
Decomposition aided attention-based
recurrent neural networks for multistep
ahead time-series forecasting of renewable
power generation
Robertas Damaševičius1, Luka Jovanovic2, Aleksandar Petrovic3,
Miodrag Zivkovic3, Nebojsa Bacanin3, Dejan Jovanovic4 and Milos
Antonijevic3

1 Department of Applied Informatics, Vytautas Magnus University, Kaunas, Lithuania
2 Faculty of Technical Sciences, Singidunum University, Belgrade, Serbia
3 Faculty of Informatics and Computing, Singidunum University, Belgrade, Serbia
4 College of Academic Studies “Dositej”, Belgrade, Serbia

ABSTRACT
Renewable energy plays an increasingly important role in our future. As fossil fuels
become more difficult to extract and effectively process, renewables offer a solution to
the ever-increasing energy demands of the world. However, the shift toward
renewable energy is not without challenges. While fossil fuels offer a more reliable
means of energy storage that can be converted into usable energy, renewables are
more dependent on external factors used for generation. Efficient storage of
renewables is more difficult often relying on batteries that have a limited number of
charge cycles. A robust and efficient system for forecasting power generation from
renewable sources can help alleviate some of the difficulties associated with the
transition toward renewable energy. Therefore, this study proposes an attention-
based recurrent neural network approach for forecasting power generated from
renewable sources. To help networks make more accurate forecasts, decomposition
techniques utilized applied the time series, and a modified metaheuristic is
introduced to optimized hyperparameter values of the utilized networks. This
approach has been tested on two real-world renewable energy datasets covering both
solar and wind farms. The models generated by the introduced metaheuristics were
compared with those produced by other state-of-the-art optimizers in terms of
standard regression metrics and statistical analysis. Finally, the best-performing
model was interpreted using SHapley Additive exPlanations.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Science, Neural
Networks
Keywords Renawable energy sources, Time-series forecasting, Recurrent neural networks,
Attention mechanism, Metaheuristics, AI explainability

INTRODUCTION
The role of renewable energy is a paramount factor in sustainability of the society.
Traditional energy systems based on fossil fuels are not efficient and require more
complicated processes of extraction. The demands of human civilization are always
growing, which exposes the difficulties for eco-friendly energetic growth. As renewable

How to cite this article Damaševičius R, Jovanovic L, Petrovic A, Zivkovic M, Bacanin N, Jovanovic D, Antonijevic M. 2024.
Decomposition aided attention-based recurrent neural networks for multistep ahead time-series forecasting of renewable power generation.
PeerJ Comput. Sci. 10:e1795 DOI 10.7717/peerj-cs.1795

Submitted 30 May 2023
Accepted 14 December 2023
Published 18 January 2024

Corresponding author
Robertas Damaševičius,
robertas.damasevicius@vdu.lt

Academic editor
Sheng Du

Additional Information and
Declarations can be found on
page 38

DOI 10.7717/peerj-cs.1795

Copyright
2024 Damaševičius et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.1795
mailto:robertas.�damasevicius@�vdu.�lt
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1795
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/


energy source (RES) become more available the distribution of new resources in the
network result in stochasticity, intermittency, and uncertainty. Consequentially, the
traditional energy systems are dominant in the share of energy used amounting to 81% of
the global share (Loe, 2022).

For RES to become more widely utilized, the previously mentioned challenges need to
be overcome. Additionally, energy storage on a smaller scale remains difficult when
working with RES, in comparison to fossil fuel storage which is still considered more
reliable. The storage of electricity is mostly achieved by batteries which are a limited
resource on their own due to the limited number of life cycles for each one of them (Zhang
& Zhao, 2023). All things considered, a possible solution is a mechanism that can provide
accurate forecasts of the amount of resources being generated from RES. Such a solution
would have to be able to analyze short-term time series and provide a robust mechanism as
it affects electricity load and its price. Electricity traders and system operators are most
affected by these changes.

Traditional methods for regression have previously been applied to forecasting RES
power production (Foley et al., 2012; Abuella & Chowdhury, 2015) However, as the world’s
need for energy increases further improvements are needed in order to make forecasting
methods viable. A major challenge when tackling RES production forecasting comes from
the noisy nature of the data. Since renewable resources rely on natural phenomena such as
wind or solar exposure, many chaotic factors play a role in the amount of power that can be
produced. Nevertheless, patterns in this data are still present, though often difficult to
initially observe.

By applying advanced signal processing techniques, such as decomposition techniques,
strong signals can be separated from the noise, allowing prediction methods to focus on
determining correlations between signals with strong patterns rather than those heavily
affected by the noise. This concept has often been applied to systems that require precise
moments in noise environments such as electroencephalography (Murariu, Dorobanţu &
Tărniceriu, 2023) demonstrating great potential. Several decomposition techniques have
been developed in recently such as empirical mode decomposition (EMD) (Boudraa &
Cexus, 2007) and ensemble empirical mode decomposition (EEMD) (Wu&Huang, 2009).
While efficient, the lack of a strong mathematical background in these methods has led to
the development of variational mode decomposition (VMD) (Dragomiretskiy & Zosso,
2013) that has shown great potential for tackling signal decomposition with a strong
mathematical basis (Liu et al., 2022; Zhang, Peng & Nazir, 2022; Gao et al., 2022).

One additional approach that has shown great potential when working with data
catheterized by complex nonlinear relations is the application of artificial intelligence (AI).
Powerful AI algorithms are capable of improving their performance through an iterative
data-driven process. By observing data AI algorithms can determine correlations without
explicit programming. This makes AI a promising approach for tackling this pressing
issue. Nevertheless, the modern algorithms’ performance is reliant on proper
hyperparameter selection. With increasing numbers of hyperparameters, traditional
methods such as trial and error have become insufficient to optimize algorithm
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performance. The use of metaheuristic optimization algorithms provides a potential
solution for efficient hyperparameter selection.

Forecasting power generation is regarded as a time series forecasting challenge. By
doing so, algorithms capable of responding to data sequences can be leveraged in order to
make more accurate forecasts. One promising approach, that extensive literature review
suggests has not yet sufficiently been explored when applied to renewable forecasting, is
the use of recurrent neural networks (RNN) (Medsker & Jain, 1999). These networks
represent a variety of artificial neural networks (ANN) that allow previous inputs to affect
future outputs, making them highly suitable for time series forecasting. A recent
improvement incorporates attention mechanisms (Olah & Carter, 2016) into RNN
allowing networks to focus their attention on specific features improving accuracy.
Additionally, the literature review suggests that attention-based RNNs (RNN-ATT) have
not yet been applied to renewable power forecasting, indicating a gap in research that this
work hopes to address. Exploring the potential of these networks is essential as a robust
forecasting method could help make RES more viable and lower the world’s dependence
on fossil fuels.

This research proposes an approach that applies a neural network model based on
attention for that purpose. Moreover, the proposed model was applied to two different
problems including the Spain wind and solar energy predictions and the wind farms in
China predictions. Datasets for both countries’ surveys have been used with the RNN
model and the attention-based recurrent neural network RNN-ATT. However, these
networks require fine-tuning of a large number of hyperparameters, that can result in non-
deterministic polynomial time complexity (NP-hard). Hyperparameter optimization is
done through the use of metaheuristics, and a modified version of the well-known Harris
hawk optimization (HHO) (Heidari et al., 2019) algorithm is introduced. Two sets of
experiments have been carried out both with RNN and RNN-ATT networks, applied to
each real-world dataset.

This research is an extension of previous researches in this domain (Bacanin et al.,
2023c; Stoean et al., 2023; Bacanin et al., 2023b), where the long short-term (LSTM),
bidrectional LSTM (BiLSTM) and gated recurrent unit (GRU) were applied for RES
forecasting challenges. However, the goal of this work is to test lighter models (classical
RNNs) for problems of RES with the application of fewer neurons over layers while
providing satisfactory performance. Additionally, conversely to previous experimentation,
current research also investigates the potential of RNNs with attention mechanism and it
was validated against different RES time-series datasets. Also, the classical RNNs (without
attention mechanism) were also validated in order to establish the influence of attention
layer to overall network performance.

The primary contributions of this work can be summarized as the following:

� The RNN-ATT-based method for forecasting RES power generation.

� A modified version of a metaheuristic tasked with selecting network parameters.

� The application of the introduced approach to two real-world datasets to determine
their potential for real-world use.
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� The interpretation of the best generated RNNmodels that can be used as a valuable tools
for renewable energy specialists to determine which factor has the most influence on the
RES performance.

The structure of the article includes “Background and Preliminaries” for providing the
technological fundamentals for the performed experiments. “Proposed Method” explains
the original version of the applied metaheuristic as well as the modified version. “Dataset
Description and Experiments” explains the utilized datasets in detail and gives information
on the test setup. The outcomes are presented in “Results and Comparison”, followed by a
discussion. statistical validation and model interpretation presented in “Discussion,
Statistical Validation and Interpretation”. Finally, “Conclusions” concluded the work and
presents potential future research.

BACKGROUND AND PRELIMINARIES
This section introduces techniques required for the reader to have a full and insightful
understanding of experiments conducted in this research.

Time-series decomposition and integration
Time-series decomposition is a technique used to break down a time-series data into its
constituent components, such as trend, seasonality, and residual (noise). By decomposing
a time-series, we can better understand the underlying patterns and relationships within
the data, which can, in turn result in improvements of reliability and accuracy of the time-
series forecasting, models like the Luong attention-based RNN model.

Decomposition techniques
Various decomposition techniques can be applied to time-series data, including:

1. Classical decomposition: This method decomposes a time-series into its trend,
seasonal, and residual components using moving averages and seasonal adjustments.
There are two primary approaches in classical decomposition: additive and multiplicative.
In the additive decomposition, the time-series is expressed as the sum of its components,
while in the multiplicative decomposition, the time-series is expressed as the product of its
components.

2. Seasonal and trend decomposition using Loess (STL): STL is a flexible and robust
decomposition method that uses locally weighted regression (Loess) to estimate the trend
and seasonal components of a time-series. It can handle both constant and time-varying
seasonality, as well as arbitrary patterns of missing data. The STL method also allows for
user-defined control over the smoothness and periodicity of the seasonal and trend
components.

3. Seasonal decomposition of time series (SDTS): SDTS is an extension of the classical
decomposition method that incorporates a seasonal adjustment factor for each observation
in the time-series. This factor is obtained by dividing the observed value by the
corresponding seasonal component. The seasonal adjustment factors can be used to
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deseasonalize the time-series, which can then be analyzed for trend and residual
components.

4. Wavelet transform: Wavelet transform is a mathematical technique used to
decompose a time-series into a set of wavelet coefficients, which represent the time-series
at different scales and resolutions. Wavelet transform can capture both the low-frequency
(trend) and high-frequency (seasonal and noise) components of a time-series, making it a
powerful tool for time-series decomposition and analysis.

5. Empirical mode decomposition: EMD is a powerful and flexible technique for
analyzing non-stationary and non-linear time series data. Introduced by Huang et al.
(1998), EMD is designed to adaptively decompose a time series into a finite set of intrinsic
mode functions (IMFs) that capture the local oscillatory behavior of the signal at various
scales. The primary goal of EMD is to provide a data-driven decomposition that does not
rely on any predefined basis functions or assumptions about the underlying signal
characteristics (Abayomi-Alli et al., 2020). By incorporating EMD into the renewable
power generation forecasting process, we can potentially enhance the accuracy, reliability,
and interpretability of the forecasting models, ultimately aiding in the efficient
management and planning of renewable energy resources.

Variational mode decomposition
The VMD (Dragomiretskiy & Zosso, 2013) technique used for signal decomposition builds
upon the solid foundation established but other methods. However, VMD does so with a
strong mathematical foundation compared to empirical techniques. Signal modes of
varying frequencies are extracted from the original signal original signals by finding modes
that are orthogonal to each other with localized frequency content. The decomposition is
achieved through progressive optimization according to Eq. (1).

EðVÞ ¼
Z

1
2
jjV 0ðtÞjj22 þ lUðVðtÞÞ

� �
dt (1)

in which VðtÞ are signal modes, V 0ðtÞ denotes the derivative of VðtÞ with respect to time.
Additionally the regularization parameter l balances between extracted mode smoothness
and sparsity. Accordingly, function UðVðtÞÞ promotes sparsity.

The decomposition process is handled by an algorithm that switches between solving
modes and determines the penalty. Minimizing the energy function modes can be
determined with respect to VðtÞ. A Lagrange multiplier aðtÞ is also introduced giving
Eq. (2).

EðVÞ ¼
Z

1
2
jjV 0ðtÞjj22 þ lUðVðtÞÞ þ aðtÞ

XK

k¼1
VkðtÞ2

� �
dt (2)

where the k-th mode of a signal is represented by VkðtÞ. In order to revise the penalty
function, the energy function is minimized with respect to aðtÞ. To accomplish this, the
derivative of EðVÞ with respect to aðtÞ is set to zero. The resulting function is shown in
Eq. (3)
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d
dt

aðtÞ ¼ l
XK
k¼1

VkðtÞ2 � k (3)

with the k constraint defining the overall mode energy.

Integration of decomposed components
Once the time-series has been decomposed into its constituent components, the next step
is to integrate these components into the forecasting model. There are several ways to
incorporate the decomposed components into the Luong attention-based RNN model:

1. Component-wise modeling: Train separate RNNmodels for each of the decomposed
components (trend, seasonal, and residual), and then combine the forecasts from these
models to obtain the final forecast for the original time-series. This approach can help in
capturing the unique patterns and dependencies within each component more effectively.

2. Feature augmentation: Use the decomposed components as additional input
features to the RNNmodel, along with the original time-series. This approach can help the
model in learning the relationships between the decomposed components and the target
variable, potentially improving the model’s forecasting performance.

3. Preprocessing: Deseasonalize the time-series by removing the seasonal component
before training the RNNmodel, and then add back the seasonal component to the model’s
forecasts to obtain the final forecast for the original time-series. This approach can help in
reducing the complexity of the time-series and make it easier for the model to capture the
underlying trend and residual patterns.

4. Postprocessing: Train the RNN model on the original time-series, and then adjust
the model’s forecasts using the decomposed components (e.g., by adding the seasonal
component to the model’s forecasts). This approach can help in correcting the model’s
forecasts for any systematic errors or biases related to the seasonal component.

Recurrent neural network
Time series prediction is the motivation for the improvements in artificial neural networks
(ANN) (Pascanu, Mikolov & Bengio, 2013). The difference from the multilayer perceptron
is that the hidden unit links are enabled with a delay. The results of such modifications
allow the model to be sensitive toward temporal data occurrences of greater length.

RNNs are considered as a high-performing solution but further improvements were
applied to achieve even greater performance. The main issues are the exploding and
vanishing gradient. The solution was provided with LSTMmodel. The reason for not using
the latest solution is that sometimes RNNs tend to outperform LSTMs as they introduce a
large number of hyperparameters that can sometimes hinder performance (Bas, Egrioglu &
Kolemen, 2021).

The advantage of the RNN as well is that it does not have to take inputs of fixed vector
length, in which case the output has to be fixed as well. While working with rich structures
and sequences this advantage can be exploited. In other words, the model works with input
vectors and is able to generate sequences on the output. The RNN processes the data of the
sequence while the hidden state is held.

Damaševičius et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1795 6/44

http://dx.doi.org/10.7717/peerj-cs.1795
https://peerj.com/computer-science/


Luong attention-based model
The attention phenomenon is not defined by mathematics and its application in the Luong
attention-based model should be considered as a mechanism (Luong, Pham & Manning,
2015; Raffel et al., 2017; Harvat & Martín-Guerrero, 2022). Some examples of different
mathematical expression applications of the attention mechanism are the sliding window
methods, saliency detection, local image features, etc. Regarding the attention mechanism
application in the case of an RNN, the definition is precise.

The networks that can work with the attention mechanism and possess RNN
characteristics are considered attention-based. The purpose of such a mechanism is to
work with different weights for the sequence in input. The data can be captured as a result
and input-output relations are usable. The basic solution of such architecture is the
application of a second RNN.

The authors chose the Luong attention-based model for that purpose. Weight
represented as wt is calculated for the source for every timestep t for the decoding of
attention-based encoder-decoder as�swtðsÞ ¼ 1 and 8s wtðsÞ � 0. The hidden state ht has
a function that is the related timestep’s predicted token, while the �swtðsÞ � ĥs.

Different mathematical applications of the attention mechanism differ in the way they
compute weights. In the case of the Luong model, it is the softmax function on the scaled
scores of each token. Matrix Wa linearly transforms the decoder’s ht dot product and the
encoder ĥs to calculate the score.

Hyperparameters of luong-attention based RNN
The Luong attention-based RNN model is an extension of the basic RNN model with the
addition of an attention mechanism allows for selective focus on particular parts of the
input sequence upon output generation. The following hyperparameters are typically
involved in the configuration of the Luong attention-based RNN model:

1. Number of hidden layers (nhid): The number of hidden layers in the RNN
architecture, which determines the depth of the model. More hidden layers can enable the
model to capture patterns of higher complexity and data dependencies but with the risk of
overfitting and requiring more computational resources.

2. Number of hidden units per layer (nunit): The number of hidden units (neurons) in
each hidden layer of the RNN. A larger number of hidden units can increase the model’s
capacity to learn complex patterns, but it may also increase the risk of overfitting and
require more computational resources.

3. Type of RNN cell: The choice of RNN cell used in the model, such as LSTM or GRU.
These cells are designed to better handle long-range dependencies and mitigate the
vanishing gradient problem compared to the traditional RNN cells.

4. Attention mechanism: The specific attention mechanism used in the model. In the
case of the Luong attention-based RNN model, the attention mechanism can be of two
types: global or local attention. Global attention attends to all the source positions, while
attention is focused localy only on a small window of source positions around the current
target position.
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5. Attention scoring function: The scoring function computes the alignment scores
between the source and target sequences in the attention mechanism. Luong, Pham &
Manning (2015) proposed three different scoring functions: dot product, general
(multiplicative), and concatenation (additive). The choice of scoring function can affect
the model’s performance and interpretability.

6. Learning rate (a): The learning rate is a critical hyperparameter in control of the size
of updates to the model’s weights during the training process. A smaller learning rate
might lead to more precise convergence but require more training iterations, while a larger
learning rate may speed up the training process but risk overshooting the optimal solution.

7. Dropout rate (pdrop): The dropout rate is a technique of regularization used to
prevent overfitting in neural networks. During training, a fraction of the neurons in the
network is randomly “dropped out” or deactivated, with the specified dropout rate
determining the proportion of neurons deactivated at each training iteration.

8. Batch size: The number of training samples used in a single update of the model’s
weights. A larger batch size can lead to more accurate gradient estimates and faster training
but may require more memory and computational resources.

9. Sequence length: The length of input and output sequences used in the model.
Longer sequences may allow the model to capture more extensive temporal dependencies
but can also increase the computational complexity and risk of overfitting.

These hyperparameters play a paramount role in performance determination of the
Luong attention-based RNN model for renewable power generation forecasting. Selecting
optimal values for these hyperparameters requires careful experimentation, and
metaheuristic optimization techniques like the HHO algorithm can be helpful in this
process, as shown by different authors recently (Tayebi & El Kafhali, 2022; Bacanin et al.,
2022a;Nematzadeh et al., 2022;Drewil & Al-Bahadili, 2022; Akay, Karaboga & Akay, 2022;
Bacanin et al., 2022c; Jovanovic et al., 2023a).

Metaheuristic optimization
In recent years model optimization has become a popular topic in computer science.
Increasing model complexity, as well as growing numbers of hyperparameters of modern
algorithms, has made it necessary to develop techniques to automate this process, which
was traditionally handled through trial and error. However, this is a challenging task, as
selecting optimal parameters is often a mixed NP-hard problem, with both discrete and
continuous values having a role to play in defining model performance. A powerful group
of algorithms capable of addressing NP-hard problems within reasonable time constraints
and with realistic computational demands are metaheuristic optimization algorithms. By
formulating the process of parameter selection as an optimization task, metaheuristics can
be employed to efficiently improve performance. A notably popular group of
metaheuristics is swarm intelligence that models observed behaviors of cooperating groups
to perform optimizations. Some notable algorithms that have become popular for tacking
optimization tasks among researchers include the HHO (Heidari et al., 2019), genetic
algorithm (GA) (Mirjalili & Mirjalili, 2019), particle swarm optimizer (PSO) (Kennedy &
Eberhart, 1995), artificial bee colony (ABC) (Karaboga, 2010) algorithm, firefly algorithm
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(FA) (Yang & Slowik, 2020). Additionally the LSHADE for Constrained Optimization with
Levy Flights (COLSHADE) algorithm (Gurrola-Ramos, Hernàndez-Aguirre & Dalmau-
Cedeño, 2020) and Self-Adapting Spherical Search (SASS) (Zhao et al., 2022) are notable
recent examples of optimizers. These algorithms, and algorithms derived from their base
have been applied in several fields with promising outcomes. Some noteworthy examples
of metaheuristics applied to optimization problems include examples for crude oil price
forecasting (Jovanovic et al., 2022; Al-Qaness et al., 2022), Ethereum and Bitcoin prices
predictions (Stankovic et al., 2022b; Milicevic et al., 2023; Petrovic et al., 2023; Gupta &
Nalavade, 2022), industry 4.0 (Jovanovic et al., 2023b; Dobrojevic et al., 2023; Para, Del Ser
& Nebro, 2022), medicine (Zivkovic et al., 2022a; Bezdan et al., 2022; Budimirovic et al.,
2022; Stankovic et al., 2022a), security (Zivkovic et al., 2022b; Savanović et al., 2023;
Jovanovic et al., 2023c; Zivkovic et al., 2022c), cloud computing (Thakur & Goraya, 2022;
Mirmohseni, Tang & Javadpour, 2022; Bacanin et al., 2022d; Zivkovic et al., 2021), and
environmental sciences (Jovanovic et al., 2023d; Bacanin et al., 2022b; Kiani et al., 2022).

PROPOSED METHOD
This section begins with a short overview of the basic HHO algorithm along the
explanation and justifications of the modifications that were made to the original method.

Original Harris hawk optimization
The inspiration for the HHO are the attack strategies of the bird with the same name. The
phases of attacks can be differentiated as exploration, the transition to exploitation, and the
exploitation. The algorithm was introduced byHeidari et al. (2019) and has been used for a
wide variety of optimization-related applications such as machine scheduling (Jouhari
et al., 2020) and neural network optimization (Ali et al., 2022).

In the first phase, the exploration, the goal is the global optimum. Multiple locations in
the population serve for random initialization which mimics the hawk’s search for prey.
The parameter q controls this process as it switches between two strategies of equal
probability:

Xðt þ 1Þ ¼ XrandðtÞ � r1jXrandðtÞ � 2r2XðtÞj; q � 0
ðXbestðtÞ � XmðtÞÞ � r3ðLBþ r4ðUB� LBÞÞ; q, 0:5;

�
(4)

in which the random number from the range ½0; 1� are r1, r2, r3, and r4 as well as q and
these numbers are updated on an iteration basis. The position vector of the solution in the
next iteration is Xðt þ 1Þ, and the positions of the solutions of the best, current, and
average solutions in the current iteration t are given respectively as XbestðtÞ, XðtÞ and
XmðtÞ, while the lower bound is LB and the upper bound is UB. The average position is
provided by a simple averaging approach:

XmðtÞ ¼ 1
N

XN
i¼1

XiðtÞ; (5)

for which N shows the total solutions number, and the individual X at iteration t is shown
as XiðtÞ.
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The term prey energy is introduced as it indicates if the algorithm should revert back to
exploration and so forth. The solutions updates strength in each iteration as:

E ¼ 2E0 1� t
T

� �
; (6)

for T as iteration maximum for a run, the prey’s initial energy E0 which varies inside the
½�1; 1� interval.

The exploitation phase represents the literal attack of the hawk and maps out its
behavior as it is closing in. The mathematical translation is given as jEj � 0:5 for more
passive attacking, and jEj, 0:5 otherwise.

In cases where the prey of the hawk is still at large, the hawks encircle the prey with the
goal of exhaustion which is modeled as follows:

Xðt þ 1Þ ¼ DXðtÞ � EjJXbestðtÞ � XðtÞj (7)

DXðtÞ ¼ XbestðtÞ � XðtÞ; (8)

for which the vector difference of the best solution (prey) and the current solution in
iteration t is shown as DXðtÞ. The strategy of the prey’s escape is controlled by the random
attribute J which differs from iteration to iteration:

J ¼ 2ð1� r5Þ; (9)

for which the interval ½0; 1�Þ maps out the random value r5. For r � 0:5 and jEj, 0:5 the
prey is considered exhausted and more aggressive attack strategies are applied. The current
position in this case is updated as:

Xðt þ 1Þ ¼ XbestðtÞ � EjDXðtÞj (10)

If the prey is still not giving up the hawks apply another attack strategy called zig-zag
movements commonly known as leapfrog movements. Following equation evaluates if
such behavior should be applied:

Y ¼ XbestðtÞ � EjJXbestðtÞ � XðtÞj; (11)

while the leapfrog movements are modeled as:

Z ¼ Y þ S� LFðDÞ; (12)

in which the problem dimension is given as D, a random vector of 1� D size as S, and the
levy fligth LF calculated by:

LFðxÞ ¼ 0:01� u� r

jvj1b
;r ¼ �ð1þ bÞ � sinðpb2 Þ

�ð1þb
2 Þ � b� 2ð

b�1
2 Þ

 !1
b

(13)

Consequently, the position updating mechanism is provided:

Xðt þ 1Þ ¼ Y; if FðYÞ, FðXðtÞÞ
Z; if FðZÞ, FðXðtÞÞ;

�
(14)

where the Eqs. (11) and (12) are utilized for calculating the Y and Z.
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Lastly, for the case of r � 0:5 and jEj, 0:5 the prey is considered to be out of energy,
and stronger attacks are applied with rapid drive progressively. The distance between the
target before its acquisition is modeled as:

Xðt þ 1Þ ¼ Y; if FðYÞ, FðXðtÞÞ
Z; if FðZÞ, FðXðtÞÞ;

�
(15)

for which the Y and Z are obtained by the next two equations:

Y ¼ XbestðtÞ � EjJXbestðtÞ � XðtÞj (16)

Z ¼ Y þ S� LFðDÞ (17)

Proposed enhanced Harris hawk optimization algorithm
New initialization scheme
The applied approach exploits a novel initialization strategy of populations:

xi;j ¼ lbj þ w 	 ðubj � lbjÞ; (18)

in which the j-th component of i-th solution is given as xi;j, the upper and lower bounds are
represented by ubj and lbj for the parameter j, and a pseudo-random number is drawn
between ½0; 1� and given as w.

The quasi-reflection-based learning (QRL) procedure has proven to give results
(Jovanovic et al., 2023b) where applied with the goal of sarge space enlargement for the case
of those generated by the (18). The purpose of the QRL procedure is reflected in the fact
that if the observed solution falls in the suboptimal region of the search space, there is a fair
chance that its opposite will fall in more promising areas of the search domain, as reported
by several authors recently (Bacanin et al., 2023a; Basha et al., 2021; Nama, 2022; Çelik,
2023; Lei et al., 2022; Bacanin et al., 2021; Xue, 2022). Hence the xqrj , quasi-reflexive-
opposite component for all parameters of a solution xj is provided as in the following
equation:

Xqr
j ¼ rndðlbj þ ubj

2
; xjÞ; (19)

while at lbjþubj
2 ; xj

h i
interval a pseudo-random number is chosen as rnd.

Mechanism for maintaining population diversity
Diversification is observed as a parameter of the convergence/divergence ratio during the
search process as in Cheng & Shi (2011).

L1 norm (Cheng & Shi, 2011) applies two-component diversification for the solutions
and the dimensions of the problem. Important information for the search process can be
derived from the dimension-wise metric with the L1 norm.

The number of total individuals is marked withm and the dimensions number as n, the
L1 norm is given as in Eqs. (20)–(22):
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�x ¼ 1
m

Xm
i¼1

xij (20)

Dp
j ¼

1
N

XN
i¼1

jxij � �xj j (21)

Dp ¼ 1
n

Xn
i¼1

Dp
j (22)

in which every individual’s position mean is represented as �x vector over all dimensions,
the hawk’s position vector of diversity as L1 norm is shown as Dp

j , while the scalar form is
shown as Dp for the entire population. Using regular strategies of initialization usually
results in higher diversity with weaker convergence towards later iterations. The described
metric is used for L1 determination of the threshold Dt for the diversity. Firstly, the Dt0 is
calculated by Eq. 23, which is followed by condition DP ,Dt for the satisfactory value of
diversity, the worst solutions are replaced with randomly generated solutions nrs with the
same strategy for population initialization. The nrs value is another control parameter.

Dt0 ¼
Xn
j¼1

ðubj � lbjÞ
2 	 n (23)

The Eq. (1) and Algorithm 1 indicate close generation of solutions towards the bounds
of the search space’s mean. The value Dt falls of as shown in:

Dt;iterþ1 ¼ Dt;iter � Dt;iter 	 iterT ; (24)

in which the current and subsequent iterations are given as iter and iter þ 1, and the
number of iterations at the maximum is T. According to this mechanism, the Dt falls off in
no relation to the DP and still will not trigger the mechanism.

Inner workings and complexity of proposed method
Taking inspiration from applied mechanisms to the original solution the proposed new
algorithm is diversity directed HHO (DDHHO), which is shown in Algorithm 2. It is
important to note that the computational complexity of the original algorithm is not lower
than that of the novel solution. In modern literature, it is a practice to measure this in FFEs
as it is the most resource-demanding technique, hence the complexity of the DDHHO for

Algorithm 1 QRL pseudo-code initialization scheme.

1: Pinit population with N=2 solutions created by Eq. (18).

2: Pqr population by QRL from Pinit by Eq. (19).

3: Merge Pinit and Pqr (P [ Pqr) resulting in the starting population.

4: Fitness calculation of every solution in P

5: P sorted by fitness
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the worst scenario is Yang &He (2013):OðDDHHOÞ ¼ OðNÞ þ OðT 	 N2Þ. In comparison
to other metaheuristics algorithms, the complexity of the DDHHO is similar. For instance,
firefly algorithm (Yang & Slowik, 2020) is more complex as it evaluates at most N � N
solutions in each iteration.

Algorithm 2 Pseudo-code of the basic HHO algorithm implementation.

Inputs: The population size N and maximum number of iterations T

Outputs: The location of the rabbit and its fitness value

Initialize the random population Xiði ¼ 1; 2; . . . ;NÞ
Initialize population Xi, (i ¼ 1; 2; 3; . . .N) according to Algorithm 1

Determine values of Dt0 and Dt

while (stopping condition is not met) do

Calculate the fitness values of hawks

Set Xrabbit as the location of rabbit (best location)

for (each hawk (Xi)) do

Update the initial energy E0 and jump strength J

Update the E using Eq. (6)

if (jEj � 1) then

Update the location vector using Eq. (4)

end if

if (jEj, 1) then

if (r � 0.5 and jEj � 0:5) then

Update the location vector using Eq. (7)

else if (r � 0.5 and jEj, 0:5) then

Update the location vector using Eq. (10)

else if (r, 0.5 and jEj � 0:5) then

Update the location vector using Eq. (14)

else if (r, 0.5 and jEj, 0:5) then

Update the location vector using Eq. (15)

end if

end if

end for

Calculate DP

if (DP ,Dt) then

Replace worst nrs with solutions created as in (18)

end if

Update Dt by expression (24)

end while

Return Xrabbit
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Hyperparameter optimization using HHO
To optimize the hyperparameters of the Luong attention-based RNN model, we perform
the following steps:

Define the search space: Identify the hyperparameters to be optimized and specify their
respective ranges or discrete sets of possible values. For instance, for the number of hidden
layers, we may specify a range of values, e.g., from 1 to 5. Similarly, we define the search
space for other hyperparameters such as the number of hidden units per layer, type of
RNN cell, attention mechanism, attention scoring function, learning rate, dropout rate,
batch size, and sequence length.

Initialize the population: Generate an initial population of candidate solutions, where
each candidate solution represents a combination of hyperparameter values within the
defined search space.

Evaluate candidate solutions: For each candidate solution, train the Luong attention-
based RNN model using the specified hyperparameter values, and evaluate the
performance on a validation set using one or more performance metrics (e.g., MAE, RMSE,
and MAPE). This step may require cross-validation or other validation techniques to
obtain reliable performance estimates.

Apply optimization algorithm: Utilize the chosen metaheuristic optimization
algorithm for search space exploration and find the best combination of hyperparameter
values that minimizes the chosen performance metric(s). In each iteration, the algorithm
updates the candidate solutions based on the optimization strategy specific to the chosen
algorithm, and the performance of the updated solutions is re-evaluated on the validation
set.

Termination condition: The optimization process is ongoing until a predefined
termination condition is met, such as a maximum iteration number, a minimum
performance improvement threshold, or a predefined computational budget.

Select the optimal solution: Once the termination condition is reached, select the
candidate solution with the best performance on the validation set as the optimal
combination of hyperparameter values for the Luong attention-based RNN model.

Final model training and evaluation: Train the Luong attention-based RNN model
using the optimal hyperparameter values on the entire training set, and evaluate its
performance on the test set to obtain an unbiased estimate of the model’s forecasting
accuracy.

DATASET DESCRIPTION AND EXPERIMENTS
This section aims to provide an overview of the datasets utilized in the experiments and the
experimental setup established for all methods employed in the comparative analysis.

Utilized datasets
Spain solar energy dataset
The first dataset, concerning photovoltaic power generation in Spain, is constructed from
real-world originating from two different sources. The ENTSO-E portal (https://
transparency.entsoe.eu/) provides hourly energy demand and generation considering the
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renewable energy in Spain, while the weather data is provided by OpenWeather API
(https://openweathermap.org/guide) for the location of Valencia, Spain.

Considering the large amount of data available, a smaller dataset segment was utilized
during experimentation. The datasets cover hourly data from 1.8.2018. to 31.12.2018. and
covered a total of 3,670 data points. The hourly metrics that were the most relevant are
included for multivariate forecasting as well as the data and support metrics of generated
photovoltaic power. The dataset was then further separated and with 70% of the data used
for training, 10% for validation, and the remaining 20% for testing. The included features
include generated photovoltaic power, as well as humidity, rainfall, cloud cover, and
ambient temperature. With the generated photovoltaic power feature being the prediction
target.

China wind farm dataset
The Global Energy Forecasting Competition 2012 (GEFCom2012) is a competition that
aimed to promote the development of state-of-the-art forecasting models for various
aspects of the energy industry. The dataset related to wind farms in China used in a
competition (https://www.kaggle.com/competitions/global-energy-forecasting-
competition-2012-load-forecasting/data). Seven wind farms from mainland China were
selected and anonymized for this dataset. Power generation data has been normalized as
well due to anonymity concerns.

Relevant wind data is collected every 12 h while the dataset includes forecasts in
intervals of 24 h. The direction and speed of the wind and meridional wind components
are provided as well. The dataset consists of hourly measurements of wind power
generation from seven wind farms located in China, spanning from January 1, 2011, to
September 30, 2012. Each wind farm has different installed capacities, which makes the
forecasting task more challenging. For experimentation, hourly resolution data has been
split into predictions of 12 h and then further combined with normalized real-world data
of power generation for each farm by the hour. Due to the last year of data not being
available, the dataset consists of four years of data. The included features are Wind speed,
wind direction, and zonal and meridional wind components for each wind farm while the
target feature is the amount of generated power.

The first 70% of the available data points were utilized for training, while the later 10%
and 20% were used for validation and testing.

Data preprocessing
Before using the dataset for renewable power generation forecasting, some preprocessing
steps may be necessary:

1. Missing data imputation: The dataset may contain values that are missing, which are
required to be imputed before using the data for model training and evaluation. Various
imputation techniques can be employed, such as linear interpolation or more advanced
methods based on machine learning models.

2. Data splitting: The division of the dataset into training, validation, and testing subsets.
The training and validation sets can be used for model development and hyperparameter
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tuning, while the testing set can be used for final performance evaluation of the model’s
forecasting.

3. Feature engineering: Extract additional features from the dataset that may be relevant
for the forecasting task, such as lagged values of wind power, moving averages, or other
temporal features that can help in pattern and depenendcy caputring in the data.

4. Normalization/standardization: Scale the input features and target variable to ensure
that they are on a similar scale, which is able of improving the performance and stability.

Once the dataset is preprocessed, it can be used to train and evaluate various forecasting
models, such as the Luong attention-based RNN model discussed earlier. By incorporating
techniques like time-series decomposition, attention mechanisms, and hyperparameter
optimization, the forecasting models can be tailored to the specific characteristics and
challenges of the wind power generation data, ultimately improving the accuracy and
reliability of the forecasts.

Experimental setup
The following setup regards all four test cases that have been executed. Two stages are
differentiated during experimentation. During the first, the data is decomposed for both
test cases. Afterward, the signal components and residual signals are provided to the RNN
for forecasting. VMD was employed for feature engineering, and min-max scaling was
utilized as scaling option. Every tested model was provided in the same manner with
historic data of six input points per model for three steps ahead predictions.

The data was split in the same manner for all four test cases, with the training set
amounting to 70%, the validation set of 10%, and the testing set of 20%. The split of each
the solar dataset target features is visualized with Fig. 1 to illustrate the time intervals that
were employed in each of the three mentioned subsets. Similarly, the wind dataset is shown
in Fig. 2.

The challenge of parameter optimization for the prediction models was tested on the
following contemporary metaheuristics: GA (Mirjalili & Mirjalili, 2019), PSO (Kennedy &
Eberhart, 1995), ABC (Karaboga, 2010), FA (Yang & Slowik, 2020), COLSHADE (Gurrola-
Ramos, Hernàndez-Aguirre & Dalmau-Cedeño, 2020), and self-adaptive step size
algorithm (Tang & Gibali, 2020). Additionally, to the mentioned metaheuristics the
original HHO and the DDHHO were evaluated. Each algorithm was executed with eight
solutions in the population and five iterations.

The parameters for the VMD were empirically established and the parameter K ¼ 3,
while the alpha parameter represents the length of the used dataframe. To ensure the
objectivity of model evaluation 30 independent runs were performed due to the stochastic
nature of the optimization algorithms. The selected parameters for optimization of the
RNN are given in the following text due to their impact on the performance of the model.
The ranges of the parameters alongside their descriptions are given: [50, 100] number of
neurons, [0.0001, 0.01] learning rate, [100, 300] training epochs, [0.05, 0.1] dropout rate,
and ½1; 3� for the total layer number of a network.

Damaševičius et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1795 16/44

http://dx.doi.org/10.7717/peerj-cs.1795
https://peerj.com/computer-science/


Lastly, an early stopping mechanism is incorporated for overfitting prevention with the
threshold empirically determined as epochs

3 . The purpose of such a mechanism is to
terminate the model early if no improvements are observed for epochs

3 . It should be noted
that computational resource waste is reduced as an effect of this approach.

This study employs five performance metrics commonly used to evaluate the accuracy
and effectiveness of the proposed attention-based recurrent neural network (A-RNN)
model for renewable power generation forecasting. These performance metrics are mean
absolute error (MAE), root mean squared error (RMSE), mean absolute error (MAE),
Coefficient of determination (R2) and the index of alignment (IA).

MAE is the average of the absolute differences between the predicted values and the
actual values. It measures the magnitude of errors in the forecasts without considering
their direction. The MAE is defined as:

MAE ¼ 1
N

XN
i¼1

jyi � ŷij (25)

for which the N represents data points total, yi the actual value, and ŷi the predicted value.

Figure 1 Solar energy generation target feature split. Full-size DOI: 10.7717/peerj-cs.1795/fig-1

Figure 2 Wind energy generation target feature Split. Full-size DOI: 10.7717/peerj-cs.1795/fig-2
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RMSE is the square root of the average of the squared differences between the predicted
values and the actual values. It provides a measure of the overall model’s performance by
penalizing larger errors more than smaller errors. The RMSE is defined as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðyi � ŷiÞ2:
vuut (26)

MAE is the average of the absolute differences between the predicted values and the
actual values. It can be useful for comparing the performance of different models across
various scales. The MAE is defined as:

MAE ¼ 1
n

Xn
i¼1

yi � ŷi (27)

where the || denotes the absolute value.
R2 indicates the proportion of the variance in the dependent variable that can be

explained by the independent variables in the model. It ranges from 0 to 1, with higher
values indicating a better fit between the model and the data. R2 is defined as:

R2 ¼ 1�
P

i ðyi � ŷiÞ2P
i ðyi � �yÞ2 (28)

where the �y refers to the mean of the actual values.
IA measures the extent to which the model’s predicted outcomes align with the true

outcomes or the intended goals. A higher Alignment Index indicates a stronger alignment,
suggesting that the model is performing well. AI is defined as:

IA ¼ 1�
Pn

i¼1 ðyi � ŷiÞ2Pn
i¼1 ðjyp � �yj þ jyi ¼ �yjÞ2 : (29)

These performance metrics, MAE, RMSE, and MAPE, are used to evaluate the accuracy
and effectiveness of the proposed A-RNNmodel in comparison to the regular RNN model
for renewable power generation forecasting. A lower value for each metric indicates better
forecasting performance.

A flowchart of the utilized experimental framework is provided in Fig. 3.

RESULTS AND COMPARISON
This section exhibits obtained experimental findings in terms of captured performance
metrics. The best metrics in all tables were marked with bold style to more clearly visualize
the best performing methods.

Spain solar energy forecasting
In Table 1 the objective function outcomes for the best, worst, mean, and median
executions, alongside the standard deviance with variance are shown for 30 independent
runs of each metaheuristic.
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As Table 1 suggests, the introduces algorithms attained the best results when optimizing
a RNN in the best run. However, admirable stability was demonstrated by the PSO.
Furthermore, when considering the worst case execution the ABC attained the best results
as well as in the mean and median runs. This is to be expected as per the NFL (Wolpert &
Macready, 1997) no single approach works equally well in all execution cases.

Original Dataset

Training Valida�on Tes�ng

Decomposed Data
Apply VMD

70%

20%
10%

Network op�miza�on process

Train a netowrk 
based on each 

agents paramaters

While T > t

Evaluate Network 
performance 

Update agent 
parameters using 

metaheursi�c

Evaluate best agent 
performance

Generate Outcome 
tables

Ini�alize Popula�on

Figure 3 Experimental framework flowchart. Full-size DOI: 10.7717/peerj-cs.1795/fig-3
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Further detailed metrics for the best run, for each forecasting step and every tested
metaheuristic are demonstrated in Table 2.

As it can be observed from Table 2 the introduced method attained the best overall
results in all cases except the R2 metric, where the PSO attained better results. As the
guiding objective function during the optimization process was MSE this is to be expected.
Additionally the introduced method also attained the best results when making forecasts
two steps ahead, as well MAE for one step ahead. The best results for R2, MSE and IA
where attained by the GA, while the best RMSE results where attained by the PSO.

Table 1 VMD-RNN solar energy forecasting objective function overall outcomes.

Method Best Worst Mean Median Std Var

VMD-RNN-DDHHO 0.006284 0.007320 0.006855 0.006931 0.000389 1.513667E-7

VMD-RNN-HHO 0.006990 0.007890 0.007366 0.007282 0.000344 1.183526E-7

VMD-RNN-GA 0.006664 0.007559 0.007061 0.007228 0.000341 1.163809E-7

VMD-RNN-PSO 0.007186 0.007458 0.007345 0.007425 0.000115 1.320113E-8

VMD-RNN-ABC 0.006499 0.007231 0.006830 0.006801 0.000251 6.319240E-8

VMD-RNN-FA 0.007005 0.007542 0.007184 0.007014 0.000229 5.253891E-8

VMD-RNN-COLSHADE 0.007159 0.008009 0.007478 0.007182 0.000357 1.273813E-7

VMD-RNN-SASS 0.007057 0.007405 0.007264 0.007240 0.000135 1.829039E-8

Table 2 The VMD-RNN solar energy metrics per each step.

Step Metric VMD-RNN-
DDHHO

VMD-RNN-
HHO

VMD-RNN-
GA

VMD-RNN-
PSO

VMD-RNN-
ABC

VMD-RNN-
FA

VMD-RNN-
COLSHADE

VMD-RNN-
SASS

One step R2 0.601739 0.549365 0.627364 0.528460 0.58500 0.544636 0.543719 0.559259

MAE 384.294171 432.200603 396.006180 427.516283 404.377133 418.018708 411.089031 412.655917

MSE 400,081.633100 452,694.787317 374,338.747453 473,694.873874 416,895.063424 457,445.578253 458,366.263037 442,755.336455

RMSE 632.520065 672.825971 611.832287 688.254948 645.674115 676.347232 677.027520 665.398630

IA 0.886044 0.870430 0.896802 0.870911 0.877714 0.875709 0.875988 0.877386

Two step R2 0.8896686 0.878472 0.844966 0.868775 0.876350 0.885817 0.873014 0.8760918

MAE 195.801662 227.673953 246.869567 233.834781 227.774440 204.845965 216.919114 219.607867

MSE 110,835.615218 122,082.984352 155,742.443523 131,825.249471 124,214.713878 114,704.662015 127,566.656326 124,474.546886

RMSE 332.919833 349.403755 394.642172 363.077470 352.441079 338.680767 357.164747 352.809505

IA 0.970558 0.966796 0.960179 0.966048 0.965562 0.969940 0.968305 0.966947

Three step R2 0.962557 0.964848 0.948636 0.978350 0.973942 0.960881 0.961240 0.951496

MAE 122.562368 137.209296 165.046855 105.082911 112.980142 141.060131 124.093137 141.036372

MSE 37,613.696545 35,313.037867 51,598.255163 21,749.216531 26,177.198226 39,297.213129 38,936.684159 48,725.218704

RMSE 193.942508 187.917636 227.152493 147.4761560 161.793690 198.235247 197.323805 220.737896

IA 0.9901459 0.990594 0.986690 0.994450 0.992991 0.989871 0.990657 0.987153

Overall R2 0.817988 0.797562 0.806989 0.791861 0.811765 0.797111 0.792658 0.795616

MAE 234.219400 265.694617 269.307534 255.477992 248.377238 254.641602 250.700427 257.766719

MSE 182,843.648288 203,363.603179 193,893.148713 209,089.779959 189,095.658509 203,815.817799 208,289.867841 205,318.367348

RMSE 427.602208 450.958538 440.332998 457.263360 434.851306 451.459652 456.387848 453.120698

IA 0.948916 0.942607 0.947890 0.943803 0.945423 0.945173 0.944983 0.943829

Note:
The best results are shown in bold.
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Nevertheless when making forecasts three steps ahead the PSO attained the best results
across all metrics except R2 where the FA attained the best outcomes.

To help demonstrated the improvements made by the introduced method visualizations
are provided for the distribution of both MSE and R2 are shown in Fig. 4 followed by
convergence plots for both functions in Fig. 5 and swarm and KDE plots in Fig. 6.

Finally, the parameters selected by each metaheuristic for their respective best models
are shown in Table 3.

Similarly to the previous experiment, in Table 4 the objective function outcomes for the
best, worst, mean, and median executions, alongside the standard deviance with variance
are shown for 30 independent runs of each metaheuristic.

Interestingly, when optimizing the RNN-ATT models, the introduced metaheuristic
demonstrated better performance overall most metrics. However, the ABC and SASS
algorithms demonstrated a slightly higher degree of stability despite attaining less
impressive results.

Further detailed metrics for the best run, for each forecasting step and every tested
metaheuristic are demonstrated in Table 5.

As it can be observed in Table 5 the introduces method attained the best overall results
for MSE and MAE, while the HHO attained the best IA results, the ABC attained the best
R2 outcomes overall, while SASS attained the best outcomes for MAE. The introduced
approach demonstrated the best performance when making predictions one step ahead,
while two step ahead forecasts are done best by the PSO. No single approach performed the
best for three steps ahead, while different metaheuristics attaining first place in different
metrics further enforcing the NFL (Wolpert & Macready, 1997) theorem.

Visualizations of objective function and R2 distributions are shown in Fig. 7 followed by
their respective convergence graphs in Fig. 8. The KDE and swarm plots are also provided
in Fig. 9.

Figure 4 Solar dataset objective function and R2 distribution plots for each metaheurstic without
attention layer. Full-size DOI: 10.7717/peerj-cs.1795/fig-4
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The parameters selected by each competing metaheuristic for their respective best-
performing models are shown in Table 6.

In Table 7 the objective function outcomes for the best, worst, mean, and median
executions, alongside the standard deviance with variance are shown for 30 independent
runs of each metaheuristic forecasting wind power generation.

China wind farm forecasting
The introduced metaheuristic attained the best outcomes in the best, mean and median
executions, with the ABC attained the best outcomes in the worst case executions.
Furthermore, the highest stability was demonstrated by SASS.

Further detailed metrics for the best run, for each forecasting step and every tested
metaheuristic are demonstrated in Table 8.

As demonstrated in Table 8, the introduced metaheursitic outperformed all competing
metaheuristic in overall outcomes. THe introduces metaheuristic demonstrated the best
results for one step ahead forecasts¿ However, the PSO attained the best results for two
steps ahead forecasts, and COLSHADE attained the best outcomes for three steps ahead.
These results further reinforce that no single approach is equally suited to all use-cases as

Figure 5 Solar dataset objective function and R2 convergence plots for each metaheuristic without
attention layer. Full-size DOI: 10.7717/peerj-cs.1795/fig-5
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per the NFL (Wolpert & Macready, 1997). Visualizations of the distribution and
convergence rates of the mse and R2 functions are shown in Figs. 10 and 11. Additionally,
KDE and swarm diversity plots are provided in Fig. 12.

Figure 6 Solar dataset objective swarm and KDE plots for each metaheuristic without attention
layer. Full-size DOI: 10.7717/peerj-cs.1795/fig-6

Table 3 Parameters for best performing solar prediction RNN model optimized by each metaheuristic.

Method Learning rate Dropout Epochs Layers L1 Neurons L2 Neurons L3 Neurons

VMD-RNN-DDHHO 0.007050 0.050000 232 3 50 100 100

VMD-RNN-HHO 0.007349 0.076853 206 3 64 50 100

VMD-RNN-GA 0.009097 0.091104 114 2 89 52 /

VMD-RNN-PSO 0.009329 0.069591 223 2 69 89 /

VMD-RNN-ABC 0.010000 0.100000 181 3 92 64 79

VMD-RNN-FA 0.010000 0.088052 238 2 50 50 /

VMD-RNN-COLSHADE 0.008718 0.063527 288 3 85 100 100

VMD-RNN-SASS 0.006645 0.096538 300 3 100 86 54
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The network hyperparameters selected by each metaheuristic for the respective best
performing models are shown in Table 9.

Similarly to the previous experiment, in Table 10 the objective function outcomes for
the best, worst, mean, and median executions, alongside the standard deviance with
variance are shown for 30 independent runs of each metaheuristic.

Table 4 VMD-RNN-ATT solar energy forecasting objective function overall outcomes.

Method Best Worst Mean Median Std Var

VMD-RNN-ATT-DDHHO 0.006517 0.007211 0.006923 0.006944 0.000250 6.265266E-8

VMD-RNN-ATT-HHO 0.007036 0.008443 0.007447 0.007111 0.000613 3.759833E-7

VMD-RNN-ATT-GA 0.006705 0.008075 0.007389 0.007209 0.000499 2.490886E-7

VMD-RNN-ATT-PSO 0.006711 0.007571 0.007233 0.007303 0.000297 8.818285E-8

VMD-RNN-ATT-ABC 0.007452 0.007531 0.007480 0.007470 0.000032 1.025433E-9

VMD-RNN-ATT-FA 0.007222 0.008049 0.007641 0.007647 0.000292 8.550797E-8

VMD-RNN-ATT-COLSHADE 0.006915 0.007912 0.007455 0.007476 0.000363 1.318140E-7

VMD-RNN-ATT-SASS 0.007238 0.007720 0.007472 0.007432 0.000164 2.673677E-8

Note:
The best results are shown in bold.

Table 5 The VMD-RNN-ATT solar energy metrics per each step.

Step Metric VMD-RNN-
ATT-DDHHO

VMD-RNN-
ATT-HHO

VMD-RNN-
ATT-GA

VMD-RNN-
ATT-PSO

VMD-RNN-
ATT-ABC

VMD-RNN-
ATT-FA

VMD-RNN-ATT-
COLSHADE

VMD-RNN-
ATT-SASS

1 R2 0.715471 0.584499 0.598188 0.574065 0.603103 0.548291 0.616813 0.547094

MAE 376.979586 442.064510 462.047919 435.538303 474.267738 435.524720 423.718303 416.220384

MSE 285,829.818133 417,399.667275 403,648.569532 427,881.634339 398,711.291244 453,773.352978 384,938.817726 454,976.265366

RMSE 534.630544 646.064755 635.333432 654.126620 631.435896 673.627013 620.434378 674.519285

IA 0.9146240 0.889628 0.881474 0.871310 0.891814 0.873488 0.887386 0.861529

2 R2 0.829019 0.876223 0.874955 0.888033 0.837797 0.868852 0.874406 0.861896

MAE 252.954113 243.425326 260.158326 218.732420 290.688281 236.760030 252.883363 233.639125

MSE 171,762.088320 124,342.580437 125,616.779871 112,478.817327 162,944.638909 131,747.397307 126,168.484562 138,735.683810

RMSE 414.441900 352.622433 354.424576 335.378618 403.6640174 362.970243 355.202033 372.472393

IA 0.951127 0.967796 0.965910 0.967226 0.958823 0.966348 0.966094 0.961092

3 R2 0.889236 0.927962 0.9442501 0.954781 0.911610 0.955364 0.907969 0.962090

MAE 244.240630 219.831502 179.063882 144.828299 232.407156 154.496558 244.166959 131.982225

MSE 111,269.990578 72,366.697870 56,004.659587 45,425.756743 88,793.700643 44,840.040944 92,451.964057 38,082.907643

RMSE 333.571567 269.010590 236.653036 213.133190 297.982719 211.754672 304.059146 195.14842

IA 0.968308 0.980827 0.985080 0.987410 0.976862 0.988566 0.974996 0.989529

Overall R2 0.811242 0.796228 0.805798 0.805626 0.784170 0.790836 0.799729 0.790360

MAE 291.391443 301.77378 300.423376 266.366341 332.454391 275.593769 306.922875 260.613911

MSE 189,620.632344 204,702.981861 195,090.002997 195,262.069470 21,6816.543599 210,120.263743 20,1186.422115 210,598.285607

RMSE 435.454512 452.441136 441.689940 441.884679 465.635634 458.388769 448.538094 458.909888

IA 0.944686 0.946083 0.944154 0.941982 0.942500 0.942801 0.942826 0.937383

Note:
The best results are shown in bold.
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Figure 7 Solar dataset objective function and R2 distribution plots for each metaheurstic with
attention layer. Full-size DOI: 10.7717/peerj-cs.1795/fig-7

Figure 8 Solar dataset objective function and R2 convergence plots for each metaheuristic with
attention layer. Full-size DOI: 10.7717/peerj-cs.1795/fig-8
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As it can be observed in Table 10 the introduced metaheuristic attained the best
outcomes in all except the medial case, where the ABC algorithms attained the best results.
Further detailed metrics for the best run, for each forecasting step and every tested
metaheuristic are demonstrated in Table 11.

Figure 9 Solar dataset objective swarm and KDE plots for each metaheuristic with attention layer.
Full-size DOI: 10.7717/peerj-cs.1795/fig-9

Table 6 Parameters for best performing solar prediction RNN-ATT model optimized by each metaheuristic.

Method Learning Rate Dropout Epochs Layers L1 Neurons L2 Neurons L3 Neurons ATT Neurons

VMD-RNN-ATT-DDHHO 0.010000 0.100000 100 3 100 100 50 50

VMD-RNN-ATT-HHO 0.009323 0.100000 100 1 98 / / 50

VMD-RNN-ATT-GA 0.009990 0.080219 148 2 71 69 / 82

VMD-RNN-ATT-PSO 0.008559 0.097184 166 3 89 51 99 96

VMD-RNN-ATT-ABC 0.010000 0.067651 101 1 50 / / 50

VMD-RNN-ATT-FA 0.006927 0.052260 216 2 90 87 / 97

VMD-RNN-ATT-COLSHADE 0.004221 0.050000 120 1 50 / / 71

VMD-RNN-ATT-SASS 0.009982 0.099805 188 3 100 50 50 50
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As Table 11 demonstrates, the introduces algorithms performed admirably, attaining
the best outcomes on overall evaluations as well as two and three step ahead. The original
HHO performed marginally better in one step ahead forecasts when considering at the
MAE and IA metrics.

Table 7 VMD-RNN wind energy forecasting objective function overall outcomes.

Method Best Worst Mean Median Std Var

VMD-RNN-DDHHO 0.010465 0.011162 0.010747 0.010764 0.000244 5.930160E-8

VMD-RNN-HHO 0.011407 0.011707 0.011538 0.011517 0.000125 1.559006E-8

VMD-RNN-GA 0.011028 0.011461 0.011240 0.011256 0.000168 2.812603E-8

VMD-RNN-PSO 0.011000 0.011507 0.011258 0.011294 0.000186 3.459674E-8

VMD-RNN-ABC 0.010729 0.010977 0.010847 0.010834 0.000108 1.176703E-8

VMD-RNN-FA 0.010519 0.011483 0.011102 0.011134 0.000381 1.448697E-7

VMD-RNN-COLSHADE 0.010823 0.011382 0.011214 0.011341 0.000241 5.784354E-8

VMD-RNN-SASS 0.011042 0.011300 0.011231 0.011298 0.000100 9.963395E-9

Note:
The best results are shown in bold.

Table 8 The VMD-RNN wind energy metrics per each step.

Step Metric VMD-RNN-
DDHHO

VMD-RNN-
HHO

VMD-RNN-
GA

VMD-RNN-
PSO

VMD-RNN-
ABC

VMD-
RNN-FA

VMD-RNN-
COLSHADE

VMD-RNN-
SASS

One step R2 0.875214 0.855404 0.856190 0.849434 0.861770 0.872224 0.857508 0.861647

MAE 0.077761 0.084168 0.083139 0.084909 0.081714 0.078881 0.083685 0.081844

MSE 0.012012 0.013919 0.013843 0.014494 0.013306 0.012300 0.013716 0.013318

RMSE 0.109599 0.117979 0.117658 0.120390 0.115352 0.110905 0.117117 0.115404

IA 0.967674 0.960717 0.961990 0.958739 0.962434 0.966699 0.962278 0.962725

Two step R2 0.897775 0.892783 0.900496 0.903051 0.900259 0.902827 0.899419 0.899132

MAE 0.070751 0.074085 0.070576 0.070070 0.070933 0.070237 0.071078 0.071742

MSE 0.009840 0.010321 0.009578 0.009332 0.009601 0.009354 0.009682 0.009710

RMSE 0.099198 0.101592 0.097869 0.096605 0.097986 0.096716 0.098397 0.098538

IA 0.973272 0.971041 0.973894 0.974067 0.973158 0.974287 0.973057 0.973069

Three step R2 0.908009 0.904098 0.907150 0.9121979 0.910908 0.904295 0.913157 0.902638

MAE 0.067910 0.071199 0.069404 0.0681129 0.068257 0.070842 0.066382 0.072017

MSE 0.008855 0.009232 0.008938 0.0084520 0.008576 0.009213 0.008360 0.009372

RMSE 0.094102 0.096081 0.094540 0.0919348 0.092607 0.095982 0.091431 0.096810

IA 0.975517 0.974068 0.975414 0.9765410 0.976470 0.974705 0.976785 0.973296

Overall R2 0.893666 0.884095 0.887945 0.8882271 0.890979 0.893116 0.890028 0.887805

MAE 0.072141 0.076484 0.074373 0.0743641 0.073635 0.073320 0.073715 0.075201

MSE 0.010236 0.011157 0.010787 0.0107594 0.010494 0.010289 0.010586 0.010800

RMSE 0.101172 0.105627 0.103858 0.1037274 0.102443 0.101434 0.102888 0.103923

IA 0.972154 0.968608 0.970433 0.9697823 0.970688 0.971897 0.970706 0.969697

Note:
The best results are shown in bold.
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Figure 10 Wind dataset objective function and R2 distribution plots for each metaheuristic without
attention layer. Full-size DOI: 10.7717/peerj-cs.1795/fig-10

Figure 11 Wind dataset objective function and R2 convergence plots for each metaheuristic without
attention layer. Full-size DOI: 10.7717/peerj-cs.1795/fig-11
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Figure 12 Wind dataset objective swarm and KDE plots for each metaheuristic without attention
layer. Full-size DOI: 10.7717/peerj-cs.1795/fig-12

Table 9 Parameters for best performing wind prediction RNN model optimized by each metaheuristic.

Method Learning rate Dropout Epochs Layers L1 Neurons L2 Neurons L3 Neurons

VMD-RNN-DDHHO 0.010000 0.050755 300 3 97 94 100

VMD-RNN-HHO 0.006340 0.100000 200 1 100 / /

VMD-RNN-GA 0.009989 0.067669 134 2 95 58 /

VMD-RNN-PSO 0.008124 0.053596 294 3 85 93 73

VMD-RNN-ABC 0.010000 0.100000 300 3 100 79 50

VMD-RNN-FA 0.010000 0.050000 300 2 100 50 /

VMD-RNN-COLSHADE 0.010000 0.096306 300 3 67 50 50

VMD-RNN-SASS 0.010000 0.050000 300 1 64 / /
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Further distribution and convergence graphs for the objective function and R2 are
shown in Figs. 13 and 14. Accompanying KDE and swarm diversity plots are given in
Fig. 15.

Finally, the selected parameter for the best performing models optimized by each
metaheuristic are shown in Table 12.

Table 10 VMD-RNN-ATT wind energy forecasting objective function overall outcomes.

Method Best Worst Mean Median Std Var

VMD-RNN-ATT-DDHHO 0.010359 0.011446 0.010993 0.011361 0.000475 2.254891E-7

VMD-RNN-ATT-HHO 0.010806 0.011496 0.011261 0.011424 0.000269 7.259626E-8

VMD-RNN-ATT-GA 0.011264 0.011672 0.011441 0.011387 0.000152 2.298042E-8

VMD-RNN-ATT-PSO 0.011167 0.011808 0.011455 0.011431 0.000251 6.293247E-8

VMD-RNN-ATT-ABC 0.010911 0.011524 0.011279 0.011259 0.000220 4.861609E-8

VMD-RNN-ATT-FA 0.011160 0.011554 0.011360 0.011420 0.000145 2.108468E-8

VMD-RNN-ATT-COLSHADE 0.011054 0.011368 0.011203 0.011184 0.000126 1.582216E-8

VMD-RNN-ATT-SASS 0.011269 0.011519 0.011392 0.011400 0.000096 9.213128E-9

Note:
The best results are shown in bold.

Table 11 The VMD-RNN-ATT wind energy metrics per each step.

Step Metric VMD-RNN-
ATT-DDHHO

VMD-RNN-
ATT-HHO

VMD-RNN-
ATT-GA

VMD-RNN-
ATT-PSO

VMD-RNN-
ATT-ABC

VMD-RNN-
ATT-FA

VMD-RNN-ATT-
COLSHADE

VMD-RNN-
ATT-SASS

One step R2 0.869388 0.868300 0.863840 0.860679 0.861597 0.854800 0.860994 0.853326

MAE 0.080227 0.079741 0.081451 0.083636 0.081330 0.083773 0.082541 0.083572

MSE 0.012573 0.012678 0.013107 0.013411 0.013323 0.013977 0.013381 0.014119

RMSE 0.112129 0.112595 0.114485 0.115806 0.115425 0.118225 0.115676 0.118823

IA 0.964787 0.965400 0.963486 0.963898 0.963680 0.961305 0.963349 0.960917

Two step R2 0.902255 0.898536 0.892452 0.895950 0.897634 0.898030 0.897528 0.895859

MAE 0.070517 0.071214 0.073747 0.073326 0.071518 0.071795 0.072607 0.073126

MSE 0.009409 0.009767 0.010353 0.010016 0.009854 0.009816 0.009864 0.010025

RMSE 0.097000 0.098828 0.101748 0.100080 0.099267 0.099074 0.099318 0.100124

IA 0.973859 0.973364 0.971348 0.972700 0.973169 0.973293 0.973173 0.972177

Three step R2 0.912571 0.903750 0.900340 0.902971 0.908152 0.906962 0.904508 0.907307

MAE 0.067887 0.070822 0.072048 0.071218 0.069180 0.070399 0.072522 0.071352

MSE 0.008416 0.009265 0.009593 0.009340 0.008841 0.008956 0.009192 0.008923

RMSE 0.091739 0.096255 0.097946 0.096644 0.094028 0.094636 0.095876 0.094460

IA 0.976584 0.974331 0.973022 0.973790 0.975383 0.975599 0.974773 0.975041

Overall R2 0.894738 0.890195 0.885544 0.886533 0.889128 0.886597 0.887677 0.885497

MAE 0.0728767 0.073925 0.075749 0.076060 0.074010 0.075322 0.075890 0.076017

MSE 0.0101326 0.010570 0.011018 0.010922 0.010673 0.010916 0.010812 0.011022

RMSE 0.1006610 0.102810 0.104965 0.104510 0.103309 0.104481 0.103982 0.104986

IA 0.9717431 0.971032 0.969285 0.970130 0.970744 0.970066 0.970432 0.969378

Note:
The best results are shown in bold.
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Figure 13 Wind dataset objective function and R2 distribution plots for each metaheurstic with
attention layer. Full-size DOI: 10.7717/peerj-cs.1795/fig-13

Figure 14 Wind dataset objective function and R2 convergence plots for each metaheuristic with
attention layer. Full-size DOI: 10.7717/peerj-cs.1795/fig-14
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Figure 15 Wind dataset objective swarm and KDE plots for each metaheuristic with attention layer.
Full-size DOI: 10.7717/peerj-cs.1795/fig-15

Table 12 Parameters for best-performing wind prediction RNN-ATT model optimized by each metaheuristic.

Method Learning rate Dropout Epochs Layers L1 Neurons L2 Neurons L3 Neurons ATT Neurons

VMD-RNN-DDHHO 0.010000 0.063597 267 3 69 100 50 77

VMD-RNN-HHO 0.010000 0.100000 222 1 74 / / 54

VMD-RNN-GA 0.007046 0.060227 120 2 66 73 / 74

VMD-RNN-PSO 0.010000 0.050000 234 3 100 50 100 50

VMD-RNN-ABC 0.010000 0.100000 300 3 100 50 50 50

VMD-RNN-FA 0.010000 0.050000 300 3 50 100 81 98

VMD-RNN-COLSHADE 0.005840 0.100000 300 1 91 / / 86

VMD-RNN-SASS 0.009995 0.100000 255 1 60 / / 100
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DISCUSSION, STATISTICAL VALIDATION AND
INTERPRETATION
This section presents a discussion of the advantages of the techniques employed in the
conducted research, as well as the statistical analysis of the methods used for comparisons,
and the interpretation of the best models generated for both datasets.

Benefits of using attention mechanism for renewable power genera-
tion forecasting
The attention mechanism has emerged as a powerful tool in the field of machine learning,
particularly for sequence-to-sequence learning problems like renewable power generation
forecasting. By selectively focusing on different parts of the input sequence when
generating the output, the attention mechanism can enhance the performance of
forecasting models like the Luong attention-based RNN model. Below, we discuss the key
benefits of using attention mechanisms for renewable power generation forecasting:

1. Improved long-term dependency handling: Renewable power generation data often
exhibit long-term dependencies due to factors like seasonal patterns and weather trends.
Traditional RNN models can struggle to capture these long-term dependencies effectively,
leading to suboptimal forecasts. The mechanism of attention introduces different
importance weights for seperate input sequence parts, enabling it to focus on the most
relevant information for generating the output, thus better handling long-term
dependencies.

2. Enhanced forecasting accuracy: The attention mechanism can lead to more accurate
forecasts by enabling the model to focus on the most relevant parts of the input sequence
when generating the output. This selective focus allows the model to capture the
underlying patterns and relationships within the renewable power generation data more
effectively, resulting in improved forecasting performance.

3. Interpretability: Attention mechanisms provide a level of interpretability to the
model’s predictions by highlighting which parts of the input sequence have the most
significant impact on the output. This interpretability can be particularly valuable in
renewable power generation forecasting, as it allows domain experts to gain insights into
the factors influencing the model’s forecasts and to validate the model’s predictions based
on their domain knowledge.

4. Robustness to noise and irrelevant information: Renewable power generation data
can be subject to noise and irrelevant information (e.g., due to measurement errors or
unrelated external factors). The attention mechanism can help in mitigating the impact of
such disturbances on the model’s forecasts by selectively focusing on the most relevant
parts of the input sequence and down-weighting the influence of noise and irrelevant
information.

5. Scalability: Attention mechanisms can scale well with large input sequences, as they
allow the model to focus on the most relevant parts of the input sequence without the need
to process the entire sequence in a fixed-size hidden state. This scalability can be
particularly beneficial for renewable power generation forecasting problems, where the
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input data may consist of long sequences of historical power generation measurements and
environmental variables.

6. Flexibility: Attention mechanisms can be easily incorporated into various RNN
architectures, such as LSTM and GRU, providing flexibility in designing and adapting the
forecasting model for different renewable power generation scenarios and data
characteristics.

An additional note needs to be made on attention mechanisms. The attained results
suggest that networks utilizing the attention mechanisms perform slightly worse then the
basic RNN. This is likely due to networks with attention layers having a deeper network
architecture and thus require more training epochs to improve performance.

Benefits of time series decomposition and integration
Incorporating time-series decomposition and integration into the Luong attention-based
RNN model can offer several benefits for renewable power generation forecasting:

1. Improved forecasting accuracy: By decomposing the time-series and accounting for
its components, the model can better capture the underlying patterns and dependencies in
the data, potentially leading to more accurate and reliable forecasts.

2. Enhanced model interpretability: Decomposition provides insights into the
different components of the time-series, making it easier to understand and interpret the
model’s predictions in terms of trend, seasonality, and residual components.

3. Robustness to noise: By separating the noise component from the trend and seasonal
components, the decomposition process can help in reducing the impact of noise and
outliers on the model’s forecasts, making the model more robust to disturbances.

4. Flexibility and customizability: Decomposition and integration techniques can be
adapted and fine-tuned to suit the specific characteristics and requirements of the
renewable power generation data, allowing for a more flexible and customizable
forecasting approach.

5. Improved model performance: The integration of decomposed components into the
RNN model can help in better capturing the relationships between the components and
the target variable, potentially leading to improved model performance in terms of
generalization and predictive accuracy.

Statistical analysis
When considering optimization problems, assessing models is an important topic.
Understanding the statistical significance of the introduced enhancements is crucial.
Outcomes alone are not adequate to state that one algorithms is superior to another one.
Previous research suggests (Derrac et al., 2011) that a statistical assessment should take
place only after the methods being evaluated are adequately sampled. This is done by
ascertaining objective averages over several independent runs. Additionally, samples need
to originate form a normal distribution so as to avoid misleading conclusions. The use of
objective function averages is still for comparison of stochastic methods is still an open
question among researchers (Eftimov, Korošec & Seljak, 2017). To ascertain statistical
significance of the observed outcomes the best values over 30 independent executions of
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each metaheuristic have been used for creating the samples. However, the safe use of
parametric tests needed to be confirmed. For this, independence, normality, and
homoscedasticity of the data variances were considered as recommended by LaTorre et al.
(2021). The independence criterion is fulfilled due to the fact that each run is initialized
with an pseudo-random number seed. However, the normality condition is not satisfied as
the obtained samples do not stem from a normal distribution as shown by the KED plots
and proved by the Shapiro-Wilk test outcomes for single-problem analysts (Shapiro &
Francia, 1972). By performing the Shapiro-Wilk test, p-values are generated for each
method-problem combination, and these outcomes are presented in Table 13.

The standard significance levels of a ¼ 0:05 and a ¼ 0:1 suggest that the null
hypothesis (H0) can be refuted, which implies that none of the samples (for any problem-
method combinations) are drawn from a normal distribution. This indicates that the
assumption of normality, which is necessary for the reliable use of parametric tests, was not
satisfied, and therefore, it was deemed unnecessary to verify the homogeneity of variances.

As the requirements for the reliable application of parametric tests were not met, non-
parametric tests were employed for the statistical analysis. Specifically, the Wilcoxon
signed-rank test, which is a non-parametric statistical test (Taheri & Hesamian, 2013), was
performed on the DDHHOmethod and all other techniques for all three problem instances
(experiments). The same data samples used in the previous normality test (Shapiro-Wilk)
were used for each method. The results of this analysis are presented in Table 14, where
p-values greater than the significance level of a ¼ 0:05 are highlighted in bold.

Table 14, which presents the p-values obtained from the Wilcoxon signed-rank test,
demonstrate that, except for the ABC algorithm in the experiment where VMD-RNN was
optimized and validated against solar and wind datasets, the proposed DDHHO method
achieved significantly better performance than all other techniques in all three experiments.
When compared with ABC, the calculated p-value was slightly above the 0.05 threshold

Table 13 Shapiro-Wilk scores for the single-problem analysis for testing normality condition.

Experiment DDHHO HHO GA PSO ABC FA COLSHADE SASS

Solar VMD-RNN 0.035 0.023 0.022 0.026 0.027 0.030 0.017 0.014

Solar VMD-RNN-ATT 0.035 0.032 0.037 0.019 0.022 0.025 0.037 0.033

Wind VMD-RNN 0.029 0.020 0.025 0.036 0.033 0.019 0.026 0.024

Wind VMD-RNN-ATT 0.021 0.028 0.025 0.037 0.035 0.024 0.026 0.041

Table 14 Wilcoxon signed-rank test findings.

DDHHO vs others HHO GA PSO ABC FA COLSHADE SASS

Solar VMD-RNN 0.035 0.046 0.036 0.062 0.043 0.029 0.040

Solar VMD-RNN-ATT 0.041 0.044 0.046 0.035 0.024 0.039 0.037

Wind VMD-RNN 0.024 0.043 0.039 0.052 0.045 0.044 0.038

Wind VMD-RNN-ATT 0.039 0.027 0.025 0.038 0.035 0.042 0.032

Note:
The best results are shown in bold.
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(highlighted in bold in Table 14), suggesting that the DDHHO performed comparably to
ABC. This was expected for the solar dataset, since the ABC in this simulation achieved
moderately better mean value than the DDHHO, as demonstrated in Table 1.

The p-values for all other methods were lower than 0.05. Therefore, the DDHHO
technique exhibited both robustness and effectiveness as an optimizer in these
computationally intensive simulations. Based on the statistical analysis, it can be concluded
that the DDHHO method outperformed most of the other metaheuristics investigated in
all four experiments.

Best model interpretation and feature importance
SHAP (Lundberg & Lee, 2017) is a method that can be utilized to interpret the outputs of
various AI models. Game theory provides a strong basis for SHAP. Though the use of
SHAP the influence real-world factors have on model predictions can be determined. In
order to determine the factors that play the highest role in energy production in solar and
wind generation the best models with the highest performance output have been subjected
to analysis. The outcomes for solar generation are shown in Fig. 16, while wind generation
is shown in Fig. 17.

Figure 16 Feature impacts for the best performing RNN model for solar forecasting.
Full-size DOI: 10.7717/peerj-cs.1795/fig-16
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As demonstrated by Fig. 16, a significant influence of previous solar generation
instances can be observed. Cloud cover and humidity play a minor role in forecasting, with
cloud cover decreasing the power produced by the photovoltaic cells.

Indicators form Fig. 17 suggest that when forecasting wind power generation wind
direction modes have an important role. However, likely due to the sporadic nature of
wind bursts wind generation residuals have the highest impact on predictions. Finally, the
meridional followed by zonal wind components pay a minor role in forecasting.

CONCLUSIONS
This study presents a novel attention-based recurrent neural network model for multistep
ahead time-series forecasting of renewable power generation, demonstrating improved
forecasting accuracy on both Spain’s wind and solar energy datasets and China’s wind
farm dataset. The HHO algorithm is employed for hyperparameter optimization,
addressing the challenges posed by the large number of hyperparameters in RNN-type
networks. The attention model applied in the second group of experiments provides a
weighting system to the RNN, further enhancing the model’s performance. The proposed
approach has the potential to significantly impact the transition towards a more

Figure 17 Feature impacts for the best performing RNN model for wind forecasting.
Full-size DOI: 10.7717/peerj-cs.1795/fig-17
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sustainable future by addressing key challenges related to the storage and management of
renewable power generation.

As with any work this research has several limitations. Other methods exist for tackling
time-series forecasting and their potential remains yet to be explored. Further potential for
improvement exist for the HHO, as well as other metaheuristic algorithms yet to be applied
to cloud forecasting. Additionally, other approaches for interpreting feature influence exist
such as through the analysis of n-Shapley values.

Future research will focus on refining the HHO algorithm for hyperparameter
optimization and exploring additional decomposition methods to further improve the
forecasting capabilities of the proposed approach, as well as exploring additional
metaheuristics applied to clout load forecasting. Additionally, further methods for feature
impact interpretation will be explored.
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