both methods. In this network, the key
technology is the MLP Cross Gating (MCG) Block and the multi-axis and multi-windows
MLP (MsM) block. MCG fuses the convolutional block information of different nodes
through two paths. MsM uses multi-axis and multi-window to capture local and global
information from multiple dimensions. The branches are evenly divided by channel,
and the information is combined using different mechanisms along the respective axes.
The computational burden of MsM is linearly related to the size of the input feature
map. MCNMF-Unet has high performance in medical image segmentation with smaller
parameters and FLOPs. The main contributions of this article are as follows:

(1) In order to combine the advantages of convolution and MLP to improve
segmentation accuracy, we designed a general framework for medical image segmentation
called MCNMF-Unet using the U-shaped encoder–decoder architecture.

(2) A multi-axis and multi-windows MLP (MsM) module is designed to capture feature
map information from multiple layers and multiple dimensions, whose input does not
require cropping of images, can receive images of arbitrary size, and always has a global
receptive field.

(3) A Conv-MLP module is developed to perform feature cross-fusion on the two
outputs of the convolution module, which is also a multi-path and multi-information
interaction.

(4)MCNMF-Unet improves segmentation performance while maintaining a lightweight
structure. Compared with most Unet-based improved networks, the performance of
parameters and FLOPs indicators is better. It can achieve better segmentation results with
less computing time and space spent.

RELATED WORK
CNN of U-shaped semantic segmentation methods
Most of the early semantic segmentation research was based on traditional machine
learning algorithms of contours and regions (Zhang et al., 2022; Tsai et al., 2003). In
recent years, with the development of deep learning, the Unet architecture, inspired by
the fully convolutional neural network (FCN), has rapidly become the baseline network
for computer vision tasks due to its elegant design and superior performance. Based
on Unet’s U-shaped architecture, various networks have been proposed for semantic
segmentation. Zhou et al. (2019) proposed the Unet++ network,which integrates Unet
structures of different scales into one network, captures features at different layers, and
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integrates them into a shallower Unet structure by feature superposition, resulting in
smaller scale differences in the feature maps during fusion. Based on the inspiration
from deep residual learning (ResNet), Zhang, Liu & Wang (2018) proposed ResUnet. This
architecture uses a series of stacked residual units as the basic building blocks, allowing for
effective deepening of the network training layers. Oktay et al. (2018) proposed Attention
Unet. The network proposes an attention gates (AGs) mechanism, which implicitly
generates soft region suggestions and highlighting salient features useful for a specific task.
By suppressing features of irrelevant regions, the sensitivity and accuracy of the model for
dense label prediction are improved. Çiçek et al. (2016) proposed 3D Unet and introduced
the structure into the field of 3D medical image segmentation.

Vision Transformers
Transformers, first proposed by Vaswani et al. (2017), is applied to natural language
processing (NLP) tasks. Its architecture consists of stacked multi-headed self-attentive and
feedforwardMLP layers, which capture non-local interactions betweenwords. In the field of
NLP, themethod has achieved optimal performance in various tasks. Inspired by the success
of Transformers, Dosovitskiy et al. (2020) pioneered its introduction into computer vision
and proposed ViT, which is the first pure Transformer architecture for image recognition.
Recently, many researchers have tried to introduce ViT into medical image processing
tasks and developed many Transformer-based models (Heidari et al., 2023; Huang et al.,
2021; Wang et al., 2021a). Chen et al. (2021b) proposed TransUnet, which integrates the
advantages of Transformers and Unet. TransUnet uses the local information encoded by
CNN and the global context encoded by Transformer to encode tokenized image blocks
from the CNNs feature map as an input sequence for extracting the global context. The
decoder upsamples the encoded features and then combines them with the high-resolution
CNN feature map for accurate localization. Cao et al. (2023) proposed Swin-Unet inspired
by the shift window mechanism of Swin Transformer (Liu et al., 2021b), and their work is
the first pure U-based architecture based on Transformer, where the encoder, bottleneck
and decoder are built based on Swin-Transformer blocks. In the encoder, self-attentiveness
from local to global is implemented; in the decoder, global features are upsampled to the
input resolution for the corresponding pixel-level segmentation prediction.

MLP vision
Recently, many researchers have been considering the necessity of a self-attention
mechanism with a tremendous amount of computation in the Transformer architecture
in computer vision. Tolstikhin et al. (2021) proposed the MLP-Mixer architecture (Mixer),
an architecture developed entirely based on multilayer perceptrons (MLPs), which enables
the interaction of two input dimensions through the interleaving of channel-mixing
MLPs and token-mixing MLPs. MLP-Mixer architecture completely replaces the self-
attention mechanism in ViT. Liu et al. (2021a) proposed gMLP, which is constructed from
a basic MLP layer with gating. As an alternative to Transformer without self-attentiveness,
gMLP consists only of channel and spatial projections with static parameterization. By
comparing experimental results, it has been proven that the self-attention mechanism is
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not important for ViT, and gMLP can achieve the same accuracy in critical language and
vision applications. Ding et al. (2022a) proposed RepMLP, which incorporates local prior
knowledge into a fully connected (FC) layer while reducing the number of parameters and
inference time. The architecture takes full account of the global representation capability
of the fully connected (FC) layer and the local capture property of the convolutional layer,
using convolution to strengthenFCandmake it possess locality and globality.With the rapid
development of MLP, many researchers have applied it to medical image segmentation
tasks. For instance, Valanarasu & Patel (2022) proposed UNeXt, a network based on
convolution and MLP. The network uses convolutional blocks with a small number
of filters in the initial and final blocks, and TokMLP blocks in the bottleneck section,
effectively reducing the computational load while still modeling good representations.
Similarly, Jiang et al. (2023) proposed MC-DC, which effectively fuses multilevel features
of MLP and CNN using dual-path complementary modules. This network utilizes a global
feature fusion module and a cross-scale local feature fusion module to reconstruct global
and local information.

METHOD
The proposed model is a novel architecture combining the advantages of convolution and
MLP for medical image segmentation. In this section, we will introduce the backbone
network of MCNMF-Unet and describe its main component modules. These modules are
integral parts of the MCNMF-Unet network, and they include the Encoder Conv-MLP
(ECM), Decoder Conv-MLP (DCM), Bottleneck Conv-MLP (BCM), Output Conv-MLP
(OCM), MLP Cross Gating (MCG) and multi-axis and multi-windows MLP.

The main backbone of MCNMF-Unet
The main framework of MCNMF-Unet follows the most classical U-like architecture, as
shown in Fig. 1. For medical image segmentation, many studies have demonstrated that
the Unet-like network is still a very competitive infrastructure (Wang et al., 2022;Wu et al.,
2023; Azad et al., 2022). Unet is composed of various operations, including convolution,
downsampling, upsampling and skip connections. The contracting path, located on the
left side of the network, extracts semantic information from the image, reduces the image
resolution, and enlarges the receptive field. On the other hand, the expanding path aims to
predict pixel-wise segmentation, accurately locate target positions, and restore the image to
a size similar to the input image. To capture lost detailed information from the contracting
path, skip connections are added between the contracting and expanding paths. Most of the
research on Unet-like networks is based on the CNN method, which has great advantages
in extracting underlying features. However, its local receptive field and long-distance
weak dependence still hinder the accuracy of complex structure segmentation. In addition
to the advantages of Unet, an excellent segmentation network should also introduce
MLP, which can increase the global receptive field of the network. Based on this idea,
Encoder Conv-MLP (ECM) module, Decoder Conv-MLP (DCM) module, Bottleneck
Conv-MLP (BCM) module and Output Conv-MLP (OCM) module are designed to build
the U-shaped network. The MLP Cross Gating (MCG) in the ECM, DCM, BCM and
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Figure 1 TheMCNMF-Unet architecture. Image source credit: BUSI, https://www.kaggle.com/datasets/
aryashah2k/breast-ultrasound-images-dataset, CC0.

Full-size DOI: 10.7717/peerjcs.1798/fig-1

OCM is utilized to fuse information from two convolutional blocks. Two convolutional
feature maps with local information are inputted into the MCG module, and through
alternating Conv-MLP cross-fusion, they obtain multi-scale global receptive fields on local
features. The convolutional blocks can alternately gate the information fusion of MLP. The
MCG module offers a unique approach to information fusion, enabling the integration of
global and local features through alternating Conv-MLP cross-fusion. This design of MCG
differs from most information fusion methods, such as Unet++ and MultiResUnet, which
solely rely on convolutional fusion and lack global sensory integration. TransUnet, on the
other hand, only fuses transformers at the bottleneck layer, limiting the scope of global
information fusion. In DC-MC, the information extraction of MLP is not influenced by
convolution, and the global and local information extraction cannot mutually supervise
each other, resulting in only a single convolutional feature being processed per fusion.
The DCM, BCM and OCM performs skip connection with the ECM. Each DCM module
will connect with two different ECM modules, and the OCM module and BCM module
will connect with one ECM module. MCNMF-Unet architecture adopts an end-to-end
training strategy that relies on a hybrid model design for each block, adaptively acquiring
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Figure 2 Encoder Conv-MLP (ECM)module.
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local and global sensory fields at each layer, where Conv is used locally and MLP is used
for long-distance interaction, which can make full use of all feature information. For more
detailed information, please refer to the section on the multi-axis andmulti-windowsMLP.

The crucial sub-modules
The core sub-modules of MCNMF-Unet are ECM, DCM, BCM and OCM, which form
the encoder and decoder of the U-shaped network. The Conv 3× 3 block consists of Conv
3 × 3, BN and ReLU blocks. The ECM block references the encoder design concept of
a standard U-shaped network, and considering the problem of information loss during
encoder downsampling, the convolutional block downsampling and then upsampling
operation is used, so that the information of the next layer can be obtained and at the
same time as little information can be lost as possible, as shown in Fig. 2. In addition, the
output of two convolutional blocks is obtained at the same layer and enters the MLP Cross
Gating module (MCG), which cross-fuses the information from the convolutional blocks.
The output of the MCG block serves as the input for skip connections with the decoder.
Additionally, it is downsampled by a factor of two to reduce its size. Consequently, this
feature map matches the size of the output feature map from the previously downsampled
convolutional block. The two paths can then be concatenated in the channel dimension
and utilized for subsequent module operations.

In the DCM, the goal is to maximize the restoration of image resolution. To achieve
this, we incorporate upsampling and downsampling operations using convolutional blocks.
This allows us to obtain more information at a larger resolution from the previous layer,
making the current layer more forward-looking and capable of perceiving more detailed
information. Additionally, in each layer of DCM, we have a convolutional block that is
combined with the MCG block of the decoder. This fusion process helps to recover more
information.Moreover, eachDCMmodule is fusedwith two decoders fromdifferent layers,
enabling the recovery of even more information. The decoder is specifically designed to
feed two convolutional blocks from the same layer into the MCGmodule for further cross-
fusion. This process captures global contextual information. The output of this module is
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then upsampled by a factor of two to match the size of the upsampled convolutional block’s
output. Finally, the two paths are concatenated in the channel dimension and utilized for
the next operation. In the BCM block, we follow the same design as DCM. The only
difference is that the skip connection of the i-th layer is missing, but the skip connection
of the i-1-th layer still retains, that is, the information has been gradually restored at the
bottleneck layer, as shown in Fig. 3.

In theOCMmodule, the two convolutional blocks are connected serially and their output
is fed to the MCG module for information fusion, followed by a 1× 1 convolutional block
yields the final segmentation result, as shown in Fig. 4.

MLP cross gating
In order to effectively integrate the information from convolution and MLP, we used the
MLP Cross Gating (MCG) module, as shown in Fig. 5. This module can well preserve
the ability of convolution operation to extract local and fine features, and also extend the
feature map to the global receptive field. MCG receives two inputs, which are the outputs
of two different convolution blocks. Let the two inputs be U1 and V1, U1,V1 ∈RH×W×C ,
then U2 and V2 can be obtained as:

U2= σ (Ds(LN (U1))) (1)

V2= σ (Ds(LN (V1))) (2)

where LN is the Layer Normalization,Ds is the Dense layers, and σ is the GELU activation.
Next, U2 and V2 enter the multi-axis and multi-windows MLP modules, respectively, and
the data is divided into four channels for processing, as shown in Eq. (3).

L1,L2,G1,G2= S(σ (Ds(LN (X)))) (3)

where S is the Split 4 heads operation for the different axes. The output end is concatenated
according to Eq. (4).

M (X)=Do(Ds([Block1(L1),Block2(L2),Global1(G1),Global2(G2)])) (4)

where [·,·,·,·] is the concatenation. M (X) denotes the output of the multi-axis and
multi-windows MLP modules and which is used for the fusion of the two paths:

U3=U2�M (V2) (5)

V3=V2�M (U2) (6)

where � represents corresponding multiplication of corresponding elements, and obtains
the output of each path through the residual connection with the input:

U4=U1+ (ρ(Ds(U3))) (7)
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Figure 4 Output Conv-MLP (OCM)module.
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V4=V1+ (ρ(Ds(V3))) (8)

where ρ is the Dropout activation. To meet the system requirements and obtain an output
of the system, we add the two paths together.

M =U4+V4 (9)
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Multi-axis and multi-windows MLP
The multi-axis and multi-windows MLP (MsM) module is inspired by Zhao et al. (2021),
which proposes a sparse self-attention operation. The different forms of sparse self-
attention on the two axes of the block image are performed, which can capture local and
global information in parallel. However, the test images input by this module need a
fixed size, which is easy to cause boundaries blur or artifacts, and is not friendly to model
training for large-sized images. Based on Tu et al. (2022), we proposed the multi-axis and
multi-windows MLP framework, which established a basic framework for four-axis feature
map information fusion, as shown in Fig. 6.

MsM module divides the input feature map into four heads by channel, and uses MLP
in each head to fuse the corresponding information, two of which are sent to the local
branch and the other two to the global branch. In the local branch, two heads are fed into
two axes, each with an input tensor of (H ,W , C4 ). Meanwhile one of the axes is divided
into (H/2b×W /2b) non-overlapping patches by window size [b,b], and the tensor of
(Hb ×

W
b ,b×b, C4 ) is obtained by blocking; the other axis is divided into (H/2b×W /2b)

non-overlapping patches by window size [2b,2b], and the tensor of (H2b ×
W
2b ,2b×2b, C4 )

is obtained by blocking. In the global branch, one of the axes uses a [b,b] grid division to
get window of (Hb ,

W
b ) and the tensor of (b×b, Hb ×

W
b ,

C
4 ) obtained by griding; similarly

the other axis uses a [2b,2b] grid division to get window of (H2b)× (W2b ) and the tensor of
(2b×2b, H2b×

W
2b ,

C
4 ) obtained by griding.
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In Fig. 6, we set b= 2 as an example, with the top half representing the local branch and
the bottom half representing the global branch. As shown in Fig. 6, the input feature map
is divided into 4-axis evenly by channel, where the one half goes into the local header and
another half goes into the global header. In both local and global branches, different size
block is used to divide and MLP is used for different levels of information mixing. Local
branches correspond to local blending, global branches correspond to global blending, and
the different colored squares in the diagram represent the degree of information blending
within the windows. The final processed four-axis is concated and output. The module is
designed to be completely end-to-end from input to output, without the need for specific
size and cropping of the images, which will not have any negative effects due to cropping,
and the complexity of the model is linear.

In Fig. 7, we used a 3 × 3 convolution and a window size of [2,2] to visually compare
the MsM model and the effective receptive field of the blue pixel in the convolution
(number 1). The convolution achieves local perception (orange, number 2). The MLP
global branch achieves a globally sparse receptive field (purple, number 3), while the MLP
local branch achieves a local receptive field (yellow, number 4). The brown pixels represent
the common receptive field of theMLP global branch and the local branch (number 5). Our
proposed Conv-MLP method not only achieves more detailed local interactions but also
implements globally sparse interactions, effectively capturing local and global expansive
spatial communication.

EXPERIMENTS
Datasets
The data collection process followed the methodology outlined in the study by Yuan,
Song & Fan (2023). The Breast Ultra Sound Images (BUSI) dataset (Al-Dhabyani et al.,
2020) collected in 2018, contains breast ultrasound scans of 600 women aged 25 to 75. It
includes 780 PNG format images cropped to remove unnecessary borders, with 647 images
categorized as normal, benign, or malignant. Each image has its ground truth (masked
image) and has been adjusted to 256 × 256 RGB size. The International Skin Imaging
Collaboration (ISIC 2018) dataset (Codella et al., 2019; Tschandl, Rosendahl & Kittler,
2018) is the world’s largest public dermoscope image library, containing 2594 images
categorized as 20.0% melanoma, 72.0% nevus, and 8.0% seborrheic keratosis. The images
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have various resolutions and have been adapted to 512× 512 RGB size. The CVC-ClinicDB
(Bernal et al., 2015) is a data set of colonoscopy images composed of endoscope images.
These images are extracted from the video sequence of the colonoscopy. The Ground Truth
image consists of a mask corresponding to the area covered by the polyp in the image. So
the segmentation task only considers the images of polyps, a total of 612 images from 31
colonoscopy sequences were obtained. We resized all images to 256 × 256 RGB images.

Implementation details
The experiments were carried out using a Python 3.8 framework and an RTX3090 (24GB)
graphics card. A batch size of 8was utilized, and the training process spanned 100 epochs. To
enhance the diversity of training samples and bolster the model’s generalization capability,
the datasets were randomly combined multiple times in a 7:2:1 ratio for the training set,
validation set, and test set. Data augmentation techniques, such as random image rotation,
hue and brightness adjustments, and cropping, were also employed.

MCNMF-Unet employs a loss function that combines Binary Cross-Entropy and Dice
coefficients. The loss function is described as:

BCELoss(Y ,Ŷ )=−
N∑
i=1

Y (xi) · log Ŷ (xi) (10)

DiceLoss(Y ,Ŷ )= 1−
2 · |Y ∩ Ŷ |
|Y |+|Ŷ |

(11)

L= 0.5BCELoss(Y ,Ŷ )+DiceLoss(Y ,Ŷ ). (12)

In the context of image segmentation, where Y and Ŷ represent the true image label
and the predicted image, and xi is the i-th pixel point of the image, |Y | and |Ŷ | denote the
number of elements in the ground truth and predicted masks.

To assess the performance of our proposed framework compared to the baseline
approach, we employ the F1_score coefficient and the Intersection over Union (IoU)
coefficient as evaluationmetrics. The F1_score is commonly used in classification problems
and serves as a measure in binary or multi-classification scenarios. It is a harmonic average
of the accuracy rate and recall rate, with a range of 0 to 1. The F1_score is calculated using
the formula shown in Eq. (13).

F1_score= 2 ·
Y · Ŷ
Y + Ŷ

(13)

The IoU score is a standard metric for evaluating object segmentation tasks. It measures
the similarity between the predicted and ground truth regions of the objects in a set of
images. The IoU score is defined by the formula shown in Eq. (14).

IoU =
|Y ∩ Ŷ |
|Y |∪|Ŷ |

(14)
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Table 1 Performance comparison of different networks in the BUSI, ISIC2018 and CVC-ClinicDB datasets.

Networks Params (inMB) GFLOPs BUSI ISIC 2018 CVC-ClinicDB

IoU (%) F1_score (%) IoU (%) F1_score (%) IoU (%) F1_score (%)

Unet (2015) 31.13 55.84 63.54 77.14 78.42 87.46 79.12 88.17
Res-Unet (2018) 62.74 94.56 63.81 77.46 79.02 87.95 77.94 87.44
Attention-Unet (2018) 51.99 56.95 69.22 81.50 79.61 88.32 81.25 89.48
Unet++ (2019) 9.16 34.75 65.78 79.05 78.88 87.81 78.77 87.95
MultiResUnet (2020) 7.25 18.60 63.29 77.15 79.18 88.07 77.39 86.63
Trans-Unet (2021) 105.32 38.52 67.12 80.91 80.49 88.72 80.48 89.92
UNeXt (2022) 1.47 0.58 66.95 79.37 80.57 88.95 74.59 84.69
MedFormer (2022) 28.07 22.43 66.68 79.63 81.30 89.46 81.48 89.74
MC-DC (2023) 85.30 100.97 72.57 82.89 80.62 88.53 82.42 90.12
MCNMF-Unet 33.25 53.80 74.19 84.89 81.99 89.96 84.04 91.18

Notes.
Bold values indicate the optimal value of each evaluation index.

Verification of model performance
In this section, the effectiveness of the MCNMF-Unet method is validated through
comparisons with established medical image segmentation algorithms and popular models
such as Unet (Ronneberger, Fischer & Brox, 2015), Res-Unet (Zhang, Liu & Wang, 2018),
Attention-Unet (Oktay et al., 2018), Unet++ (Zhou et al., 2019), MultiResUnet (Ibtehaz
& Rahman, 2020), Trans-Unet (Chen et al., 2021b), UNeXt (Valanarasu & Patel, 2022),
MedFormer (Gao et al., 2022) and MC-DC (Jiang et al., 2023).

The evaluation of the MCNMF-Unet model is mainly compared in terms of the number
of parameters, computational complexity and segmentation accuracy. Table 1 shows the
comparison results. Compared with the base line model (Unet), params only increased by
2.12M, and GFLOPs decreased by 2.04. Notably, our proposed network has significantly
fewer parameters compared to TransUnet, with a reduction of 72.07M. This reduction
leads to a substantial decrease in memory usage during the training process. In terms
of validating segmentation performance, we compare IoU and F1_scores in three public
datasets: BUSI, ISIC 2018 and CVC-ClinicDB.

MCNMF-Unet shows the best performance on all three datasets. In the BUSI dataset, the
IoU and F1_scores of MCNMF-Unet reached 74.19% and 84.89%, respectively. Compared
with the results of the other six models, the IoU coefficients increased by 1.60%∼10.90%.
the F1_scores increased by 1.00%∼7.46%. In the ISIC 2018 dataset, MCNMF-Unet
achieved IoU and F1_scores of 81.99% and 89.96% respectively, and improved the IoU
coefficients by 0.69%∼3.57% compared to the other six models. the F1_score improved
by 0.50%∼2.50%. In the CVC-ClinicDB dataset, the IoU and F1_scores of 84.04% and
91.18%, respectively. The IoU coefficients improved by 1.62%∼9.45%. The F1_score
improved by 1.06%∼6.49%. The comparative results indicate the better segmentation
performance of MCNMF-Unet.

As the results of the evaluation metrics in Table 1, MCNMF-Unet achieves the best
results, but visual observations are needed to determine whether the proposed model
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Figure 8 Qualitative comparisons. Row 1: BUSI dataset, Row 2: ISIC 2018 dataset, Row 3: CVC-
ClinicDB. (A) Input, (B) Ground Truth, (C) Unet, (D) Unet++, (E) Res-Unet, (F) Attention-Unet,
(G) MultiResUnet, (H) Trans-Unet, (I) UNeXt, (J) MedFormer, (K) MC-DC and (L) MCNMF-Unet.
Image source credits: Row 1, BUSI, https://www.kaggle.com/datasets/aryashah2k/breast-ultrasound-
images-dataset, CC0; Row 2, ISIC 2018 Task 1 Lesion Segmentation (0016016), https://challenge.isic-
archive.com/data/#2018, CC0; Row 3: CVC-ClinicDB, https://polyp.grand-challenge.org/CVCClinicDB,
First column (C) Hospital Clinic, Barcelona, Spain, Second column, (C) Computer Vision Center,
Barcelona, Spain.

Full-size DOI: 10.7717/peerjcs.1798/fig-8

works as expected. To this end, In Fig. 8, we also give examples of visual comparisons of
the segmentation in BUSI, ISIC 2018 and CVC-ClinicDB.

MCNMF-Unet demonstrates superior performance compared to other widely used
networks, as evidenced by its ability to effectively capture finer segmentation details. The
results also indicate that MCNMF-Unet exhibits greater resilience in complex scenes,
minimizing the occurrence of unexpected segmentation outcomes.

Ablation experiments
We conduct extensive ablation experiments to verify the performance of MCNMF-Unet.
All experimental evaluations are performed on the BUSI dataset. The experiment verifies
the superiority of our proposed module while controlling other variables the same.

Importance of MCG
In the experiment, the MCG module is replaced with convolution and attention modules
(replacing the correspondingmodules in Fig. 2, Fig. 3 and Fig. 4), and the details are shown,
including the Params and GFLOPs after replacing these modules, as well as the IoU and
F1_scores on the BUSI dataset. We mainly used the convolution module (Conv), Position
Attention Module (PAM), Channel Attention Module (CAM), Convolutional Block
Attention Module (CBAM) and Coordinate Attention Module (CoordAM). The data in
Table 2 shows that theMCGmodule still achieves the best segmentation performance while
keeping the learnable parameters of the model and the lowest computational complexity.

Effects of Multi-axis and Multi-windows MLP approach
The experiments also further explored the impact of the proposed Multi-axis and Multi-
windows MLP approach. As shown in Table 3, we mainly made changes to the Multi-axis
andMulti-windowsMLPmodule (Fig. 6) and conducted comparative experiments between
the single-axis Block branch (Block), the single-axis Grid branch (Grid), the single-axis
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Table 2 The impact of MCGmodules on network performance.

Variant Params GFLOPs IoU (%) F1_score (%)

Conv 38.43 57.79 67.20 79.84
CAM 38.43 58.86 71.40 83.10
PAM 38.98 257.21 71.58 83.68
CBAM 34.62 52.94 70.71 82.42
Coord.AM 34.96 52.94 68.82 78.61
MCG (Ours) 33.25 51.80 74.19 84.89

Notes.
Values in bold indicate the experimental results in the proposed network in this article.

Table 3 Effect of multi-axis andmulti-windowsMLP on network performance.

Variant IoU (%) F1_score (%)

Block 72.67 83.89
Grid 72.80 83.94
Block-Grid 70.97 82.64
Grid-Block 69.00 81.36
2-Axis 73.47 84.48
MsM (Ours) 74.19 84.89

Notes.
Values in bold indicate the experimental results in the MCNMF-Unet.

Block followed by Gride serial branch (Block-Grid), the single-axis Grid followed by
Block branch (Grid-Block), the two-axis Block-Grid branch(2-Axis) and Multi-axis and
Multi-windowsMLP (MsM). Through these experiments, it can be seen that the Multi-axis
and Multi-windows MLP approach achieves the optimal segmentation results, with the
IoU and F1_score improvement reaching 0.72%–5.19% and 0.41%–3.53%, respectively.

CONCLUSIONS
In this article, we design a novel deep neural network architecture based on U-shaped
structure for medical image segmentation. The core idea is to integrate the advantages
of CNN and MLP into the coding and decoding layers through MLP Cross Gating
module, while Multi-axis and Multi-windows MLP module can capture the feature map
information from multiple windows and multiple dimensions with global receptive field
always. Our proposed MCNMF-Unet is essentially an improved network based on Unet,
which can be effectively modeled with a small amount of parameters and computation. The
experimental results show that MCNMF-Unet outperforms the state-of-the-art baseline
on various benchmarks for the segmentation of biomedical images from different types.
Moreover, our network achieves very excellent results for image segmentationwith complex
backgrounds. However, MCNMF-Unet architecture represents a preliminary exploration
of the benefits of combining convolution and MLP. There is still room for further research
to explore more scientific and effective ways of information fusion between these two
components. Additionally, the current work primarily focuses on 2D medical image
segmentation. However, with the prevalence of 3D medical images, it is crucial to extend
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the proposed method to handle segmentation tasks in three-dimensional space. For future
work, we plan to explore more scientific and effective ways of information fusion between
convolution and MLP, and extend our method to 3D medical image segmentation.
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