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ABSTRACT
Nowadays, more people are choosing to use cloud storage services to save space and
reduce costs. To enhance the durability and persistence, users opt to store important
data in the form of multiple copies on cloud servers. However, outsourcing data in the
cloud means that it is not directly under the control of users, raising concerns about
security and integrity. Recent research has found that most existing multicopy integrity
verification schemes can correctly perform integrity verification even when multiple
copies are stored on the same Cloud Service Provider (CSP), which clearly deviates
from the initial intention of users wanting to store files on multiple CSPs. With these
considerations in mind, this paper proposes a scheme for synchronizing the integrity
verification of copies, specifically focusing on strongly privacy Internet of Things (IoT)
electronic health record (EHR) data. First, the paper addresses the issues present in
existing multicopy integrity verification schemes. The scheme incorporates the entity
Cloud Service Manager (CSM) to assist in the model construction, and each replica
file is accompanied with its corresponding homomorphic verification tag. To handle
scenarioswhere replica files stored onmultiple CSPs cannot provide audit proof on time
due to objective reasons, the paper introduces a novel approach called probability audit.
By incorporating a probability audit, the scheme ensures that replica files are indeed
stored on different CSPs and guarantees the normal execution of the public auditing
phase. The scheme utilizes identity-based encryption (IBE) for the detailed design,
avoiding the additional overhead caused by dealing with complex certificate issues.
The proposed scheme can withstand forgery attack, replace attack, and replay attack,
demonstrating strong security. The performance analysis demonstrates the feasibility
and effectiveness of the scheme.

Subjects Cryptography, Distributed and Parallel Computing, Security and Privacy, Internet of
Things
Keywords Multi-replicas integrity verification, Public auditing, EHR data, Identity-based
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INTRODUCTION
With the advent of the era of big data, the types and quantities of data have shown
explosive growth. At the same time, the methods and devices of data storage have also
received more attention. For example, from large-capacity nonportable solid-state storage
devices to small-capacity portable USB flash drives, to large-capacity portable mobile hard
drives, people are always willing to store data on devices with high flexibility and capacity.
Fortunately, cloud storage services can better meet the needs of users. Users who choose to
use cloud storage services do not need to deploy any physical devices locally, nor do they
need to be involved in the daily maintenance of outsourcing data, they can simply focus on
enjoying the service. Therefore, cloud storage services have been chosen by more and more
users in recent years. However, users who choose cloud storage services will, by default,
transfer the control of the data to the Cloud Storage Provider (CSP) after uploading the
outsourced file. Despite the popularity of cloud storage services, their security and reliability
remain subject to skepticism. Therefore, ensuring the security and integrity of outsourced
data when using cloud storage services is a research hotspot for scholars. Currently, more
valuable schemes have been proposed that can effectively verify the integrity of remote
data.

To enhance the availability and durability of the outsourced data, users choose to store
important data on multiple CSPs with different geographic locations or different types.
Therefore, after completing the data upload, verifying the integrity of duplicate files is an
issue worth considering. On the one hand, due to the increased complexity of verifying
multicopy files compared to a single file, the following issues need to be considered: (1)
How should the duplicate files be generated to guarantee storage security? (2) How to
design the homomorphic verification tag (HVT) to realize synchronous verification of
duplicate file integrity? (3) How can we improve verification efficiency? (4) How do we
implement recovery for damaged replicas? These are the primary issues that need to be
addressed when designing a multicopy data integrity verification scheme. On the other
hand, most existing multicopy file integrity verification schemes have almost not taken
into account the distribution of replica storage locations. Specifically, while most schemes
claim to simultaneously check replicas stored in different geographical locations, this is
not actually the case, as the duplicate files in their schemes are actually stored on the same
CSP (which will be detailed in the ‘Related Work’ section). Clearly, if the storage server
fails, all duplicate files of the user will be damaged. Even if the cloud service provider offers
compensation, the user’s important data has already been compromised, which is bound
to erode the user’s confidence in them. Therefore, the user’s duplicate files should be stored
on multiple CSPs located in different geographical locations to minimize the risk of data
loss. Similarly, how to conduct synchronous checks on these duplicate files is also a crucial
issue.

As mentioned earlier, the era of big data has arrived and both storage and privacy
security should be guaranteed for outsourced cloud data. The Internet of Things (IoT), as a
rapidly evolving technology in recent years, connects devices and sensors through networks,
utilizing cloud computing to process and transmit data to achieve interconnectedness of
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all things. Recently, the proliferation of wearable devices has made the integration of IoT
and big data in healthcare even more closely intertwined. For example, most hospitals
currently use electronic health records (EHR), which serve as a form of healthcare big data
encompassing a patient’s entire life process, including identity information, health status,
and medical history, among other details. The EHR data comes from multiple channels,
making it comprehensive and detailed. Due to its sheer volume, storing it in the cloud is a
viable solution. However, an EHR contains various sensitive information, and outsourcing
it directly to the cloud would inevitably lead to privacy breaches. Furthermore, not all EHR
data can be shared among hospitals, so creating copies of EHR when patients visit different
hospitals would be more convenient. Therefore, as one of the data types in cloud-based
IoT, it is essential to safeguard the security and integrity of EHR replica files.

Related work
To verify remote data integrity in the cloud storage environment, existing schemes can
be broadly categorized into two types: data possession verification and data retrieval
verification. In 2007, Ateniese et al. (2007) proposed the Provable Data Possession (PDP)
scheme. The PDP scheme employs random sampling and is essentially a probabilistic
detection model. Notably, it not only enables blockless verification but also significantly
reduces the I/O overhead during the remote checking process. In the same year, Juels &
Kaliski (2007)proposed the Proof of Retrievability (PoR) scheme. PoR scheme adds a special
data block named ‘‘Sentinels’’ for detection and introduces erasure coding technology,
so it can complete remote data integrity checking and data retrieval simultaneously.
Building on the PoR scheme, Shacham &Waters (2008) proposed an enhanced scheme.
In Shacham &Waters (2008), two methods for constructing homomorphic verification
tag (HVT) are presented: when constructed based on pseudo-random functions (PRF),
this scheme supports private verification and is shown to be secure in the standard model;
when constructed using BLS signatures, this scheme supports public verification and
is proven secure in a random oracle model. Building on these foundational schemes,
subsequent research has made significant contributions to the field of data integrity
verification (Ateniese et al., 2008; Erway et al., 2009; Wang et al., 2011b; Wang et al., 2011a;
Tian et al., 2015; Li, Yan & Zhang, 2020; He et al., 2021; Shu et al., 2021; Wang, Wang &
He, 2021; Zhang et al., 2020; Shang et al., 2021).

In the scheme of using public key infrastructure (PKI) to distribute keys, PKI is an
indispensable entity. However, the presence of certificates places a substantial burden
on verification processes. For example, during data integrity check, the users must
verify both the data and the certificate, while the system is tasked with tasks such as
certificate generation, forwarding, storage, checking, and updates. In actual use, certificate
management will be laborious and inefficient. In 1984, Shamir (1984) proposed an identity-
based key system, in which the user’s unique identity, such as e-mail, phone number, etc.,
can serve as a public key and the corresponding private key is generated by the private
key generator (PKG). This eliminates the need for PKI, greatly reducing the reliance on
certificates in Identity-Based Encryption (IBE). In 2001, Boneh & Franklin (2001) provided
the first practical IBE scheme based on the weil pairing. Following this, Wang et al. (2014)
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proposed the first public data integrity verification scheme constructed using IBE. Zhang
& Dong (2016) proposed a public auditing scheme that combines bilinear mapping and
IBE construction, requiring only constant-level computational cost. Tian, Gao & Chen
(2019) applied the ideal lattice based on the polynomial structure to key generation and
proposed the scheme that can achieve efficient key generation and low-cost storage.Wang,
He & Tang (2016) introduce Proxy, a trusted entity, and discuss how to conduct public
auditing when users face restrictions on accessing CSPs. Shen et al. (2018) discussed that in
the context of a big data environment, by adding a trusted entity Sanitizer, the purpose of
hiding sensitive user information is achieved. Li et al. (2017) provide a method to convert
the feature vector generated by the biometric information of the users, such as the iris,
fingerprint, etc., into a usable key and construct a public audit scheme that supports the
input of fuzzy identities. Yu et al. (2016) proposed a new method for key construction
using RSA.

To address the challenge of public auditing of multiple-replica, Curtmola et al. (2008)
introduced the initial multiple replica provable data possession (MR-PDP) scheme. This
scheme employs RSA to construct the HVT, demonstrating that the time required to
verify multiple copies of files together is significantly less than the time required to verify
them individually. However, the calculation and communication cost of this scheme is
relatively large. Shamir (1984) designed the HVT by assisting with the vector dot product
and proposed a flexible multiple replica provable data possession (FMR-PDP) scheme.
Although the FMR-PDP scheme has great advantages in computing and communication
overhead, it only considers private verification, which limits its practicality. Barsoum
& Hasan (2014) proposed a Provable Multicopy Dynamic Data Possession (PMDDP)
scheme to realize replica dynamics by mapping version tables. The PMDDP scheme nests
the number of copies into the HVT constructed by RSA. Although the modification,
insertion, and deletion of the specified data block in the copy file can be completed, if the
verification fails, the current integrity verification will inevitably fail and one cannot locate
the corrupted copy. Furthermore, Hou, Yu & Hao (2018) devised a scheme that utilizes
algebraic signatures to construct HVT and facilitate replica dynamics. Long, Li & Peng
(2019) proposed applying chaotic mapping to the construction of full-node AVL trees to
achieve replica dynamics.Wei et al. (2016) proposed to use fully homomorphic encryption
(FHE) to generate multicopy files. Furthermore, Zhang et al. (2016) and Guo et al. (2020)
independently proposed a public auditing scheme using the Merkle tree to achieve replica
dynamics. Zhou et al. (2020) formalized a dynamic multicopy authentication scheme
constructed using certificateless cryptography. To complete the unified management
of multiple CSPs, Wang (2014) introduced an entity Combiner, which can transfer
information between multiple CSPs and TPAs during the audit process. Likewise, Li,
Yan & Zhang (2021) introduced the Cloud Organizer entity to achieve similar functions.
Additionally, to facilitate dynamic operations on replicas, Zhang et al. (2021) combined a
Merkle tree with a B+ tree to construct an IBM tree. Zhou et al. (2020) achieved dynamic
data manipulation using certificateless signatures coupled with table structures and Merkle
hash trees. Yi, Wei & Song (2017) focused on the generation of replica files using fully
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homomorphic encryption, while Peng et al. (2019) contemplated the construction of
compressed identity arrays as a homomorphic verification substitute for replicas.

Motivation and contribution
In the MR-PDP scheme, the user first encrypts the outsourced file, and then utilizes the
encrypted file to generate multiple replicas and tags set, respectively. These duplicate files
along with their respective tag sets are subsequently uploaded to the CSP by the user. This
approach has been adopted by the references Curtmola et al. (2008), Li, Yang & Wu (2017),
Barsoum & Hasan (2014), Hou, Yu & Hao (2018), Long, Li & Peng (2019) and Wei et al.
(2016). As shown in Fig. 1, the relationship between encrypted file, duplicate files, and tags
set is illustrated.

As Fig. 1 demonstrated, the tags set is derived from the encrypted file and remains
independent of the content and quantity of the replica files. Clearly, using this method
can greatly reduce computational overhead, especially when dealing with a large number
of replicas. Although cloud service providers claim to send replica files and the tag set
<T ,Fi> to multiple CSPs, even if all the content is sent to the same CSP, it will not affect
the normal execution of subsequent data integrity verification. However, if the CSP storing
all replica files experiences an outage, the user’s cloud replicas will be lost completely, and it
will not even be possible to recover the damaged replicas with the help of other replica files,
the consequences would be disastrous. Hence, when designing an integrity verification
scheme involving multiple replicas, precautions must be taken to prevent the cloud service
operator from storing all replicas on the same CSP to avoid irreparable losses to the users.

Based on the above considerations, in this article, we focus on the EHR data and aim to
solve the multi-replica synchronization integrity verification problem. The contributions
are summarized as follows: (1) We employ identity-based encryption (IBE) to generate
the private key and then construct HVT, effectively bypassing the overhead of public
key certificates. We combine symmetric encryption and masking technology to generate
duplicate EHR files. This method can keep storage safe and enable bad block recovery in the
event of replica corruption. (2) Considering that duplicate EHR files are stored in multiple
CSPs with diverse geographical locations, therefore, in our proposal, we introduce a crucial
entity known as the Cloud Server Manager (CSM) that can act as a ‘bridge’ between the
Patient and various CSPs. The CSM allocates storage servers for multiple copies of the
Patient EHR and records the allocation results in the storage distribution table (SDT).
In the public auditing phase, the CSM transmits the integrity challenge initiated by the
TPA to multiple CSPs and then aggregates the audit proofs returned by the multiple CSPs.
However, due to irresistible factors such as channel delay, CSPs in different geographical
locations may experience delays in returning audit proof in time. Thus, to ensure the
practical implementation, our proposal supports probability audit and provides a specific
description. (3) Since the CSPs are untrusted, under the given security model, our proposal
can effectively resist forgery attack, replace attack, replay attack, and collusion attack.
Lastly, the performance evaluation section validates the feasibility and effectiveness of our
scheme.
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Figure 1 The relationship between encrypted file, duplicate files and tags set.
Full-size DOI: 10.7717/peerjcs.1790/fig-1

The remaining sections of this paper are arranged as follows. Preliminaries introduce
the system model, design model, notations, and cryptographic knowledges. The next
section presents the system components and the security model. The probability audit
section describes the auxiliary data structures including the storage distribution table, fault
tolerance value, and result record table. Following that, we provide a detailed description
of the proposal. Subsequently, the paper presents the security analysis and performance
evaluation sections. The final section concludes this paper.

PRELIMINARIES
System model
Our proposal consists of five entities, and the model is shown in Fig. 2. (1) Patient:
considering the sensitivity and importance of EHRs data, the Patient produces multiple
replicas and uploads them tomultiple CSPs in diverse geographical locations and types. The
Patient expects that the security and integrity of the replicas can be guaranteed. (2) Cloud
Service Manager (CSM): our proposed scheme introduces an important and indispensable
entity named CSM, which is equivalent to the ‘intermediary’ between TPA and multiple
CSPs. It allocates storage servers for replica files of the Patient, transmits the integrity
challenge launched by the TPA to the multiple CSPs, and aggregates the audit proofs
returned by the CSPs. (3) Cloud Service Provider (CSP): the untrusted entity that provides
the Patient with data storage services. In the public auditing phase, the CSPs will respond
to the integrity challenge initiated by the TPA, calculate, and return the audit proof to the
CSM. (4) Private Key Generator (PKG): the trusted entity that generates a reliable private
key for the Patient according to its unique identifier. (5) Third-Party Auditor (TPA): the
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Figure 2 The systemmodel diagram.
Full-size DOI: 10.7717/peerjcs.1790/fig-2

trusted entity performing remote data integrity checks for duplicate files of the Patient
after obtaining the authorization.

Design model
Our proposal should achieve the following goals:

(1) Correctness: the correctness should include private key correctness and audit
correctness.

(a) Private key correctness: the private key generated by the PKG will only be accepted
after successfully passing the Patient’s correctness verification.

(b) Audit correctness: the correctness of the aggregation audit proof returned by the
CSM can be verified by the TPA. Note that if the FVT returned by the CSM is invalid, the
TPA will abort the integrity checking and notify the Patient immediately.

(2) Resist forgery/replace/replay attack: our proposal can effectively resist
forgery/replace/repay attack.

(3) Support probability audit: our proposal supports probabilistic detection based on
guaranteeing the storage security of duplicate files.

Notations
We give the notations used in the description of our scheme in Table 1.

Cryptographic knowledge
(1) Bilinear maps

Let G1, G2 be multiplicative cyclic groups with the order p, g is a generator of G1. A
bilinear map e :G1×G1→G2 satisfies the following properties:
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Table 1 Notations and descriptions. Symbols used in full text and their descriptions.

Notation Meaning

p One large prime
G1, G2 Multiplicative cyclic groups
g A generator of group G1

e A bilinear map: e :G1×G1→G2

Z ∗P A prime field with nonzero elements
H ,H1,H2 Cryptographic hash function
pp The system public parameter
ID The group user’s identity
SK ID The group user’s private key
mskID,mpkID The master secret key and master public key
F The Patient’s encrypted outsourced file
n The number of replicas
s The number of the CSP
σi The i-th block’s tag, 1≤ i≤ n

(a) Bilinearity: ∀u,v ∈G1 and ∀a,b∈Z∗P , e(u
a,vb)= e(u,v)ab;

(b) Non-degeneracy: e(g1,g2) 6= 1;
(c) Computable: there is an efficient algorithm to calculate e.
(2) Security assumptions
Computational Diffie-Hellman assumption. For unknown ∀a,b∈Z∗P , given g ,g a and

g b as input, output g ab ∈G1.
Definition 1 (CDH assumption). The advantage of a PPT (probabilistic polynomial

time) algorithm A in solving the CDH problem in G1 defined below is negligible:

AdvCDHA=Pr[A(g ,g a,g b)= g ab : a,b
R
←Z∗P ].

SYSTEM COMPONENTS AND SECURITY MODEL
System components
Our proposed scheme consists of nine algorithms: Setup, KeyGen, ReplicaGen, TagGen,
Challenge, ProofGen, ProofAgg, ProofVerify, Compensation. Each algorithm is described
as follows.

Setup (1k)→ (pp,mpk,msk) is the ‘‘System Initialization’’ algorithm run by the PKG.
It takes the security parameter k as input and outputs the system public parameter pp, the
master public key mpk and the master secret key msk.

KeyGen (pp,mpk,msk,ID)→ SKID is the ‘‘Private Key Generation’’ algorithm run by
the PKG. It takes the system public parameter pp, the master public key mpk, the master
secret key msk and Patient’s identifier ID as input, and outputs the private Patient key
SK ID.

ReplicaGen F ′→F is the ‘‘Replica Files Generation’’ algorithm run by the Patient. It
takes the outsourced EHR file as input and outputs the cloud duplicates.
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TagGen (F,pp,mpk,SKID)→ T is the ‘‘Tags Set Generation’’ algorithm run by the
Patient. It takes the duplicate files F, the system public parameter pp, the master public
key mpk and the private Patient key SK ID as input, and outputs the tags set for each
replica. Then, the Patient sends duplicates F and all tags sets T to the CSM and delete
the local storage. Following this, the CSM verifies the accuracy of all tag sets. Upon
successful verification, it proceeds to allocate them and upload them to the storage server.
Subsequently, the CSM records the allocation results in the Storage Distribution Table
(SDT).

Challenge is the ‘‘Launch Integrity Challenge’’ algorithm run by the TPA. The TPA
periodically generates the integrity challenge chal for multiple copies and sends them to
the CSM. Upon received, the CSM searches the SDT and transmits integrity challenge set
to the corresponding CSPs.

ProofGen is the ‘‘Audit Proof Generation’’ algorithm run by the CSPs. The CSPs receive
the challenge message, compute, and respond to the audit proofs to the CSM.

ProofAgg is the ‘‘Audit Proof aggregation’’ algorithm run by the CSM. After receiving
the responses, the CSM counts the number of audit proofs, sets the fault tolerance value
(FTV) ξ , calculates the aggregation audit proof Pagg , and then sends Pagg ,ξ to the TPA.

ProofVerify is the ‘‘Audit Proof Verification’’ algorithm run by the TPA. After receiving
the response from the CSM, the TPA searches the Result Record Table (RRT) to judge the
validity of the FVT. Once the FVT is illegal, or the check fails, the TPA aborts and notifies
the Patient. Otherwise, the TPA checks the correctness of the aggregation audit proof Pagg .

Compensation is the ‘‘Claim Compensation’’ algorithm. The loss or leakage of sensitive
information from the EHR cannot be tolerated, and the Patient claims compensation from
the cloud service operator after receiving a negative notification.

Remark 1: The responsibilities of the CSM are outlined as follows: (a) validate the
correctness of the tags set for each replica file. Only after successful verification, the CSM
allocates the storage servers for all copy files and documents the outcomes in the SDT. (b)
Upon receiving the integrity challenge launched by the TPA, consult the SDT and forward
it to the CSPs. (c) Compute the aggregation audit proof according to the audit proofs and
the FVT returned by the CSPs and then reply to the TPA.

Security model
In our proposal, untrustworthy CSPsmay launch the following three types of attackmodels.

(1) Forgery attack: During the public auditing phase, if the data block in the replica file
stored on the CSP has been damaged due to the CSP’s misbehavior, and this corrupted data
block is just challenged, then the CSP has to forge this data block and its corresponding
tag to pass the TPA’s integrity verification.

(2) Replace attack: During the public auditing phase, if the data block in the replica file
stored on the CSP has been damaged due to the CSP’s misbehavior, and this corrupted data
block is just a challenge, then the CSP has to replace this data block and its corresponding
tag with another intact one to pass the TPA’s integrity verification.

(3) Replay attack: During the public auditing phase, if the data block in the replica file
stored on the CSP has been damaged due to the CSP’s misbehavior, and this corrupted
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data block is just a challenge, then the CSP returns the audit proof that has been previously
checked to pass the TPA’s integrity verification.

PROBABILITY AUDIT
To realize probabilistic auditing, the proposed scheme should incorporate some auxiliary
data structures, which are described in this section.

Storage distribution table
Since duplicate EHR files are stored on multiple CSPs, the CSM should maintain a storage
distribution table (SDT) locally for easy storage management. One Patient corresponds to
one SDT, which is used to record the storage servers of each replica. The SDT consists of
three columns and its structure is illustrated in Table 2. Replica number (RN ) indicates
the serial number, where n(1≤ i≤ n) is the number of the copy files. File identifier (Fid) is
the replica identifier. Storage location (SL) indexes the storage location, where l(1≤ l ≤ s)
is the number of storage servers.

Remark 2: Take <RNi,Fidi,SLl > as an example to explain the usage of the SDT. RN i

denotes the ith replica, Fid i is the copy identifier, and SLl records the storage location. The
CSM will assign the CSP to the successfully verified replica and record the result in the
SDT.

Fault tolerance value
During the public auditing phase, the TPA executes the challenge-response protocol and
launches replica integrity verification. Upon receiving the message from the TPA, the CSM
searches the SDT, dispatches the integrity challenge chal to the CSPs, initiates a countdown
cd, and awaits the return of the audit proofs. However, due to the dispersed geographical
locations of the CSPs and variations in channel transmission performance, the response
times of different CSPs may differ significantly. Consider the following scenario. The CSM
transmits the integrity challenge chal to s CSPs and starts a countdown cd. A geographically
distant, yet responsive, CSP promptly computes and returns the audit proof upon receiving
the challenge. However, due to factors like channel transmission delay, the CSM has not
received the response from this CSP when the cd expires. In this situation, the CSM faces
two challenges: (1) Since the CSM has only received s-1 responses, the aggregation of audit
proofs cannot not complete. (2) The response delay is not intentionally caused by this
positive CSP, so it is unfair to directly conclude that it is malicious. Thus, to ensure the
feasibility in actual deployment, our proposal incorporates a fault-tolerant mechanism,
that is, enabling probabilistic auditing. We denote the fault tolerance value (FTV) by
ξ(1≤ ξ ≤ n), which also represents the number of audit proofs returned each time during
the public auditing. But note that we will not focus on how to determine the FVT, which
should be selected according to the actual deployment environment.

Result record table
Since CSPs are untrustworthy, if the results of each public auditing are gathered through
probabilistic audit, the security of the proposal will be weakened. Therefore, the TPA
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Table 2 The structure of SDT. The data structure of storage distribution table (SDT).

RN ID SL

1 Fid1 CSP2

2 Fid2 CSPl

. . . . . . . . .
n Fidn CSPs

Table 3 The structure of RRT. The data structure of result record table (RRT).

chal CR PC FTV

chal1 1 0 None
chal2 1 1 FVT2

chal3 0 1 FVT3

chal4 0 0 None
. . . . . . . . .

should record the contents of each check in the result record table (RRT) stored locally,
and its structure is shown in Table 3. Chal is an integrity challenge set generated by the
TPA. Check result (CR) shows the audit result, and probability checking (PC) indicates
whether it is a probabilistic verification; if so, the TPA needs write the FVT to the RRT.

To be exact, there are four situations in RRT: {{chal, CR = 1, PC = 0, FVT = None},
{chal, CR = 1, PC = 1, FVT = ξ}, {chal, CR = 0, PC = 1, FVT = ξ}, {chal, CR = 0, PC =
0, FVT = None }}, and we give a detailed discussion.
(1) {chal, CR = 1, PC = 0, FVT = None}:means that the aggregated audit proof returned

by the CSM has passed the TPA’s correctness verification, and this checking is not a
probabilistic verification.

(2) {chal, CR= 1, PC= 1, FVT= ξ}: means that the aggregated audit proof returned by the
CSM has passed the TPA’s correctness verification, but this checking is a probabilistic
verification. The FVT indicates the number of CSPs participating in this public auditing.

(3) {chal, CR = 0, PC = 1, FVT = ξ} or {chal, CR = 0, PC = 0, FVT = None}: Since CR
= 0, it means that the aggregated audit proof returned by the CSM has not passed
the TPA’ correctness verification. The TPA terminates the check and immediately
informs the Patient, and then the Patient runs the Compensation algorithm to claim
compensation from the cloud service operator. And the highlighted part in Table 3
shows illegal situations.
Remark 3: Emphasize that for audit security, the number of consecutive CSM return

probabilistic audit needs to be limited, for example: only 3 consecutive returns are allowed.
That is, when the situation {chal, CR = 1, PC = 1, FVT = ξ} occurs in the RRT for the
fourth time, the TPA will no longer proceed with the follow-up process and immediately
inform the Patient.

Remark 4: The TPA will record the relevant information from each check in to the RRT
in earnest, and the RRT can be reset at intervals during the actual deployment to save
storage space.
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In summary, in the public auditing phase, the TPA initiates integrity verification and
dispatches the challenge message to the CSM. Then, the CSM transmits the challenge set
chal to multiple CSPs according to the SDT and starts a countdown cd. Upon completion
of the cd, the CSM calculates the aggregation audit proof Pagg based on the audit proofs and
FVT replied by the CSPs. Following this, the TPA assesses whether to stop the correctness
verification according to the FVT returned by the CSM. If affirmative, the TPA informs
the Patient; if not, the TPA proceeds to verify the Pagg ’s correctness and updates the RRT.
Regardless of the verification outcome, the TPA records all information in the RRT.

The proposed scheme
A multi-replicas integrity checking scheme with supporting probability audit for cloud-
based IoT are detailed introduced in this section.

Setup
The PKG chooses two multiplicative cyclic groups G1 and G2 with prime order p, and g is a
generator ofG1. ThePatient selects cryptographic hash functions:H ,H1 : 0,1∗→G1 and the
bilinear map e :G1×G1→G2. The PKG selects elements x ∈Z∗P , and computes the master
secret key msk = g x1 and master public key mpk = g x . The PKG randomly picks values
u,µ∈G1, publishes the system public parameter pp= (G1,G2,p,e,g ,g1,H ,H1,u,µ,mpk)
and holds the master secret key msk= g x1 private.

KeyGen
Upon receiving the key generation request from the Patient, the PKG performs the
following operations: The PKG picks r1 ∈Z∗P and computes R1= g r1 . The PKG calculates
R2= g x1 · (u ·H (ID))r1 according to Patient’s identifier ID∈Z∗P . And then the PKG returns
SK = (R1,R2) to the Patient. After receiving the private key SK, the Patient verifies the
correctness according to formula (1):

e(R2,g )
?
= e(g1,mpk) ·e(u ·H (ID),R1). (1)

If (1) equation holds, accept; otherwise, reject it and inform to retransmit.

ReplicaGen
To generate duplicate files, we utilize the symmetric encryption algorithm to obtain the
encrypted file and then use PRP to obtain blinding factors corresponding to replica data
blocks. That is, the Patient secretly chooses the encryption key K 1 and the PRP key K 2.
Given that the outsourced file is F ′, the Patient encrypts it using a symmetric encryption
algorithm (AES, DES, etc.) denoted as F = Ek1(F ′). The Patient divides the encrypted
file F into m blocks as F = b′j1≤j≤m, where m represents the number of data blocks. For

each data block b′j(1≤ j ≤m), the Patient calculates the blinding factor as $ij =ψk2(i||j),
where i represents the number of the duplicates and ψk2 is the PRP with key k2, and
computes the replica block as bij = b′j+$ij . Then, the Patient obtains the replica files as
F= Fi1≤i≤n= bij1≤i≤n,1≤j≤m.
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TagGen
Since multiple copies are stored on different CSPs in our proposal, the tags set should be
generated for each one. The Patient sets the replica identifier Fidi ∈Z∗P , computesH1(Fidi||i)
and selects a random value r2 ∈ Z∗P . For each block bij(1≤ i≤ n,1≤ j ≤m), the Patient
computes tag as σij =R2 ·(H1(Fidi||i) ·µbij )r2 = g x1 ·(u ·H (ID))r1 ·(H1(Fidi||i) ·µbij )r2 . Here,
the tags set of each replica is denoted as Ti= σij1≤i≤n,1≤j≤m and all tags sets are T=Ti1≤i≤n.
The Patient sends duplicate file and tags sets F,T to the CSM and deletes the local storage.
Subsequently, the CSM check all T ’s correctness, allocates CSP, records the allocation
result in SDT, and uploads files.

Challenge
The TPA periodically performs remote data integrity checking, records audit results in the
RRT, and informs the Patient when necessary. The TPA picks a set Q with c elements,
whereQ⊆ [1,m], and generates a set of random value vj ∈Z∗P for each j ∈Q. Then the TPA
sends chal = (j,vj)j∈Q to the CSM. After receiving the message, the CSM searches the SDT,
sends the integrity challenge chal = (j,vj)j∈Q to the CSPs, and sets a countdown cd.

ProofGen
Upon receiving the integrity challenge, the CSPs compute the block proofλi=

∑
(j,vj )∈Qvjbij

andthe tag proof σi =
∏

(j,vj )∈Qσ
vj
ij , and then reply to the CSM with the audit proofs

Pi= λi,σi1≤i≤n.

ProofAgg
When the response from the CSPs is obtained, the CSM counts the number of audit
proofs, updates FTV ξ , and aggregates the block proofs λagg =

∑ξ
i=1λi(1≤ i≤ ξ) andthe

tag proofs σagg =
∏ξ

i=1σi(1≤ i≤ ξ). Then the CSM returns the aggregation audit proof
Pagg = λagg ,σagg andFVT ξ to the TPA.

ProofVerify
After receiving the response, the TPA looks for the FVT to assess if the FVT complies with
the requirements. If the aggregation audit proof returned by the CSM is already the fourth
probability verification, the TPA immediately informs the Patient and terminates the
verification. Otherwise, the TPA continues and checks the correctness of the aggregation
audit proof through Eq. (2):

e(σagg ,g )= e(g1,mpk)
∑

(j,vj )∈Q
vj
·e(u ·H (ID),g r1)

∑
(j,vj )∈Q

vj

·e

(
ξ∏
i=1

(H1(Fidi||i))
∑

(j,vj )∈Q
vj
·µλagg ,g r2

)
. (2)

If (2) holds, returns ‘1’, which means that the integrity verification of duplicate files is
successful and then the TPA records the AR and PC into the RRT. Otherwise, returns ‘0’,
the TPA informs the Patient that the duplicate file was damaged, and the Patient runs the
Compensation algorithm to claim compensation from the cloud service operator.
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Compensation
As mentioned above, the Patient runs this algorithm to claim against the cloud service
operator when integrity checking fails.

Remark 5: Actually, when replica damage is detected, due to the blinding factor added
to the ReplicaGen algorithm, a divide-and-conquer method can be used to recover bad
blocks. The detailed process is no longer given here.

SECURITY ANALYSIS
Theorem 1 (Private key correctness): The private key generated by the PKG will only be
accepted after successfully passing the Patient’s correctness verification.

Proof : In KeyGen algorithm, after receiving the private key SK, the Patient verifies the
correctness by checking the validity of formula (1):

e(R2,g )= e(g x1 · (u ·H (ID))r1,g )

= e(g x1 ,g ) ·e((u ·H (ID))r1,g )

= e(g1,g x) ·e(u ·H (ID),g r1)

= e(g1,mpk) ·e(u ·H (ID),R1).

If Eq. (1) holds, the Patient accepts and uses it as the private key. Otherwise, reject it
and inform to retransmit.

Theorem 2 (Audit correctness): Only when the CSPs correctly store the Patient’s
replicas file, during the public auditing phase, the aggregation audit proof Pagg generated
by the CSM can pass the TPA’s correctness verification.

Proof : In the ProofVerify algorithm, the TPA validates the correctness of the aggregation
audit proof by checking the formula (2):

e(σagg ,g )= e

(
ξ∏
i=1

σi,g

)
= e

 ξ∏
i=1

 ∏
(j,vj )∈Q

σ
vj
ij

,g


= e

 ξ∏
i=1

 ∏
(j,vj )∈Q

(R2 · (H1(Fidi||i) ·µbij )r2)vj

,g


= e

 ξ∏
i=1

 ∏
(j,vj )∈Q

R
vj
2 · ((H1(Fidi||i) ·µbij )r2)vj

,g


= e

 ξ∏
i=1

∏
(j,vj )∈Q

R
vj
2 ·

ξ∏
i=1

∏
(j,vj )∈Q

(H1(Fidi||i) ·µbij )r2vj ,g


= e

 ξ∏
i=1

∏
(j,vj )∈Q

R
vj
2 ,g

 ·e
 ξ∏

i=1

∏
(j,vj )∈Q

(H1(Fidi||i) ·µbij )r2vj ,g


= e

 ∏
(j,vj )∈Q

(g x1 · (u ·H (ID))r1)vj ,g

 ·e
 ξ∏

i=1

∏
(j,vj )∈Q

(H1(Fidi||i) ·µbij )vj ,g r2
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= e

 ∏
(j,vj )∈Q

(g x1 )
vj ,g

 ·e
 ∏

(j,vj )∈Q

(u ·H (ID))vj ,g r1


·e

 ξ∏
i=1

 ∏
(j,vj )∈Q

(H1(Fidi||i))vj ·
∏

(j,vj )∈Q

µbijvj

,g r2


= e
(
g
∑

(j,vj )∈Q
vj

1 ,g x
)
·e
(
(u ·H (ID))

∑
(j,vj )∈Q

vj
,g r1

)
·e

(
ξ∏
i=1

(H1(Fidi||i))
∑

(j,vj )∈Q
vj
·µ

∑
(j,vj )∈Q

bijvj
,g r2

)
= e(g1,mpk)

∑
(j,vj )∈Q

vj
·e(u ·H (ID),g r1)

∑
(j,vj )∈Q

vj

·e

(
ξ∏
i=1

(H1(Fidi||i))
∑

(j,vj )∈Q
vj
·

ξ∏
i=1

µλi,g r2
)

= e(g1,mpk)
∑

(j,vj )∈Q
vj
·e(u ·H (ID),g r1)

∑
(j,vj )∈Q

vj

·e

(
ξ∏
i=1

(H1(Fidi||i))
∑

(j,vj )∈Q
vj
·µ

∑ξ
i=1λi,g r2

)
= e(g1,mpk)

∑
(j,vj )∈Q

vj
·e(u ·H (ID),g r1)

∑
(j,vj )∈Q

vj

·e

(
ξ∏
i=1

(H1(Fidi||i))
∑

(j,vj )∈Q
vj
·µλagg ,g r2

)
.

If (2) holds, it indicates that the integrity verification of duplicate files is successful;
otherwise, the TPA informs the Patient.

Theorem 3 (Resist forgery attack): Our proposed scheme can effectively resist forgery
attack.

Proof
Suppose that the lth data block of the κth replica has been corrupted, and this data block
is just challenged by the TPA during the public auditing phase. As a result, the CSP is
compelled to fabricate both the data block and its associated tag in an attempt to deceive
the TPA’s verification. Denote the intact block and tag as (bκ l ,σκ l)1≤κ≤n,1≤l≤m, and the
forged block and tag as (δκ l ,σ ′κ l). Note that, in accordance with the mathematical structure
of the tag in our proposed scheme, the CSP can only fabricate the corresponding tag after
successfully forging the data block. Then we proceed to analyze the probability that the
CSP successfully forges both the data block and its corresponding tag.

Analysis
(1) CSP forges data block

In the ReplicaGen phase, to obtain the encrypted file, our proposed scheme utilizes the
symmetric encryption algorithm with the key K1 ∈Z∗P . And to obtain blinding factors $κ l

corresponding to replica data blocks, our proposed scheme uses PRP with the key K2 ∈Z∗P .
So, it means that if the CSP can forge a valid data block bκ l , it must be able to successfully
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guess K 1 and K 2 with non-negligible probability. But the probability of guessing that
K 1 and K 2 are both 1/p. Furthermore, it implies that the probability of guessing K 1 and
K 2 at the same time is 1/p×1/p= 1/p2, which can be ignored since p is a large prime.
Therefore, the probability that the CSP successfully forges a valid data block is 1/p2, which
is negligible.

(2) CSP forges tag
After the CSP successfully guesses the block with the probability of 1/p2, it further

attempts to forge the corresponding tag. The tag of valid data block bκ l is denoted as

σκ l =R2 · (H1(Fidi||i) ·µbκ l )r2 = g x1 · (u ·H (ID))r1 · (H1(Fidi||i) ·µbκ l )r2 . (3)

The tag of forged block δκ l denoted as

σ ′κ l =R′2 · (H2(Fidi||i) ·µδκ l )r2 = g x
′

1 · (u ·H (ID))r1 · (H2(Fidi||i) ·µδκ l )r2 . (4)

If the CSP can successfully forge the tag, then formula (3) is equal to formula (4), and
we have the following:

1=
σij

σ ′ij
=

g x1 · (u ·H (ID))r1 · (H1(Fidi||i) ·µbij )r2

g x ′1 · (u ·H (ID))r1 · (H1(Fidi||i) ·µδij )r2
=

g x1 ·µ
bij r2

g x ′1 ·µ
δij r2

. (5)

If Eq. (5) holds, it can infer that g x1 ·µ
bij r2 = g x

′

1 ·µ
δij r2 holds and further, it means that

g x1 = g x
′

1 holds. Actually, in the Setup phase, we know that x ∈ Z∗P is randomly picked by
the PKG, and g x1 is the master secret key that its mathematical structure and content are
both kept secret and known only to the PKG. Since the PKG is the trusted entity, it means
that g x1 is not forgeable. That is, even if the CSP can successfully forge a valid data block
with the probability of 1/p2, it cannot forge the corresponding tag.

Thus, from the above series of analysis, it can be seen that our proposed scheme can
effectively resist the forgery attack.

Theorem 4 (Resist replace attack): Our proposed scheme can effectively resist the
forgery attack.

Proof
Suppose that the lth data block of the κth replica has been corrupted, and this data block is
just challenged by the TPA during the public auditing phase. Therefore, the CSP replaces
the challenged data block and tag with another in an attempt to pass the TPA’s verification.
The analysis is similar to Theorem 3, so is omitted here.

Theorem 5 (Resist replay attack): Our proposed scheme can effectively resist forgery
attack.

Proof
Suppose that the lth data block of the κth replica has been corrupted, and this data block is
just challenged by the TPA during the public auditing phase. Therefore, the CSP returns the
audit proof that has been previously checked in an attempt to pass the TPA’s verification.
The analysis is similar to Theorem 3, so is omitted here.
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Table 4 Notations andmeanings.Notations and meanings used in quantitative analysis and compari-
son.

Notation Meaning Notation Meaning

H One hash operation n The number of replica file
Mul One multiplication operation m The number of data block
P One pair operation δ FVT
Exp One exponentiation operation c The number of the challenged block
E One encryption operation |p| The size of an element in Z ∗P or G1

|q| The size of an element in Zq – –

RESULTS
Quantitative analysis and comparison
We first define the symbols used and their meanings as shown in Table 4. To be fair, we set
the number of data sectors to 1. Here, we no longer take the addition and PRP operation
into account, because they are time-saving in actual deployment. Note that δ represents
the fault tolerance value and index the number of audit proofs collected during the audit
process.

Computation overhead
The computational overhead comparison with the scheme (Li, Yan & Zhang, 2021) is
shown in Table 5. The process begins with the Patient encrypting the outsourced file,
dividing the data blocks, and applying a random mask for blind operation. This entails
time-saving PRP and addition operations, which can be ignored. That is, the overhead
of the ReplicaGen stage amounts to just one encryption operation. To generate the tag
set, the Patient sets the replica identifier Fid and executes the hash operation, and then
calculates the tag for each block. As a result, the total computational overhead of the
TagGen stage is denoted by mnH +2mnMul+2mnExp. In the ProofGen phase, the CSPs
compute and return the block proof λi and tag proof σi to CSM. Among them, the
calculation of λi requires c multiplication operations, and the calculation of σi requires
nc exponentiation operation and n (2c-1) multiplication operations, so the total overhead
is ncExp+n(2c−1)Mul . During the ProofAgg phase, the CSM aggregated audit proof
according to the number of block proofs and tag proofs returned by the CSPs. Since
the time-consuming addition operation is not considered, the cost is (ξ − 1)Mul . To
verify the correctness of the aggregation audit proof, in the ProofVerify phase, the TPA
leverages FVT to check whether formula (2) holds and the overall calculation cost is
5P+ (ξ+1)H+ (ξ+3)Exp+ (ξ+1)Mul .

Communication overhead
Table 6 presents a comparison of the communication costs incurred in three stages between
our proposal and the scheme (Li, Yan & Zhang, 2021). Note that the data fragmentation
technique is employed in Scheme (Li, Yan & Zhang, 2021), so s represents the number of
the data sector. During the integrity challenge phase, the CSM sends chal to n CSPs. Since
each challenge occupies c(|p|+|q|), the communication cost for this phase is cn(|p|+|q|).
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Table 5 Computational overhead comparison.

Schemes Phase

ReplicaGen TagGen ProofGen ProofAgg ProofVerify

Scheme
(Li, Yan
& Zhang,
2021)

nE mnH + 3mnMul +
2mnExp

cExp+(cn+c−1)Mul nMul 3P + (nc + 1)H +
2(nc+1)Mul+ncExp

Our
scheme

E mnH + 2mnMul +
2mnExp

ncExp+n(2c−1)Mul (ξ−1)Mul 5P+ (ξ +1)H + (ξ +
3)Exp+ (ξ+1)Mul

Table 6 Communication overhead comparison.

Schemes Challenge Response from CSPs Response to TPA

Scheme (Li, Yan & Zhang, 2021) n(3|p|+ log2c) ξ(|p|+ s|p|) (3+2s)|p|
Our scheme cn(|p|+|q|) 2ξ |p| 3|p|

After receiving the verification tasks, the CSPs compute and return the aduit proof. Due to
the adoption of probabilistic audting, the number of aduit proofs returned is denoted as ξ ,
and this phase incurs the communication cost of 2ξ |p| bits. The CSM sends the aggregation
audit proof along with FVT to the TPA, resulting in a total communication cost of 3|p|
bits. From Table 6, it can be observed that the communication costs incurred in all three
stages of our scheme are lower than those of the scheme (Li, Yan & Zhang, 2021).

Experiments
We run a series of experiments on the 2.80 GHz Intel Core i7 processor and 16.0GB
RAM. All the experiments use the Type A with the free Pairing-Based Cryptography (PBC)
Library. In the implementation, we selected the file ‘‘a.param’’ as the parameter for the
free Pairing- Based Cryptography (PBC) Library. In the experiment, we created a 4M sized
data file, with each data block set to a size of 4KB.

In the experimental section, a series of comparisons were conducted between the
scheme (Li, Yan & Zhang, 2021) and our proposal. It can be seen from Fig. 3 that the cost
incurred in the replica generation stage is similar for both schemes, increasing linearly with
the number of replicas between 3s and 4.5s. Figure 4 illustrates that the time required to
generate the tag set does not increase with the number of replicas for both schemes, but
our proposal requires significantly less time than the scheme (Li, Yan & Zhang, 2021). In
the audit proof generation phase, as shown in Fig. 5, our scheme takes more time due
to the expensive modular exponentiation operations compared to the scheme (Li, Yan &
Zhang, 2021). In the audit proof verification stage, as shown in Fig. 6, the scheme (Li, Yan
& Zhang, 2021) exhibits significantly higher time consumption than our proposal, which
is consistent with the analysis results in Table 5.

DISCUSSION
This article proposes amulti-replica integrity verification scheme that supports probabilistic
auditing, taking into account the context of the Internet of Things (IoT) and shared
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Figure 3 Computation cost of replicas generation. The red line shows the change trend of replica gener-
ation time of our scheme as the number of replicas increases. The blue line shows the change trend of the
copy generation time of scheme (Li, Yan & Zhang, 2021) as the number of copies increases.

Full-size DOI: 10.7717/peerjcs.1790/fig-3

Figure 4 Computation cost of tag generation. The red line shows the trend of tag generation time of our
scheme as the number of replicas increases. The blue line shows the change trend of the tag generation
time of scheme (Li, Yan & Zhang, 2021) as the number of replicas increases.

Full-size DOI: 10.7717/peerjcs.1790/fig-4
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Figure 5 Computation cost of proof generation. The red line shows the trend of audit proof generation
time in our scheme as the number of replicas increases. The blue line shows the change trend of the audit
proof generation time of scheme (Li, Yan & Zhang, 2021) with the increase of the number of replicas.

Full-size DOI: 10.7717/peerjcs.1790/fig-5

Figure 6 Computation cost of proof verification. The red line shows the trend of audit proof verifica-
tion time of our scheme as the number of replicas increases. The blue line shows the change trend of the
audit proof verification time of scheme (Li, Yan & Zhang, 2021) with the increase of the number of copies.

Full-size DOI: 10.7717/peerjcs.1790/fig-6
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healthcare. The article begins by analyzing critical issues in existing multi-replica integrity
verification schemes. The proposed scheme aims to address the problem of synchronization
verification of EHR replica files on CSPs located in different geographical locations. We
introduce a novel approach called probabilistic auditing, and based on IBE, we generate
private keys and construct an HVT, effectively avoiding the overhead of using public key
certificates. Under the CDH assumption, the proposed scheme has been proven to be secure
and can effectively withstand forgery, replace, and replay attacks. Theoretical analysis and
experimental results demonstrate the efficiency and practicality of our scheme. However,
when verifying the integrity of replicas on different CSPs, there will inevitably be a trade-off
between accuracy and computational or communication costs. In future work, we will
focus on addressing this issue and identify effective measures to strike a balance between
cost and efficiency.
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