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Renewable energy plays an increasingly important role in our future. As fossil fuels
become more difficult to extract and effectively process, renewables offer a solution to the
ever-increasing energy demands of the world. However, the shift toward renewable energy
is not without challenges. While fossil fuels offer a more reliable means of energy storage
that can be converted into usable energy, renewables are more dependent on external
factors used for generation. Efficient storage of renewables is more difficult often relying
on batteries that have a limited number of charge cycles. A robust and efficient system for
forecasting power generation from renewable sources can help alleviate some of the
difficulties associated with the transition toward renewable energy. Therefore, this study
proposes an attention-based recurrent neural network approach for forecasting power
generated from renewable sources. To help networks make more accurate forecasts,
decomposition techniques utilized applied the time series, and a modified metaheuristic is
introduced to optimized hyperparameter values of the utilized networks. This approach has
been tested on two real-world renewable energy datasets covering both solar and wind
farms. The models generated by the introduced metaheuristics were compared with those
produced by other state-of-the-art optimizers in terms of standard regression metrics and
statistical analysis. Finally, the best-performing model was interpreted using SHapley
Additive exPlanations.
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ABSTRACT14

Renewable energy plays an increasingly important role in our future. As fossil fuels become more difficult

to extract and effectively process, renewables offer a solution to the ever-increasing energy demands

of the world. However, the shift toward renewable energy is not without challenges. While fossil fuels

offer a more reliable means of energy storage that can be converted into usable energy, renewables

are more dependent on external factors used for generation. Efficient storage of renewables is more

difficult often relying on batteries that have a limited number of charge cycles. A robust and efficient

system for forecasting power generation from renewable sources can help alleviate some of the difficulties

associated with the transition toward renewable energy. Therefore, this study proposes an attention-based

recurrent neural network approach for forecasting power generated from renewable sources. To help

networks make more accurate forecasts, decomposition techniques utilized applied the time series, and

a modified metaheuristic is introduced to optimized hyperparameter values of the utilized networks. This

approach has been tested on two real-world renewable energy datasets covering both solar and wind

farms. The models generated by the introduced metaheuristics were compared with those produced by

other state-of-the-art optimizers in terms of standard regression metrics and statistical analysis. Finally,

the best-performing model was interpreted using SHapley Additive exPlanations.
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1 INTRODUCTION30

The role of renewable energy is a paramount factor in sustainability of the society. Traditional energy31

systems based on fossil fuels are not efficient and require more complicated processes of extraction.32

The demands of human civilization are always growing, which exposes the difficulties for eco-friendly33

energetic growth. As renewable energy source (RES) become more available the distribution of new34

resources in the network result in stochasticity, intermittency, and uncertainty. Consequentially, the35

traditional energy systems are dominant in the share of energy used amounting to 81% of the global36

share (Loe, 2022).37

For RES to become more widely utilized, the previously mentioned challenges need to be overcome.38

Additionally, energy storage on a smaller scale remains difficult when working with RES, in comparison39

to fossil fuel storage which is still considered more reliable. The storage of electricity is mostly achieved40

by batteries which are a limited resource on their own due to the limited number of life cycles for each41

one of them (Zhang and Zhao, 2023). All things considered, a possible solution is a mechanism that can42

provide accurate forecasts of the amount of resources being generated from RES. Such a solution would43

have to be able to analyze short-term time series and provide a robust mechanism as it affects electricity44
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load and its price. Electricity traders and system operators are most affected by these changes.45

Traditional methods for regression have previously been applied to forecasting RES power produc-46

tion (Foley et al., 2012; Abuella and Chowdhury, 2015) However, as the world’s need for energy increases47

further improvements are needed in order to make forecasting methods viable. A major challenge when48

tackling RES production forecasting comes from the noisy nature of the data. Since renewable resources49

rely on natural phenomena such as wind or solar exposure, many chaotic factors play a role in the amount50

of power that can be produced. Nevertheless, patterns in this data are still present, though often difficult51

to initially observe.52

By applying advanced signal processing techniques, such as decomposition techniques, strong signals53

can be separated from the noise, allowing prediction methods to focus on determining correlations between54

signals with strong patterns rather than those heavily affected by the noise. This concept has often been55

applied to systems that require precise moments in noise environments such as electroencephalogra-56

phy (Murariu et al., 2023) demonstrating great potential. Several decomposition techniques have been57

developed in recently such as empirical mode decomposition (EMD) (Boudraa and Cexus, 2007) and58

ensemble empirical mode decomposition (EEMD) (Wu and Huang, 2009). While efficient, the lack of59

a strong mathematical background in these methods has led to the development of variational mode60

decomposition (VMD) (Dragomiretskiy and Zosso, 2013) that has shown great potential for tackling61

signal decomposition with a strong mathematical basis (Liu et al., 2022; Zhang et al., 2022; Gao et al.,62

2022).63

One additional approach that has shown great potential when working with data catheterized by64

complex nonlinear relations is the application of artificial intelligence (AI). Powerful AI algorithms are65

capable of improving their performance through an iterative data-driven process. By observing data66

AI algorithms can determine correlations without explicit programming. This makes AI a promising67

approach for tackling this pressing issue. Nevertheless, the modern algorithms’ performance is reliant on68

proper hyperparameter selection. With increasing numbers of hyperparameters, traditional methods such69

as trial and error have become insufficient to optimize algorithm performance. The use of metaheuristic70

optimization algorithms provides a potential solution for efficient hyperparameter selection.71

Forecasting power generation is regarded as a time series forecasting challenge. By doing so,72

algorithms capable of responding to data sequences can be leveraged in order to make more accurate73

forecasts. One promising approach, that extensive literature review suggests has not yet sufficiently been74

explored when applied to renewable forecasting, is the use of recurrent neural networks (RNN) (Medsker75

and Jain, 1999). These networks represent a variety of artificial neural networks (ANN) that allow76

previous inputs to affect future outputs, making them highly suitable for time series forecasting. A77

recent improvement incorporates attention mechanisms (Olah and Carter, 2016) into RNN allowing78

networks to focus their attention on specific features improving accuracy. Additionally, the literature79

review suggests that attention-based RNNs (RNN-ATT) have not yet been applied to renewable power80

forecasting, indicating a gap in research that this work hopes to address. Exploring the potential of these81

networks is essential as a robust forecasting method could help make RES more viable and lower the82

world’s dependence on fossil fuels.83

This research proposes an approach that applies a neural network model based on attention for that84

purpose. Moreover, the proposed model was applied to two different problems including the Spain85

wind and solar energy predictions and the wind farms in China predictions. Datasets for both countries’86

surveys have been used with the RNN model and the attention-based recurrent neural network RNN-ATT.87

However, these networks require fine-tuning of a large number of hyperparameters, that can result in non-88

deterministic polynomial time complexity (NP-hard). Hyperparameter optimization is done through the89

use of metaheuristics, and a modified version of the well-known Harris hawk optimization (HHO) (Heidari90

et al., 2019) algorithm is introduced. Two sets of experiments have been carried out both with RNN and91

RNN-ATT networks, applied to each real-world dataset.92

This research is an extension of previous researches in this domain (Bacanin et al., 2023c; Stoean93

et al., 2023; Bacanin et al., 2023b), where the long short-term (LSTM), bidrectional LSTM (BiLSTM) and94

gated recurrent unit (GRU) were applied for RES forecasting challenges. However, the goal of this work95

is to test lighter models (classical RNNs) for problems of RES with the application of fewer neurons over96

layers while providing satisfactory performance. Additionally, conversely to previous experimentation,97

current research also investigates the potential of RNNs with attention mechanism and it was validated98

against different RES time-series datasets. Also, the classical RNNs (without attention mechanism) were99
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also validated in order to establish the influence of attention layer to overall network performance.100

The primary contributions of this work can be summarized as the following:101

• The RNN-ATT-based method for forecasting RES power generation.102

• A modified version of a metaheuristic tasked with selecting network parameters.103

• The application of the introduced approach to two real-world datasets to determine their potential104

for real-world use.105

• The interpretation of the best generated RNN models that can be used as a valuable tools for renew-106

able energy specialists to determine which factor has the most influence on the RES performance.107

The structure of the paper includes Section 2 for providing the technological fundamentals for the108

performed experiments. Section 3 explains the original version of the applied metaheuristic as well as109

the modified version. Section 4 explains the utilized datasets in detail and gives information on the test110

setup. The outcomes are presented in Section 5, followed by a discussion. statistical validation and model111

interpretation presented in Section 6. Finally, Section 7 concluded the work and presents potential future112

research.113

2 BACKGROUND AND PRELIMINARIES114

This section introduces techniques required for the reader to have a full and insightful understanding of115

experiments conducted in this research.116

2.1 Time-Series Decomposition and Integration117

Time-series decomposition is a technique used to break down a time-series data into its constituent118

components, such as trend, seasonality, and residual (noise). By decomposing a time-series, we can119

better understand the underlying patterns and relationships within the data, which can, in turn result in120

improvements of reliability and accuracy of the time-series forecasting, models like the Luong attention-121

based RNN model.122

2.1.1 Decomposition Techniques123

Various decomposition techniques can be applied to time-series data, including:124

1. Classical Decomposition: This method decomposes a time-series into its trend, seasonal, and125

residual components using moving averages and seasonal adjustments. There are two primary approaches126

in classical decomposition: additive and multiplicative. In the additive decomposition, the time-series127

is expressed as the sum of its components, while in the multiplicative decomposition, the time-series is128

expressed as the product of its components.129

2. Seasonal and Trend decomposition using Loess (STL): STL is a flexible and robust decomposi-130

tion method that uses locally weighted regression (Loess) to estimate the trend and seasonal components131

of a time-series. It can handle both constant and time-varying seasonality, as well as arbitrary patterns of132

missing data. The STL method also allows for user-defined control over the smoothness and periodicity133

of the seasonal and trend components.134

3. Seasonal Decomposition of Time Series (SDTS): SDTS is an extension of the classical decompo-135

sition method that incorporates a seasonal adjustment factor for each observation in the time-series. This136

factor is obtained by dividing the observed value by the corresponding seasonal component. The seasonal137

adjustment factors can be used to deseasonalize the time-series, which can then be analyzed for trend and138

residual components.139

4. Wavelet Transform: Wavelet transform is a mathematical technique used to decompose a time-140

series into a set of wavelet coefficients, which represent the time-series at different scales and resolutions.141

Wavelet transform can capture both the low-frequency (trend) and high-frequency (seasonal and noise)142

components of a time-series, making it a powerful tool for time-series decomposition and analysis.143

5. Empirical Mode Decomposition: EMD is a powerful and flexible technique for analyzing non-144

stationary and non-linear time series data. Introduced by Huang et al. (Huang et al., 1998), EMD is145

designed to adaptively decompose a time series into a finite set of intrinsic mode functions (IMFs) that146

capture the local oscillatory behavior of the signal at various scales. The primary goal of EMD is to147

provide a data-driven decomposition that does not rely on any predefined basis functions or assumptions148
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about the underlying signal characteristics (Abayomi-Alli et al., 2020). By incorporating EMD into the149

renewable power generation forecasting process, we can potentially enhance the accuracy, reliability, and150

interpretability of the forecasting models, ultimately aiding in the efficient management and planning of151

renewable energy resources.152

2.1.2 Variational mode decomposition153

The VMD (Dragomiretskiy and Zosso, 2013) technique used for signal decomposition builds upon the154

solid foundation established but other methods. However, VMD does so with a strong mathematical155

foundation compared to empirical techniques. Signal modes of varying frequencies are extracted from the156

original signal original signals by finding modes that are orthogonal to each other with localized frequency157

content. The decomposition is achieved through progressive optimization according to Eq. (1).158

E(V ) =
�

�

1

2
∥V ′(t)∥2

2 +µU(V (t))

�

dt (1)

in which V (t) are signal modes, V ′(t) denotes the derivative of V (t) with respect to time. Additionally159

the regularization parameter µ balances between extracted mode smoothness and sparsity. Accordingly,160

function U(V (t)) promotes sparsity.161

The decomposition process is handled by an algorithm that switches between solving modes and162

determines the penalty. Minimizing the energy function modes can be determined with respect to V (t). A163

Lagrange multiplier α(t) is also introduced giving Eq. (2).164

E(V ) =
�

�

1

2
∥V ′(t)∥2

2 +µU(V (t))+α(t)
K

∑
k=1

Vk(t)
2

�

dt (2)

where the k-th mode of a signal is represented by Vk(t). In order to revise the penalty function, the energy165

function is minimized with respect to α(t). To accomplish this, the derivative of E(V ) with respect to166

α(t) is set to zero. The resulting function is shown in Eq. (3)167

d

dt
α(t) = µ

K

∑
k=1

Vk(t)
2 −λ (3)

with the λ constraint defining the overall mode energy.168

2.1.3 Integration of Decomposed Components169

Once the time-series has been decomposed into its constituent components, the next step is to integrate170

these components into the forecasting model. There are several ways to incorporate the decomposed171

components into the Luong attention-based RNN model:172

1. Component-wise Modeling: Train separate RNN models for each of the decomposed components173

(trend, seasonal, and residual), and then combine the forecasts from these models to obtain the final forecast174

for the original time-series. This approach can help in capturing the unique patterns and dependencies175

within each component more effectively.176

2. Feature Augmentation: Use the decomposed components as additional input features to the177

RNN model, along with the original time-series. This approach can help the model in learning the178

relationships between the decomposed components and the target variable, potentially improving the179

model’s forecasting performance.180

3. Preprocessing: Deseasonalize the time-series by removing the seasonal component before training181

the RNN model, and then add back the seasonal component to the model’s forecasts to obtain the final182

forecast for the original time-series. This approach can help in reducing the complexity of the time-series183

and make it easier for the model to capture the underlying trend and residual patterns.184

4. Postprocessing: Train the RNN model on the original time-series, and then adjust the model’s185

forecasts using the decomposed components (e.g., by adding the seasonal component to the model’s186

forecasts). This approach can help in correcting the model’s forecasts for any systematic errors or biases187

related to the seasonal component.188
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2.2 Recurrent neural network189

Time series prediction is the motivation for the improvements in artificial neural networks (ANN) (Pascanu190

et al., 2013). The difference from the multilayer perceptron is that the hidden unit links are enabled with a191

delay. The results of such modifications allow the model to be sensitive toward temporal data occurrences192

of greater length.193

RNNs are considered as a high-performing solution but further improvements were applied to achieve194

even greater performance. The main issues are the exploding and vanishing gradient. The solution was195

provided with LSTM model. The reason for not using the latest solution is that sometimes RNNs tend196

to outperform LSTMs as they introduce a large number of hyperparameters that can sometimes hinder197

performance (Bas et al., 2021).198

The advantage of the RNN as well is that it does not have to take inputs of fixed vector length, in199

which case the output has to be fixed as well. While working with rich structures and sequences this200

advantage can be exploited. In other words, the model works with input vectors and is able to generate201

sequences on the output. The RNN processes the data of the sequence while the hidden state is held.202

2.3 Luong attention-based model203

The attention phenomenon is not defined by mathematics and its application in the Luong attention-204

based model should be considered as a mechanism (Luong et al., 2015; Raffel et al., 2017; Harvat and205

Martı́n-Guerrero, 2022). Some examples of different mathematical expression applications of the attention206

mechanism are the sliding window methods, saliency detection, local image features, etc. Regarding the207

attention mechanism application in the case of an RNN, the definition is precise.208

The networks that can work with the attention mechanism and possess RNN characteristics are209

considered attention-based. The purpose of such a mechanism is to work with different weights for the210

sequence in input. The data can be captured as a result and input-output relations are usable. The basic211

solution of such architecture is the application of a second RNN.212

The authors chose the Luong attention-based model for that purpose. Weight represented as wt is213

calculated for the source for every timestep t for the decoding of attention-based encoder-decoder as214

Σswt(s) = 1 and ∀s wt(s)g 0. The hidden state ht has a function that is the related timestep’s predicted215

token, while the Σswt(s)∗ ĥs.216

Different mathematical applications of the attention mechanism differ in the way they compute217

weights. In the case of the Luong model, it is the softmax function on the scaled scores of each token.218

Matrix Wa linearly transforms the decoder’s ht dot product and the encoder ĥs to calculate the score.219

2.4 Hyperparameters of Luong-attention based RNN220

The Luong attention-based RNN model is an extension of the basic RNN model with the addition of221

an attention mechanism allows for selective focus on particular parts of the input sequence upon output222

generation. The following hyperparameters are typically involved in the configuration of the Luong223

attention-based RNN model:224

1. Number of hidden layers (nhid): The number of hidden layers in the RNN architecture, which225

determines the depth of the model. More hidden layers can enable the model to capture patterns of higher226

complexity and data dependencies but with the risk of overfitting and requiring more computational227

resources.228

2. Number of hidden units per layer (nunit): The number of hidden units (neurons) in each hidden229

layer of the RNN. A larger number of hidden units can increase the model’s capacity to learn complex230

patterns, but it may also increase the risk of overfitting and require more computational resources.231

3. Type of RNN cell: The choice of RNN cell used in the model, such as LSTM or GRU. These232

cells are designed to better handle long-range dependencies and mitigate the vanishing gradient problem233

compared to the traditional RNN cells.234

4. Attention mechanism: The specific attention mechanism used in the model. In the case of the235

Luong attention-based RNN model, the attention mechanism can be of two types: global or local attention.236

Global attention attends to all the source positions, while attention is focused localy only on a small237

window of source positions around the current target position.238

5. Attention scoring function: The scoring function computes the alignment scores between the239

source and target sequences in the attention mechanism. Luong et al. proposed three different scoring240

functions: dot product, general (multiplicative), and concatenation (additive). The choice of scoring241

function can affect the model’s performance and interpretability.242
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6. Learning rate (α): The learning rate is a critical hyperparameter in control of the size of updates243

to the model’s weights during the training process. A smaller learning rate might lead to more precise244

convergence but require more training iterations, while a larger learning rate may speed up the training245

process but risk overshooting the optimal solution.246

7. Dropout rate (pdrop): The dropout rate is a technique of regularization used to prevent overfitting247

in neural networks. During training, a fraction of the neurons in the network is randomly ”dropped out”248

or deactivated, with the specified dropout rate determining the proportion of neurons deactivated at each249

training iteration.250

8. Batch size: The number of training samples used in a single update of the model’s weights. A251

larger batch size can lead to more accurate gradient estimates and faster training but may require more252

memory and computational resources.253

9. Sequence length: The length of input and output sequences used in the model. Longer se-254

quences may allow the model to capture more extensive temporal dependencies but can also increase the255

computational complexity and risk of overfitting.256

These hyperparameters play a paramount role in performance determination of the Luong attention-257

based RNN model for renewable power generation forecasting. Selecting optimal values for these258

hyperparameters requires careful experimentation, and metaheuristic optimization techniques like the259

HHO algorithm can be helpful in this process, as shown by different authors recently (Tayebi and260

El Kafhali, 2022; Bacanin et al., 2022a; Nematzadeh et al., 2022; Drewil and Al-Bahadili, 2022; Akay261

et al., 2022; Bacanin et al., 2022c; Jovanovic et al., 2023a).262

2.5 Metaheuristic Optimization263

In recent years model optimization has become a popular topic in computer science. Increasing model264

complexity, as well as growing numbers of hyperparameters of modern algorithms, has made it necessary265

to develop techniques to automate this process, which was traditionally handled through trial and error.266

However, this is a challenging task, as selecting optimal parameters is often a mixed NP-hard problem,267

with both discrete and continuous values having a role to play in defining model performance. A powerful268

group of algorithms capable of addressing NP-hard problems within reasonable time constraints and269

with realistic computational demands are metaheuristic optimization algorithms. By formulating the270

process of parameter selection as an optimization task, metaheuristics can be employed to efficiently271

improve performance. A notably popular group of metaheuristics is swarm intelligence that models272

observed behaviors of cooperating groups to perform optimizations. Some notable algorithms that have273

become popular for tacking optimization tasks among researchers include the HHO (Heidari et al., 2019),274

genetic algorithm (GA) (Mirjalili and Mirjalili, 2019), particle swarm optimizer (PSO) (Kennedy and275

Eberhart, 1995), artificial bee colony (ABC) (Karaboga, 2010) algorithm, firefly algorithm (FA) (Yang and276

Slowik, 2020). Additionally the LSHADE for Constrained Optimization with Levy Flights (COLSHADE)277

algorithm (Gurrola-Ramos et al., 2020) and Self-Adapting Spherical Search (SASS) (Zhao et al., 2022)278

are notable recent examples of optimizers. These algorithms, and algorithms derived from their base have279

been applied in several fields with promising outcomes. Some noteworthy examples of metaheuristics280

applied to optimization problems include examples for crude oil price forecasting (Jovanovic et al., 2022;281

Al-Qaness et al., 2022), Ethereum and Bitcoin prices predictions (Stankovic et al., 2022b; Milicevic et al.,282

2023; Petrovic et al., 2023; Gupta and Nalavade, 2022), industry 4.0 (Jovanovic et al., 2023b; Dobrojevic283

et al., 2023; Para et al., 2022), medicine (Zivkovic et al., 2022a; Bezdan et al., 2022; Budimirovic et al.,284

2022; Stankovic et al., 2022a), security (Zivkovic et al., 2022b; Savanović et al., 2023; Jovanovic et al.,285

2023c; Zivkovic et al., 2022c), cloud computing (Thakur and Goraya, 2022; Mirmohseni et al., 2022;286

Bacanin et al., 2022d; Zivkovic et al., 2021), and environmental sciences (Jovanovic et al., 2023d; Bacanin287

et al., 2022b; Kiani et al., 2022).288

3 PROPOSED METHOD289

This section begins with a short overview of the basic HHO algorithm along the explanation and justifica-290

tions of the modifications that were made to the original method.291

3.1 Original Harris hawk optimization292

The inspiration for the HHO are the attack strategies of the bird with the same name. The phases of293

attacks can be differentiated as exploration, the transition to exploitation, and the exploitation. The294
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algorithm was introduced by Heidari et al. (Heidari et al., 2019) and has been used for a wide variety of295

optimization-related applications such as machine scheduling (Jouhari et al., 2020) and neural network296

optimization (Ali et al., 2022).297

In the first phase, the exploration, the goal is the global optimum. Multiple locations in the population298

serve for random initialization which mimics the hawk’s search for prey. The parameter q controls this299

process as it switches between two strategies of equal probability:300

X(t +1) =

�

Xrand(t)− r1|Xrand(t)−2r2X(t)|,q g 0

(Xbest(t)−Xm(t))− r3(LB+ r4(UB−LB)),q < 0.5,
(4)

in which the random number from the range [0,1] are r1, r2, r3, and r4 as well as q and these numbers are301

updated on an iteration basis. The position vector of the solution in the next iteration is X(t +1), and the302

positions of the solutions of the best, current, and average solutions in the current iteration t are given303

respectively as Xbest(t), X(t) and Xm(t), while the lower bound is LB and the upper bound is UB. The304

average position is provided by a simple averaging approach:305

Xm(t) =
1

N

N

∑
i=1

Xi(t), (5)

for which N shows the total solutions number, and the individual X at iteration t is shown as Xi(t).306

The term prey energy is introduced as it indicates if the algorithm should revert back to exploration307

and so forth. The solutions updates strength in each iteration as:308

E = 2E0(1−
t

T
), (6)

for T as iteration maximum for a run, the prey’s initial energy E0 which varies inside the [−1,1] interval.309

The exploitation phase represents the literal attack of the hawk and maps out its behavior as it is310

closing in. The mathematical translation is given as |E| g 0.5 for more passive attacking, and |E|< 0.5311

otherwise.312

In cases where the prey of the hawk is still at large, the hawks encircle the prey with the goal of313

exhaustion which is modeled as follows:314

X(t +1) = ∆X(t)−E|JXbest(t)−X(t)| (7)

315

∆X(t) = Xbest(t)−X(t), (8)

for which the vector difference of the best solution (prey) and the current solution in iteration t is shown316

as ∆X(t). The strategy of the prey’s escape is controlled by the random attribute J which differs from317

iteration to iteration:318

J = 2(1− r5), (9)

for which the interval [0,1]) maps out the random value r5. For r g 0.5 and |E|< 0.5 the prey is considered319

exhausted and more aggressive attack strategies are applied. The current position in this case is updated320

as:321

X(t +1) = Xbest(t)−E|∆X(t)| (10)

If the prey is still not giving up the hawks apply another attack strategy called zig-zag movements322

commonly known as leapfrog movements. Following equation evaluates if such behavior should be323

applied:324

Y = Xbest(t)−E|JXbest(t)−X(t)|, (11)

while the leapfrog movements are modeled as:325

Z = Y +S×LF(D), (12)
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in which the problem dimension is given as D, a random vector of 1×D size as S, and the levy fligth LF326

calculated by:327

LF(x) = 0.01×
u×σ

|v|
1
β

,σ = (
Γ(1+β )× sin(πβ

2
)

Γ( 1+β
2

)×β ×2(
β−1

2 )
)

1
β (13)

Consequently, the position updating mechanism is provided:328

X(t +1) =

�

Y, if F(Y )< F(X(t))

Z, if F(Z)< F(X(t)),
(14)

where the eqs. (11) and (12) are utilized for calculating the Y and Z.329

Lastly, for the case of r f 0.5 and |E|< 0.5 the prey is considered to be out of energy, and stronger330

attacks are applied with rapid drive progressively. The distance between the target before its acquisition is331

modeled as:332

X(t +1) =

�

Y, if F(Y )< F(X(t))

Z, if F(Z)< F(X(t)),
(15)

for which the Y and Z are obtained by the next two equations:333

Y = Xbest(t)−E|JXbest(t)−X(t)| (16)

334

Z = Y +S×LF(D) (17)

3.2 Proposed enhanced Harris hawk optimization algorithm335

3.2.1 New initialization scheme336

The applied approach exploits a novel initialization strategy of populations:337

xi, j = lb j +ψ · (ub j − lb j), (18)

in which the j-th component of i-th solution is given as xi, j, the upper and lower bounds are represented338

by ub j and lb j for the parameter j, and a pseudo-random number is drawn between [0,1] and given as ψ .339

The quasi-reflection-based learning (QRL) procedure has proven to give results (Jovanovic et al.,340

2023b) where applied with the goal of sarge space enlargement for the case of those generated by the341

(18). The purpose of the QRL procedure is reflected in the fact that if the observed solution falls in the342

suboptimal region of the search space, there is a fair chance that its opposite will fall in more promising343

areas of the search domain, as reported by several authors recently (Bacanin et al., 2023a; Basha et al.,344

2021; Nama, 2022; Çelik, 2023; Lei et al., 2022; Bacanin et al., 2021; Xue, 2022). Hence the x
qr
j ,345

quasi-reflexive-opposite component for all parameters of a solution x j is provided as in the following346

equation:347

X
qr
j = rnd

�

lb j +ub j

2
,x j

�

, (19)

while at [
lb j +ub j

2
,x j

�

interval a pseudo-random number is chosen as rnd.348

3.2.2 Mechanism for maintaining population diversity349

Diversification is observed as a parameter of the convergence/divergence ratio during the search process350

as in (Cheng and Shi, 2011).351

L1 norm (Cheng and Shi, 2011) applies two-component diversification for the solutions and the352

dimensions of the problem. Important information for the search process can be derived from the353

dimension-wise metric with the L1 norm.354

The number of total individuals is marked with m and the dimensions number as n, the L1 norm is355

given as in Eqs. 20 -22:356
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Algorithm 1 QRL pseudo-code initialization scheme

1: Pinit population with N/2 solutions created by Eq. (18).

2: Pqr population by QRL from Pinit by Eq. 19.

3: Merge Pinit and Pqr (P∪Pqr) resulting in the starting population.

4: Fitness calculation of every solution in P

5: P sorted by fitness

x =
1

m

m

∑
i=1

xi j (20)

D
p
j =

1

N

N

∑
i=1

xi j − x j (21)

Dp =
1

n

n

∑
i=1

D
p
j (22)

in which every individual’s position mean is represented as x vector over all dimensions, the hawk’s357

position vector of diversity as L1 norm is shown as D
p
j , while the scalar form is shown as Dp for the358

entire population. Using regular strategies of initialization usually results in higher diversity with weaker359

convergence towards later iterations. The described metric is used for L1 determination of the threshold360

Dt for the diversity. Firstly, the Dt0 is calculated by Eq. 23, which is followed by condition DP < Dt for361

the satisfactory value of diversity, the worst solutions are replaced with randomly generated solutions nrs362

with the same strategy for population initialization. The nrs value is another control parameter.363

Dt0 =
n

∑
j=1

(ub j − lb j)

2 ·n
(23)

The Eq. (1) and Algorithm 1 indicate close generation of solutions towards the bounds of the search364

space’s mean. The value Dt falls of as shown in:365

Dt,iter+1 = Dt,iter −Dt,iter ·
iter

T
, (24)

in which the current and subsequent iterations are given as iter and iter+1, and the number of iterations366

at the maximum is T . According to this mechanism, the Dt falls off in no relation to the DP and still will367

not trigger the mechanism.368

3.2.3 Inner workings and complexity of proposed method369

Taking inspiration from applied mechanisms to the original solution the proposed new algorithm is370

diversity directed HHO (DDHHO). It is important to note that the computational complexity of the371

original algorithm is not lower than that of the novel solution. In modern literature, it is a practice to372

measure this in FFEs as it is the most resource-demanding technique, hence the complexity of the DDHHO373

for the worst scenario is (Yang and He, 2013): O(DDHHO) = O(N)+O(T ·N2). In comparison to other374

metaheuristics algorithms, the complexity of the DDHHO is similar. For instance, firefly algorithm (Yang375

and Slowik, 2020) is more complex as it evaluates at most N ∗N solutions in each iteration.376

3.3 Hyperparameter optimization using HHO377

To optimize the hyperparameters of the Luong attention-based RNN model, we perform the following378

steps:379

Define the search space: Identify the hyperparameters to be optimized and specify their respective380

ranges or discrete sets of possible values. For instance, for the number of hidden layers, we may specify a381
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Algorithm 2 Pseudo-code of the basic HHO algorithm implementation

Inputs: The population size N and maximum number of iterations T

Outputs: The location of the rabbit and its fitness value

Initialize the random population Xi(i = 1,2, . . . ,N)
Initialize population Xi, (i = 1,2,3, . . .N) according to Algorithm 1

Determine values of Dt0 and Dt

while (stopping condition is not met) do

Calculate the fitness values of hawks

Set Xrabbit as the location of rabbit (best location)

for (each hawk (Xi)) do

Update the initial energy E0 and jump strength J

Update the E using Eq. (6)

if (|E| g 1) then

Update the location vector using Eq. (4)

end if

if (|E|< 1) then

if (r g0.5 and |E| g 0.5 ) then

Update the location vector using Eq. (7)

else if (r g0.5 and |E|< 0.5 ) then

Update the location vector using Eq. (10)

else if (r <0.5 and |E| g 0.5 ) then

Update the location vector using Eq. (14)

else if (r <0.5 and |E|< 0.5 ) then

Update the location vector using Eq. (15)

end if

end if

end for

Calculate DP

if (DP < Dt ) then

Replace worst nrs with solutions created as in (18)

end if

Update Dt by expression (24)

end while

Return Xrabbit

range of values, e.g., from 1 to 5. Similarly, we define the search space for other hyperparameters such as382

the number of hidden units per layer, type of RNN cell, attention mechanism, attention scoring function,383

learning rate, dropout rate, batch size, and sequence length.384

Initialize the population: Generate an initial population of candidate solutions, where each candidate385

solution represents a combination of hyperparameter values within the defined search space.386

Evaluate candidate solutions: For each candidate solution, train the Luong attention-based RNN387

model using the specified hyperparameter values, and evaluate the performance on a validation set using388

one or more performance metrics (e.g., MAE, RMSE, and MAPE). This step may require cross-validation389

or other validation techniques to obtain reliable performance estimates.390

Apply optimization algorithm: Utilize the chosen metaheuristic optimization algorithm for search391

space exploration and find the best combination of hyperparameter values that minimizes the chosen392

performance metric(s). In each iteration, the algorithm updates the candidate solutions based on the393

optimization strategy specific to the chosen algorithm, and the performance of the updated solutions is394

re-evaluated on the validation set.395

Termination condition: The optimization process is ongoing until a predefined termination condition396

is met, such as a maximum iteration number, a minimum performance improvement threshold, or a397

predefined computational budget.398

Select the optimal solution: Once the termination condition is reached, select the candidate solution399

with the best performance on the validation set as the optimal combination of hyperparameter values for400
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the Luong attention-based RNN model.401

Final model training and evaluation: Train the Luong attention-based RNN model using the optimal402

hyperparameter values on the entire training set, and evaluate its performance on the test set to obtain an403

unbiased estimate of the model’s forecasting accuracy.404

4 DATASET DESCRIPTION AND EXPERIMENTS405

This section aims to provide an overview of the datasets utilized in the experiments and the experimental406

setup established for all methods employed in the comparative analysis.407

4.1 Utilized Datasets408

4.1.1 Spain Solar Energy Dataset409

The first dataset, concerning photovoltaic power generation in Spain, is constructed from real-world410

originating from two different sources. The ENTSO-E portal 1 provides hourly energy demand and411

generation considering the renewable energy in Spain, while the weather data is provided by OpenWeather412

API 2 for the location of Valencia, Spain.413

Considering the large amount of data available, a smaller dataset segment was utilized during experi-414

mentation. The datasets cover hourly data from 1.8.2018. to 31.12.2018. and covered a total of 3670 data415

points. The hourly metrics that were the most relevant are included for multivariate forecasting as well416

as the data and support metrics of generated photovoltaic power. The dataset was then further separated417

and with 70% of the data used for training, 10% for validation, and the remaining 20% for testing. The418

included features include generated photovoltaic power, as well as humidity, rainfall, cloud cover, and419

ambient temperature. With the generated photovoltaic power feature being the prediction target.420

4.1.2 China Wind Farm Dataset421

The Global Energy Forecasting Competition 2012 (GEFCom2012) is a competition that aimed to promote422

the development of state-of-the-art forecasting models for various aspects of the energy industry. The423

dataset related to wind farms in China used in a competition 3. Seven wind farms from mainland China424

were selected and anonymized for this dataset. Power generation data has been normalized as well due to425

anonymity concerns.426

Relevant wind data is collected every 12h while the dataset includes forecasts in intervals of 24h.427

The direction and speed of the wind and meridional wind components are provided as well. The dataset428

consists of hourly measurements of wind power generation from seven wind farms located in China,429

spanning from January 1, 2011, to September 30, 2012. Each wind farm has different installed capacities,430

which makes the forecasting task more challenging. For experimentation, hourly resolution data has431

been split into predictions of 12h and then further combined with normalized real-world data of power432

generation for each farm by the hour. Due to the last year of data not being available, the dataset consists433

of four years of data. The included features are Wind speed, wind direction, and zonal and meridional434

wind components for each wind farm while the target feature is the amount of generated power.435

The first 70% of the available data points were utilized for training, while the later 10% and 20% were436

used for validation and testing.437

4.1.3 Data Preprocessing438

Before using the dataset for renewable power generation forecasting, some preprocessing steps may be439

necessary:440

1. Missing Data Imputation: The dataset may contain values that are missing, which are required to441

be imputed before using the data for model training and evaluation. Various imputation techniques442

can be employed, such as linear interpolation or more advanced methods based on machine learning443

models.444

2. Data Splitting: The division of the dataset into training, validation, and testing subsets. The445

training and validation sets can be used for model development and hyperparameter tuning, while446

the testing set can be used for final performance evaluation of the model’s forecasting.447

1https://transparency.entsoe.eu/
2https://openweathermap.org/guide
3https://www.kaggle.com/competitions/global-energy-forecasting-competition-2012-load-forecasting/

data
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3. Feature Engineering: Extract additional features from the dataset that may be relevant for the448

forecasting task, such as lagged values of wind power, moving averages, or other temporal features449

that can help in pattern and depenendcy caputring in the data.450

4. Normalization/Standardization: Scale the input features and target variable to ensure that they451

are on a similar scale, which is able of improving the performance and stability.452

Once the dataset is preprocessed, it can be used to train and evaluate various forecasting models, such453

as the Luong attention-based RNN model discussed earlier. By incorporating techniques like time-series454

decomposition, attention mechanisms, and hyperparameter optimization, the forecasting models can455

be tailored to the specific characteristics and challenges of the wind power generation data, ultimately456

improving the accuracy and reliability of the forecasts.457

4.2 Experimental Setup458

The following setup regards all 4 test cases that have been executed. Two stages are differentiated during459

experimentation. During the first, the data is decomposed for both test cases. Afterward, the signal460

components and residual signals are provided to the RNN for forecasting. VMD was employed for feature461

engineering, and min-max scaling was utilized as scaling option. Every tested model was provided in the462

same manner with historic data of six input points per model for three steps ahead predictions.463

The data was split in the same manner for all four test cases, with the training set amounting to 70%,464

the validation set of 10%, and the testing set of 20%. The split of each the solar dataset target features is465

visualized with Figure 1 to illustrate the time intervals that were employed in each of the three mentioned466

subsets. Similarly, the wind dataset is shown in Figure 2.467
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The challenge of parameter optimization for the prediction models was tested on the following468

contemporary metaheuristics: GA (Mirjalili and Mirjalili, 2019), PSO (Kennedy and Eberhart, 1995),469

ABC (Karaboga, 2010), FA (Yang and Slowik, 2020), COLSHADE (Gurrola-Ramos et al., 2020), and470

self-adaptive step size algorithm (Tang and Gibali, 2020). Additionally, to the mentioned metaheuristics471

the original HHO and the DDHHO were evaluated. Each algorithm was executed with 8 solutions in the472

population and 5 iterations.473

The parameters for the VMD were empirically established and the parameter K = 3, while the al pha474

parameter represents the length of the used dataframe. To ensure the objectivity of model evaluation475

30 independent runs were performed due to the stochastic nature of the optimization algorithms. The476

selected parameters for optimization of the RNN are given in the following text due to their impact on the477

performance of the model. The ranges of the parameters alongside their descriptions are given: [50,100]478

number of neurons, [0.0001,0.01] learning rate, [100,300] training epochs, [0.05,0.1] dropout rate, and479

[1,3] for the total layer number of a network.480

Lastly, an early stopping mechanism is incorporated for overfitting prevention with the threshold481

empirically determined as
epochs

3
. The purpose of such a mechanism is to terminate the model early if no482

improvements are observed for
epochs

3
. It should be noted that computational resource waste is reduced as483

an effect of this approach.484

This study employs five performance metrics commonly used to evaluate the accuracy and effec-485

tiveness of the proposed attention-based recurrent neural network (A-RNN) model for renewable power486

generation forecasting. These performance metrics are mean absolute error (MAE), root mean squared487

error (RMSE), mean absolute error (MAE), Coefficient of determination (R2) and the index of alignment488

(IA).489

MAE is the average of the absolute differences between the predicted values and the actual values. It490

measures the magnitude of errors in the forecasts without considering their direction. The MAE is defined491

as:492

MAE =
1

N

N

∑
i=1

|yi − ŷi| (25)

for which the N represents data points total, yi the actual value, and ŷi the predicted value.493

RMSE is the square root of the average of the squared differences between the predicted values and494

the actual values. It provides a measure of the overall model’s performance by penalizing larger errors495

more than smaller errors. The RMSE is defined as:496

RMSE =

�

1

N

N

∑
i=1

(yi − ŷi)2 (26)

MAE is the average of the absolute differences between the predicted values and the actual values.497

It can be useful for comparing the performance of different models across various scales. The MAE is498

defined as:499

MAE =
1

n

n

∑
i=1

|yi − ŷi| (27)

where the || denotes the absolute value.500

R2 indicates the proportion of the variance in the dependent variable that can be explained by the501

independent variables in the model. It ranges from 0 to 1, with higher values indicating a better fit between502

the model and the data. R2 is defined as:503

R2 = 1−
∑i(yi − ŷi)

2

∑i(yi − ȳ)2
(28)

where the ȳ refers to the mean of the actual values.504
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IA measures the extent to which the model’s predicted outcomes align with the true outcomes or the505

intended goals. A higher Alignment Index indicates a stronger alignment, suggesting that the model is506

performing well. AI is defined as:507

IA = 1−
∑

n
i=1(yi − ŷi)

2

∑
n
i=1(|yp − ȳ|+ |yi = ȳ|)2

(29)

These performance metrics, MAE, RMSE, and MAPE, are used to evaluate the accuracy and effec-508

tiveness of the proposed A-RNN model in comparison to the regular RNN model for renewable power509

generation forecasting. A lower value for each metric indicates better forecasting performance.510

A flowchart of the utilized experimental framework is provided in Figure 3.511

Original Dataset

Training Validation
Testing

Decomposed Data

Apply VMD

70%

20%

10%

Network optimization process

Train a netowrk 

based on each 

agents paramaters

While T > t

Evaluate Network 

performance 

Update agent 

parameters using 

metaheursitic

Evaluate best agent 

performance

Generate Outcome 
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Figure 3. Experimental framework flowchart

5 RESULTS AND COMPARISON512

This section exhibits obtained experimental findings in terms of captured performance metrics. The best513

metrics in all tables were marked with bold style to more clearly visualize the best performing methods.514
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5.1 Spain Solar Energy Forecasting515

In Table 1 the objective function outcomes for the best, worst, mean, and median executions, alongside516

the standard deviance with variance are shown for 30 independent runs of each metaheuristic.517

Table 1. VMD-RNN solar energy forecasting objective function overall outcomes

Method Best Worst Mean Median Std Var

VMD-RNN-DDHHO 0.006284 0.007320 0.006855 0.006931 0.000389 1.513667E-7

VMD-RNN-HHO 0.006990 0.007890 0.007366 0.007282 0.000344 1.183526E-7

VMD-RNN-GA 0.006664 0.007559 0.007061 0.007228 0.000341 1.163809E-7

VMD-RNN-PSO 0.007186 0.007458 0.007345 0.007425 0.000115 1.320113E-8

VMD-RNN-ABC 0.006499 0.007231 0.006830 0.006801 0.000251 6.319240E-8

VMD-RNN-FA 0.007005 0.007542 0.007184 0.007014 0.000229 5.253891E-8

VMD-RNN-COLSHADE 0.007159 0.008009 0.007478 0.007182 0.000357 1.273813E-7

VMD-RNN-SASS 0.007057 0.007405 0.007264 0.007240 0.000135 1.829039E-8

As Table 1 suggests, the introduces algorithms attained the best results when optimizing a RNN in the518

best run. However, admirable stability was demonstrated by the PSO. Furthermore, when considering the519

worst case execution the ABC attained the best results as well as in the mean and median runs. This is to520

be expected as per the NFL (Wolpert and Macready, 1997) no single approach works equally well in all521

execution cases.522

Further detailed metrics for the best run, for each forecasting step and every tested metaheuristic are523

demonstrated in Table 2.524

Table 2. The VMD-RNN solar energy metrics per each step

Step Metric VMD-RNN-DDHHO VMD-RNN-HHO VMD-RNN-GA VMD-RNN-PSO VMD-RNN-ABC VMD-RNN-FA VMD-RNN-COLSHADE VMD-RNN-SASS

One Step R2 0.601739 0.549365 0.627364 0.528460 0.58500 0.544636 0.543719 0.559259

MAE 384.294171 432.200603 396.006180 427.516283 404.377133 418.018708 411.089031 412.655917

MSE 400081.633100 452694.787317 374338.747453 473694.873874 416895.063424 457445.578253 458366.263037 442755.336455

RMSE 632.520065 672.825971 611.832287 688.254948 645.674115 676.347232 677.027520 665.398630

IA 0.886044 0.870430 0.896802 0.870911 0.877714 0.875709 0.875988 0.877386

Two Step R2 0.8896686 0.878472 0.844966 0.868775 0.876350 0.885817 0.873014 0.8760918

MAE 195.801662 227.673953 246.869567 233.834781 227.774440 204.845965 216.919114 219.607867

MSE 110835.615218 122082.984352 155742.443523 131825.249471 124214.713878 114704.662015 127566.656326 124474.546886

RMSE 332.919833 349.403755 394.642172 363.077470 352.441079 338.680767 357.164747 352.809505

IA 0.970558 0.966796 0.960179 0.966048 0.965562 0.969940 0.968305 0.966947

Three Step R2 0.962557 0.964848 0.948636 0.978350 0.973942 0.960881 0.961240 0.951496

MAE 122.562368 137.209296 165.046855 105.082911 112.980142 141.060131 124.093137 141.036372

MSE 37613.696545 35313.037867 51598.255163 21749.216531 26177.198226 39297.213129 38936.684159 48725.218704

RMSE 193.942508 187.917636 227.152493 147.4761560 161.793690 198.235247 197.323805 220.737896

IA 0.9901459 0.990594 0.986690 0.994450 0.992991 0.989871 0.990657 0.987153

Overall R2 0.817988 0.797562 0.806989 0.791861 0.811765 0.797111 0.792658 0.795616

MAE 234.219400 265.694617 269.307534 255.477992 248.377238 254.641602 250.700427 257.766719

MSE 182843.648288 203363.603179 193893.148713 209089.779959 189095.658509 203815.817799 208289.867841 205318.367348

RMSE 427.602208 450.958538 440.332998 457.263360 434.851306 451.459652 456.387848 453.120698

IA 0.948916 0.942607 0.947890 0.943803 0.945423 0.945173 0.944983 0.943829

As it can be observed from Table 2 the introduced method attained the best overall results in all cases525

except the R2 metric, where the PSO attained better results. As the guiding objective function during the526

optimization process was MSE this is to be expected. Additionally the introduced method also attained527

the best results when making forecasts two steps ahead, as well MAE for one step ahead. The best results528

for R2, MSE and IA where attained by the GA, while the best RMSE results where attained by the PSO.529

Nevertheless when making forecasts three steps ahead the PSO attained the best results across all metrics530

except R2 where the FA attained the best outcomes.531

To help demonstrated the improvements made by the introduced method visualizations are provided532

for the distribution of both MSE and R2 are shown in Figure 4 followed by convergence plots for both533

functions in Figure 5 and swarm and KDE plots in Figure 6.534

Finally, the parameters selected by each metaheuristic for their respective best models are shown in535

Table 3.536

Similarly to the previous experiment, in Table 4 the objective function outcomes for the best, worst,537

mean, and median executions, alongside the standard deviance with variance are shown for 30 independent538

runs of each metaheuristic.539

Interestingly, when optimizing the RNN-ATT models, the introduced metaheuristic demonstrated540

better performance overall most metrics. However, the ABC and SASS algorithms demonstrated a slightly541

higher degree of stability despite attaining less impressive results.542
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Figure 4. Solar dataset objective function and R2 distribution plots for each metaheurstic without

attention layer

Figure 5. Solar dataset objective function and R2 convergence plots for each metaheuristic without

attention layer

Further detailed metrics for the best run, for each forecasting step and every tested metaheuristic are543

demonstrated in Table 5.544

As it can be observed in Table 5 the introduces method attained the best overall results for MSE and545

MAE, while the HHO attained the best IA results, the ABC attained the best R2 outcomes overall, while546

SASS attained the best outcomes for MAE. The introduced approach demonstrated the best performance547

when making predictions one step ahead, while two step ahead forecasts are done best by the PSO. No548

single approach performed the best for three steps ahead, while different metaheuristics attaining first549

place in different metrics further enforcing the NFL (Wolpert and Macready, 1997) theorem.550

Visualizations of objective function and R2 distributions are shown in Figure 7 followed by their551
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Figure 6. Solar dataset objective swarm and KDE plots for each metaheuristic without attention layer

Table 3. Parameters for best performing solar prediction RNN model optimized by each metaheuristic

Method Learning Rate Drouput Epochs Layers L1 Neurons L2 Neurons L3 Neurons

VMD-RNN-DDHHO 0.007050 0.050000 232 3 50 100 100

VMD-RNN-HHO 0.007349 0.076853 206 3 64 50 100

VMD-RNN-GA 0.009097 0.091104 114 2 89 52 /

VMD-RNN-PSO 0.009329 0.069591 223 2 69 89 /

VMD-RNN-ABC 0.010000 0.100000 181 3 92 64 79

VMD-RNN-FA 0.010000 0.088052 238 2 50 50 /

VMD-RNN-COLSHADE 0.008718 0.063527 288 3 85 100 100

VMD-RNN-SASS 0.006645 0.096538 300 3 100 86 54

Table 4. VMD-RNN-ATT solar energy forecasting objective function overall outcomes

Method Best Worst Mean Median Std Var

VMD-RNN-ATT-DDHHO 0.006517 0.007211 0.006923 0.006944 0.000250 6.265266E-8

VMD-RNN-ATT-HHO 0.007036 0.008443 0.007447 0.007111 0.000613 3.759833E-7

VMD-RNN-ATT-GA 0.006705 0.008075 0.007389 0.007209 0.000499 2.490886E-7

VMD-RNN-ATT-PSO 0.006711 0.007571 0.007233 0.007303 0.000297 8.818285E-8

VMD-RNN-ATT-ABC 0.007452 0.007531 0.007480 0.007470 0.000032 1.025433E-9

VMD-RNN-ATT-FA 0.007222 0.008049 0.007641 0.007647 0.000292 8.550797E-8

VMD-RNN-ATT-COLSHADE 0.006915 0.007912 0.007455 0.007476 0.000363 1.318140E-7

VMD-RNN-ATT-SASS 0.007238 0.007720 0.007472 0.007432 0.000164 2.673677E-8

respective convergence graphs in Figure 8. The KDE and swarm plots are also provided in Figure 9.552

The parameters selected by each competing metaheuristic for their respective best-performing models553

are shown in Table 6.554
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Table 5. The VMD-RNN-ATT solar energy metrics per each step

Step Metric VMD-RNN-ATT-DDHHO VMD-RNN-ATT-HHO VMD-RNN-ATT-GA VMD-RNN-ATT-PSO VMD-RNN-ATT-ABC VMD-RNN-ATT-FA VMD-RNN-ATT-COLSHADE VMD-RNN-ATT-SASS

1 R2 0.715471 0.584499 0.598188 0.574065 0.603103 0.548291 0.616813 0.547094

MAE 376.979586 442.064510 462.047919 435.538303 474.267738 435.524720 423.718303 416.220384

MSE 285829.818133 417399.667275 403648.569532 427881.634339 398711.291244 453773.352978 384938.817726 454976.265366

RMSE 534.630544 646.064755 635.333432 654.126620 631.435896 673.627013 620.434378 674.519285

IA 0.9146240 0.889628 0.881474 0.871310 0.891814 0.873488 0.887386 0.861529

2 R2 0.829019 0.876223 0.874955 0.888033 0.837797 0.868852 0.874406 0.861896

MAE 252.954113 243.425326 260.158326 218.732420 290.688281 236.760030 252.883363 233.639125

MSE 171762.088320 124342.580437 125616.779871 112478.817327 162944.638909 131747.397307 126168.484562 138735.683810

RMSE 414.441900 352.622433 354.424576 335.378618 403.6640174 362.970243 355.202033 372.472393

IA 0.951127 0.967796 0.965910 0.967226 0.958823 0.966348 0.966094 0.961092

3 R2 0.889236 0.927962 0.9442501 0.954781 0.911610 0.955364 0.907969 0.962090

MAE 244.240630 219.831502 179.063882 144.828299 232.407156 154.496558 244.166959 131.982225

MSE 111269.990578 72366.697870 56004.659587 45425.756743 88793.700643 44840.040944 92451.964057 38082.907643

RMSE 333.571567 269.010590 236.653036 213.133190 297.982719 211.754672 304.059146 195.14842

IA 0.968308 0.980827 0.985080 0.987410 0.976862 0.988566 0.974996 0.989529

Overall R2 0.811242 0.796228 0.805798 0.805626 0.784170 0.790836 0.799729 0.790360

MAE 291.391443 301.77378 300.423376 266.366341 332.454391 275.593769 306.922875 260.613911

MSE 189620.632344 204702.981861 195090.002997 195262.069470 216816.543599 210120.263743 201186.422115 210598.285607

RMSE 435.454512 452.441136 441.689940 441.884679 465.635634 458.388769 448.538094 458.909888

IA 0.944686 0.946083 0.944154 0.941982 0.942500 0.942801 0.942826 0.937383

Figure 7. Solar dataset objective function and R2 distribution plots for each metaheurstic with attention

layer

Table 6. Parameters for best performing solar prediction RNN-ATT model optimized by each

metaheuristic

Method Learning Rate Drouput Epochs Layers L1 Neurons L2 Neurons L3 Neurons ATT Neurons

VMD-RNN-ATT-DDHHO 0.010000 0.100000 100 3 100 100 50 50

VMD-RNN-ATT-HHO 0.009323 0.100000 100 1 98 / / 50

VMD-RNN-ATT-GA 0.009990 0.080219 148 2 71 69 / 82

VMD-RNN-ATT-PSO 0.008559 0.097184 166 3 89 51 99 96

VMD-RNN-ATT-ABC 0.010000 0.067651 101 1 50 / / 50

VMD-RNN-ATT-FA 0.006927 0.052260 216 2 90 87 / 97

VMD-RNN-ATT-COLSHADE 0.004221 0.050000 120 1 50 / / 71

VMD-RNN-ATT-SASS 0.009982 0.099805 188 3 100 50 50 50

In Table 7 the objective function outcomes for the best, worst, mean, and median executions, alongside555

the standard deviance with variance are shown for 30 independent runs of each metaheuristic forecasting556

wind power generation.557

5.2 China Wind Farm Forecasting558

The introduced metaheuristic attained the best outcomes in the best, mean and median executions, with559

the ABC attained the best outcomes in the worst case executions. Furthermore, the highest stability was560

demonstrated by SASS. Further detailed metrics for the best run, for each forecasting step and every561

tested metaheuristic are demonstrated in Table 8.562

As demonstrated in Table 8, the introduced metaheursitic outperformed all competing metaheuristic563

in overall outcomes. THe introduces metaheuristic demonstrated the best results for one step ahead564

forecasts¿ However, the PSO attained the best results for two steps ahead forecasts, and COLSHADE565

attained the best outcomes for three steps ahead. These results further reinforce that no single approach566

is equally suited to all use-cases as per the NFL (Wolpert and Macready, 1997) Visualizations of the567

distribution and convergence rates of the mse and R2 functions are shown in Figure 10 and Figures 11.568

Additionally, KDE and swarm diverstiy plots are provided in Figure 12.569

18/32PeerJ Comput. Sci. reviewing PDF | (CS-2023:05:86288:1:2:NEW 30 Nov 2023)

Manuscript to be reviewedComputer Science



Figure 8. Solar dataset objective function and R2 convergence plots for each metaheuristic with

attention layer

Table 7. VMD-RNN wind energy forecasting objective function overall outcomes

Method Best Worst Mean Median Std Var

VMD-RNN-DDHHO 0.010465 0.011162 0.010747 0.010764 0.000244 5.930160E-8

VMD-RNN-HHO 0.011407 0.011707 0.011538 0.011517 0.000125 1.559006E-8

VMD-RNN-GA 0.011028 0.011461 0.011240 0.011256 0.000168 2.812603E-8

VMD-RNN-PSO 0.011000 0.011507 0.011258 0.011294 0.000186 3.459674E-8

VMD-RNN-ABC 0.010729 0.010977 0.010847 0.010834 0.000108 1.176703E-8

VMD-RNN-FA 0.010519 0.011483 0.011102 0.011134 0.000381 1.448697E-7

VMD-RNN-COLSHADE 0.010823 0.011382 0.011214 0.011341 0.000241 5.784354E-8

VMD-RNN-SASS 0.011042 0.011300 0.011231 0.011298 0.000100 9.963395E-9

Table 8. The VMD-RNN wind energy metrics per each step

Step Metric VMD-RNN-DDHHO VMD-RNN-HHO VMD-RNN-GA VMD-RNN-PSO VMD-RNN-ABC VMD-RNN-FA VMD-RNN-COLSHADE VMD-RNN-SASS

One Step R2 0.875214 0.855404 0.856190 0.849434 0.861770 0.872224 0.857508 0.861647

MAE 0.077761 0.084168 0.083139 0.084909 0.081714 0.078881 0.083685 0.081844

MSE 0.012012 0.013919 0.013843 0.014494 0.013306 0.012300 0.013716 0.013318

RMSE 0.109599 0.117979 0.117658 0.120390 0.115352 0.110905 0.117117 0.115404

IA 0.967674 0.960717 0.961990 0.958739 0.962434 0.966699 0.962278 0.962725

Two Step R2 0.897775 0.892783 0.900496 0.903051 0.900259 0.902827 0.899419 0.899132

MAE 0.070751 0.074085 0.070576 0.070070 0.070933 0.070237 0.071078 0.071742

MSE 0.009840 0.010321 0.009578 0.009332 0.009601 0.009354 0.009682 0.009710

RMSE 0.099198 0.101592 0.097869 0.096605 0.097986 0.096716 0.098397 0.098538

IA 0.973272 0.971041 0.973894 0.974067 0.973158 0.974287 0.973057 0.973069

Three Step R2 0.908009 0.904098 0.907150 0.9121979 0.910908 0.904295 0.913157 0.902638

MAE 0.067910 0.071199 0.069404 0.0681129 0.068257 0.070842 0.066382 0.072017

MSE 0.008855 0.009232 0.008938 0.0084520 0.008576 0.009213 0.008360 0.009372

RMSE 0.094102 0.096081 0.094540 0.0919348 0.092607 0.095982 0.091431 0.096810

IA 0.975517 0.974068 0.975414 0.9765410 0.976470 0.974705 0.976785 0.973296

Overall R2 0.893666 0.884095 0.887945 0.8882271 0.890979 0.893116 0.890028 0.887805

MAE 0.072141 0.076484 0.074373 0.0743641 0.073635 0.073320 0.073715 0.075201

MSE 0.010236 0.011157 0.010787 0.0107594 0.010494 0.010289 0.010586 0.010800

RMSE 0.101172 0.105627 0.103858 0.1037274 0.102443 0.101434 0.102888 0.103923

IA 0.972154 0.968608 0.970433 0.9697823 0.970688 0.971897 0.970706 0.969697
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Figure 9. Solar dataset objective swarm and KDE plots for each metaheuristic with attention layer

Figure 10. Wind dataset objective function and R2 distribution plots for each metaheuristic without

attention layer

The network hyperparameters selected by each metaheuristic for the respective best performing570

models are shown in Table 9.571

Similarly to the previous experiment, in Table 10 the objective function outcomes for the best, worst,572

mean, and median executions, alongside the standard deviance with variance are shown for 30 independent573

runs of each metaheuristic.574

As it can be observed in Table 10 the introduced metaheuristic attained the best outcomes in all except575

the medial case, where the ABC algorithms attained the best results. Further detailed metrics for the best576

run, for each forecasting step and every tested metaheuristic are demonstrated in Table 11.577

As Table 11 demonstrates, the introduces algorithms performed admirably, attaining the best outcomes578
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Figure 11. Wind dataset objective function and R2 convergence plots for each metaheuristic without

attention layer

Table 9. Parameters for best performing wind prediction RNN model optimized by each metaheuristic

Method Learning Rate Drouput Epochs Layers L1 Neurons L2 Neurons L3 Neurons

VMD-RNN-DDHHO 0.010000 0.050755 300 3 97 94 100

VMD-RNN-HHO 0.006340 0.100000 200 1 100 / /

VMD-RNN-GA 0.009989 0.067669 134 2 95 58 /

VMD-RNN-PSO 0.008124 0.053596 294 3 85 93 73

VMD-RNN-ABC 0.010000 0.100000 300 3 100 79 50

VMD-RNN-FA 0.010000 0.050000 300 2 100 50 /

VMD-RNN-COLSHADE 0.010000 0.096306 300 3 67 50 50

VMD-RNN-SASS 0.010000 0.050000 300 1 64 / /

Table 10. VMD-RNN-ATT wind energy forecasting objective function overall outcomes

Method Best Worst Mean Median Std Var

VMD-RNN-ATT-DDHHO 0.010359 0.011446 0.010993 0.011361 0.000475 2.254891E-7

VMD-RNN-ATT-HHO 0.010806 0.011496 0.011261 0.011424 0.000269 7.259626E-8

VMD-RNN-ATT-GA 0.011264 0.011672 0.011441 0.011387 0.000152 2.298042E-8

VMD-RNN-ATT-PSO 0.011167 0.011808 0.011455 0.011431 0.000251 6.293247E-8

VMD-RNN-ATT-ABC 0.010911 0.011524 0.011279 0.011259 0.000220 4.861609E-8

VMD-RNN-ATT-FA 0.011160 0.011554 0.011360 0.011420 0.000145 2.108468E-8

VMD-RNN-ATT-COLSHADE 0.011054 0.011368 0.011203 0.011184 0.000126 1.582216E-8

VMD-RNN-ATT-SASS 0.011269 0.011519 0.011392 0.011400 0.000096 9.213128E-9

on overall evaluations as well as two and three step ahead. The original HHO performed marginally better579

in one step ahead forecasts when considering at the MAE and IA metrics.580

Further distribution and convergence graphs for the objective function and R2 are shown in Figure 13581

and Figure 14. Accompanying KDE and swarm diversity plots are given in Figure 15.582
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Figure 12. Wind dataset objective swarm and KDE plots for each metaheuristic without attention layer

Table 11. The VMD-RNN-ATT wind energy metrics per each step

Step Metric VMD-RNN-ATT-DDHHO VMD-RNN-ATT-HHO VMD-RNN-ATT-GA VMD-RNN-ATT-PSO VMD-RNN-ATT-ABC VMD-RNN-ATT-FA VMD-RNN-ATT-COLSHADE VMD-RNN-ATT-SASS

One Step R2 0.869388 0.868300 0.863840 0.860679 0.861597 0.854800 0.860994 0.853326

MAE 0.080227 0.079741 0.081451 0.083636 0.081330 0.083773 0.082541 0.083572

MSE 0.012573 0.012678 0.013107 0.013411 0.013323 0.013977 0.013381 0.014119

RMSE 0.112129 0.112595 0.114485 0.115806 0.115425 0.118225 0.115676 0.118823

IA 0.964787 0.965400 0.963486 0.963898 0.963680 0.961305 0.963349 0.960917

Two Step R2 0.902255 0.898536 0.892452 0.895950 0.897634 0.898030 0.897528 0.895859

MAE 0.070517 0.071214 0.073747 0.073326 0.071518 0.071795 0.072607 0.073126

MSE 0.009409 0.009767 0.010353 0.010016 0.009854 0.009816 0.009864 0.010025

RMSE 0.097000 0.098828 0.101748 0.100080 0.099267 0.099074 0.099318 0.100124

IA 0.973859 0.973364 0.971348 0.972700 0.973169 0.973293 0.973173 0.972177

Three Step R2 0.912571 0.903750 0.900340 0.902971 0.908152 0.906962 0.904508 0.907307

MAE 0.067887 0.070822 0.072048 0.071218 0.069180 0.070399 0.072522 0.071352

MSE 0.008416 0.009265 0.009593 0.009340 0.008841 0.008956 0.009192 0.008923

RMSE 0.091739 0.096255 0.097946 0.096644 0.094028 0.094636 0.095876 0.094460

IA 0.976584 0.974331 0.973022 0.973790 0.975383 0.975599 0.974773 0.975041

Overall R2 0.894738 0.890195 0.885544 0.886533 0.889128 0.886597 0.887677 0.885497

MAE 0.0728767 0.073925 0.075749 0.076060 0.074010 0.075322 0.075890 0.076017

MSE 0.0101326 0.010570 0.011018 0.010922 0.010673 0.010916 0.010812 0.011022

RMSE 0.1006610 0.102810 0.104965 0.104510 0.103309 0.104481 0.103982 0.104986

IA 0.9717431 0.971032 0.969285 0.970130 0.970744 0.970066 0.970432 0.969378

Finally, the selected parameter for the best performing models optimized by each metaheuristic are583

shown in Table 12.584

Table 12. Parameters for best-performing wind prediction RNN-ATT model optimized by each

metaheuristic

Method Learning Rate Drouput Epochs Layers L1 Neurons L2 Neurons L3 Neurons ATT Neurons

VMD-RNN-DDHHO 0.010000 0.063597 267 3 69 100 50 77

VMD-RNN-HHO 0.010000 0.100000 222 1 74 / / 54

VMD-RNN-GA 0.007046 0.060227 120 2 66 73 / 74

VMD-RNN-PSO 0.010000 0.050000 234 3 100 50 100 50

VMD-RNN-ABC 0.010000 0.100000 300 3 100 50 50 50

VMD-RNN-FA 0.010000 0.050000 300 3 50 100 81 98

VMD-RNN-COLSHADE 0.005840 0.100000 300 1 91 / / 86

VMD-RNN-SASS 0.009995 0.100000 255 1 60 / / 100
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Figure 13. Wind dataset objective function and R2 distribution plots for each metaheurstic with attention

layer

Figure 14. Wind dataset objective function and R2 convergence plots for each metaheuristic with

attention layer

6 DISCUSSION, STATISTICAL VALIDATION AND INTERPRETATION.585

This section presents a discussion of the advantages of the techniques employed in the conducted research,586

as well as the statistical analysis of the methods used for comparisons, and the interpretation of the best587

models generated for both datasets.588

6.1 Benefits of using attention mechanism for renewable power generation forecasting589

The attention mechanism has emerged as a powerful tool in the field of machine learning, particularly590

for sequence-to-sequence learning problems like renewable power generation forecasting. By selectively591

focusing on different parts of the input sequence when generating the output, the attention mechanism can592

enhance the performance of forecasting models like the Luong attention-based RNN model. Below, we593
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Figure 15. Wind dataset objective swarm and KDE plots for each metaheuristic with attention layer

discuss the key benefits of using attention mechanisms for renewable power generation forecasting:594

1. Improved Long-term Dependency Handling: Renewable power generation data often exhibit595

long-term dependencies due to factors like seasonal patterns and weather trends. Traditional RNN596

models can struggle to capture these long-term dependencies effectively, leading to suboptimal forecasts.597

The mechanism of attention introduces different importance weights for seperate input sequence parts,598

enabling it to focus on the most relevant information for generating the output, thus better handling599

long-term dependencies.600

2. Enhanced Forecasting Accuracy: The attention mechanism can lead to more accurate forecasts601

by enabling the model to focus on the most relevant parts of the input sequence when generating the602

output. This selective focus allows the model to capture the underlying patterns and relationships within603

the renewable power generation data more effectively, resulting in improved forecasting performance.604

3. Interpretability: Attention mechanisms provide a level of interpretability to the model’s predictions605

by highlighting which parts of the input sequence have the most significant impact on the output. This606

interpretability can be particularly valuable in renewable power generation forecasting, as it allows domain607

experts to gain insights into the factors influencing the model’s forecasts and to validate the model’s608

predictions based on their domain knowledge.609

4. Robustness to Noise and Irrelevant Information: Renewable power generation data can be610

subject to noise and irrelevant information (e.g., due to measurement errors or unrelated external factors).611

The attention mechanism can help in mitigating the impact of such disturbances on the model’s forecasts612

by selectively focusing on the most relevant parts of the input sequence and down-weighting the influence613

of noise and irrelevant information.614

5. Scalability: Attention mechanisms can scale well with large input sequences, as they allow the615

model to focus on the most relevant parts of the input sequence without the need to process the entire616

sequence in a fixed-size hidden state. This scalability can be particularly beneficial for renewable power617

generation forecasting problems, where the input data may consist of long sequences of historical power618
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generation measurements and environmental variables.619

6. Flexibility: Attention mechanisms can be easily incorporated into various RNN architectures, such620

as LSTM and GRU, providing flexibility in designing and adapting the forecasting model for different621

renewable power generation scenarios and data characteristics.622

An additional note needs to be made on attention mechanisms. The attained results suggest that623

networks utilizing the attention mechanisms perform slightly worse then the basic RNN. This is likely624

due to networks with attention layers having a deeper network architecture and thus require more training625

epochs to improve performance.626

6.2 Benefits of Time Series Decomposition and Integration627

Incorporating time-series decomposition and integration into the Luong attention-based RNN model can628

offer several benefits for renewable power generation forecasting:629

1. Improved Forecasting Accuracy: By decomposing the time-series and accounting for its com-630

ponents, the model can better capture the underlying patterns and dependencies in the data, potentially631

leading to more accurate and reliable forecasts.632

2. Enhanced Model Interpretability: Decomposition provides insights into the different components633

of the time-series, making it easier to understand and interpret the model’s predictions in terms of trend,634

seasonality, and residual components.635

3. Robustness to Noise: By separating the noise component from the trend and seasonal components,636

the decomposition process can help in reducing the impact of noise and outliers on the model’s forecasts,637

making the model more robust to disturbances.638

4. Flexibility and Customizability: Decomposition and integration techniques can be adapted and639

fine-tuned to suit the specific characteristics and requirements of the renewable power generation data,640

allowing for a more flexible and customizable forecasting approach.641

5. Improved Model Performance: The integration of decomposed components into the RNN model642

can help in better capturing the relationships between the components and the target variable, potentially643

leading to improved model performance in terms of generalization and predictive accuracy.644

6.3 Statistical analysis645

When considering optimization problems, assessing models is an important topic. Understanding the646

statistical significance of the introduced enhancements is crucial. Outcomes alone are not adequate to647

state that one algorithms is superior to another one. Previous research suggests (Derrac et al., 2011)648

that a statistical assessment should take place only after the methods being evaluated are adequately649

sampled. This is done by ascertaining objective averages over several independent runs. Additionally,650

samples need to originate form a normal distribution so as to avoid misleading conclusions. The use of651

objective function averages is still for comparison of stochastic methods is still an open question among652

researchers (Eftimov et al., 2017). To ascertain statistical significance of the observed outcomes the best653

values over 30 independent executions of each metaheuristic have been used for creating the samples.654

However, the safe use of parametric tests needed to be confirmed. For this, independence, normality,655

and homoscedasticity of the data variances were considered as recommended by (LaTorre et al., 2021).656

The independence criterion is fulfilled due to the fact that each run is initialized with an pseudo-random657

number seed. However, the normality condition is not satisfied as the obtained samples do not stem658

from a normal distribution as shown by the KED plots and proved by the Shapiro-Wilk test outcomes for659

single-problem analysts (Shapiro and Francia, 1972). By performing the Shapiro-Wilk test, p-values are660

generated for each method-problem combination, and these outcomes are presented in Table 13.661

Table 13. Shapiro-Wilk scores for the single-problem analysis for testing normality condition

Experiment DDHHO HHO GA PSO ABC FA COLSHADE SASS

Solar VMD-RNN 0.035 0.023 0.022 0.026 0.027 0.030 0.017 0.014

Solar VMD-RNN-ATT 0.035 0.032 0.037 0.019 0.022 0.025 0.037 0.033

Wind VMD-RNN 0.029 0.020 0.025 0.036 0.033 0.019 0.026 0.024

Wind VMD-RNN-ATT 0.021 0.028 0.025 0.037 0.035 0.024 0.026 0.041

The standard significance levels of α = 0.05 and α = 0.1 suggest that the null hypothesis (H0) can662

be refuted, which implies that none of the samples (for any problem-method combinations) are drawn663
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from a normal distribution. This indicates that the assumption of normality, which is necessary for the664

reliable use of parametric tests, was not satisfied, and therefore, it was deemed unnecessary to verify the665

homogeneity of variances.666

As the requirements for the reliable application of parametric tests were not met, non-parametric667

tests were employed for the statistical analysis. Specifically, the Wilcoxon signed-rank test, which is668

a non-parametric statistical test (Taheri and Hesamian, 2013), was performed on the DDHHO method669

and all other techniques for all three problem instances (experiments). The same data samples used in670

the previous normality test (Shapiro-Wilk) were used for each method. The results of this analysis are671

presented in Table 14, where p-values greater than the significance level of α = 0.05 are highlighted in672

bold.673

Table 14. Wilcoxon signed-rank test findings

DDHHO vs. others HHO GA PSO ABC FA COLSHADE SASS

Solar VMD-RNN 0.035 0.046 0.036 0.062 0.043 0.029 0.040

Solar VMD-RNN-ATT 0.041 0.044 0.046 0.035 0.024 0.039 0.037

Wind VMD-RNN 0.024 0.043 0.039 0.052 0.045 0.044 0.038

Wind VMD-RNN-ATT 0.039 0.027 0.025 0.038 0.035 0.042 0.032

Table 14, which presents the p-values obtained from the Wilcoxon signed-rank test, demonstrate that,674

except for the ABC algorithm in the experiment where VMD-RNN was optimized and validated against675

solar and wind datasets, the proposed DDHHO method achieved significantly better performance than676

all other techniques in all three experiments. When compared with ABC, the calculated p− value was677

slightly above the 0.05 threshold (highlighted in bold in Table 14), suggesting that the DDHHO performed678

comparably to ABC. This was expected for the solar dataset, since the ABC in this simulation achieved679

moderately better mean value than the DDHHO, as demonstrated in Table 1.680

The p-values for all other methods were lower than 0.05. Therefore, the DDHHO technique exhibited681

both robustness and effectiveness as an optimizer in these computationally intensive simulations. Based682

on the statistical analysis, it can be concluded that the DDHHO method outperformed most of the other683

metaheuristics investigated in all four experiments.684

6.4 Best Model Interpretation and Feature Importance685

SHAP (Lundberg and Lee, 2017) is a method that can be utilized to interpret the outputs of various686

AI models. Game theory provides a strong basis for SHAP. Though the use of SHAP the influence687

real-world factors have on model predictions can be determined. In order to determine the factors that688

play the highest role in energy production in solar and wind generation the best models with the highest689

performance output have been subjected to analysis. The outcomes for solar generation are shown in690

Figure 16, while wind generation is shown in Figure 17.691

As demonstrated by Figure 16 a significant influence of previous solar generation instances can be692

observed. Cloud cover and humidity play a minor role in forecasting, with cloud cover decreasing the693

power produced by the photovoltaic cells.694
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Figure 16. Feature impacts for the best performing RNN model for solar forecasting

Figure 17. Feature impacts for the best performing RNN model for wind forecasting
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Indicators form Figure 17 suggest that when forecasting wind power generation wind direction modes695

have an important role. However, likely due to the sporadic nature of wind bursts wind generation residuals696

have the highest impact on predictions. Finally, the meridional followed by zonal wind components pay a697

minor role in forecasting.698

7 CONCLUSIONS699

This study presents a novel attention-based recurrent neural network model for multistep ahead time-series700

forecasting of renewable power generation, demonstrating improved forecasting accuracy on both Spain’s701

wind and solar energy datasets and China’s wind farm dataset. The HHO algorithm is employed for702

hyperparameter optimization, addressing the challenges posed by the large number of hyperparameters703

in RNN-type networks. The attention model applied in the second group of experiments provides a704

weighting system to the RNN, further enhancing the model’s performance. The proposed approach has705

the potential to significantly impact the transition towards a more sustainable future by addressing key706

challenges related to the storage and management of renewable power generation.707

As with any work this research has several limitations. Other methods exist for tackling time-series708

forecasting and their potential remains yet to be explored. Further potential for improvement exist for the709

HHO, as well as other metaheuristic algorithms yet to be applied to cloud forecasting. Additionally, other710

approaches for interpreting feature influence exist such as through the analysis of n-Shapley Values.711

Future research will focus on refining the HHO algorithm for hyperparameter optimization and712

exploring additional decomposition methods to further improve the forecasting capabilities of the proposed713

approach, as well as exploring additional metaheuristics applied to clout load forecasting. Additionally,714

further methods for feature impact interpretation will be explored.715
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