
Submitted 28 June 2023
Accepted 11 December 2023
Published 8 January 2024

Corresponding author
Kazuhisa Fujita,
kazu@spikingneuron.net

Academic editor
Muhammad Aleem

Additional Information and
Declarations can be found on
page 31

DOI 10.7717/peerj-cs.1789

Copyright
2024 Fujita

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

An efficient and straightforward online
vector quantization method for a data
stream through remove-birth updating
Kazuhisa Fujita
Komatsu University, Komatsu, Ishikawa, Japan

ABSTRACT
The growth of network-connected devices has led to an exponential increase in
data generation, creating significant challenges for efficient data analysis. This data
is generated continuously, creating a dynamic flow known as a data stream. The
characteristics of a data stream may change dynamically, and this change is known as
concept drift. Consequently, amethod for handling data streamsmust efficiently reduce
their volume while dynamically adapting to these changing characteristics. This article
proposes a simple online vector quantization method for concept drift. The proposed
method identifies and replaces units with low win probability through remove-birth
updating, thus achieving a rapid adaptation to concept drift. Furthermore, the results
of this study show that the proposed method can generate minimal dead units even
in the presence of concept drift. This study also suggests that some metrics calculated
from the proposed method will be helpful for drift detection.

Subjects Computer Networks and Communications, Data Mining and Machine Learning, Data
Science, Neural Networks
Keywords Data stream, Self organizing map, Vector quantization

INTRODUCTION
In today’s world, an enormous number of devices, from computers to Internet of Things
(IoT) gadgets, are constantly connected to the Internet, sending a continuous stream of
data to server computers. A continuous generation of data that flows like a river into
a server is called a data stream (Ding et al., 2015). Since the volume of an accumulated
data stream is too large to store (Gama et al., 2014), we need preprocessing to extract its
synopsis, such as vector quantization, to handle it effectively (Alothali, Alashwal & Harous,
2019). This article proposes a new approach of an online vector quantization method for a
data stream to reduce the data size and store the features of a data stream.

In many real-world scenarios, we cannot assume that a dataset is static (Ramírez-Gallego
et al., 2017). Instances of a data stream will evolve (Zubaroğlu & Atalay, 2021), meaning
that not only is the data continuously generated, but its properties can also change. This
phenomenon is known as concept drift. A quantization method for concept drift must be
able to extract new features as the characteristics of the data stream change. Therefore,
we need a method that can resize the data and automatically adapt to changes in the
characteristics of the data stream.

How to cite this article Fujita K. 2024. An efficient and straightforward online vector quantization method for a data stream through
remove-birth updating. PeerJ Comput. Sci. 10:e1789 http://doi.org/10.7717/peerj-cs.1789

https://peerj.com/computer-science
mailto:kazu@spikingneuron.net
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1789
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj-cs.1789

Developing a machine learning method for data streams with concept drift is a new
computational challenge (Sultan, 2022) because themethod needs to fulfill four capabilities:
avoidance of storing data points, feature extraction, flexibility, and single pass. The method
should avoid storing whole data points (Beyer & Cimiano, 2013) because the accumulated
data is enumerated, so the method must extract the features of the data and store them
instead. The distribution of a data stream will evolve, which can degrade the model’s
performance if it does not adapt to these changes. Therefore, the method should be able
to flexibly extract new features on the fly. In addition, since data streams are potentially
unbounded and ordered sequences of instances (Zubaroğlu & Atalay, 2021), the method
should continuously update the extracted features or the model with new data using the
latest information. Batch algorithms are not ideal for dynamically changing data, so the
algorithmmust be capable of continuous online (single-pass) learning (Smith & Alahakoon,
2009).

This article proposes improved online vector quantization methods for a data stream.
Our methods are designed to quickly adapt to the evolution of the data stream with
concept drift. Specifically, this study focus on remove-birth (RB) updating to improve
online quantization methods for concept drift.

The inspiration for the RB updatingmechanism is derived from the death-birth updating
concept originally proposed by Ohtsuki et al. (2006) for an evolutionary game on a graph.
This concept revolves around the random selection and elimination of an individual from
a node, creating an empty node. A new individual is then introduced to fill this node,
inheriting the characteristics or strategies of a neighboring node.

RB updating consists of removing units (reference vectors) far from the current data
distribution and creating new units around the units on the distribution. This procedure
results in a simple and efficient online vector quantization method for data streams. Using
a reliable metric to determine whether a unit should be removed is critical for RB updating.
In this study, the win probability of a unit is used as the metric. Notably, the win probability
is not affected by the value range of data. As a result, using the win probability as the metric
allows us to efficiently decide whether to remove a unit even when the value range of the
data changes due to concept drift.

This study proposes three simple online vector quantization methods for data
streams, which are online k-means (MacQueen, 1967), Kohonen’s self-organizing maps
(SOM) (Kohonen, 1982), and neural gases (NG) (Martinetz & Schulten, 1991) applied RB
updating, named online k-means with RB updating (OKRB), SOM with RB updating
(SOMRB), and NG with RB updating (NGRB), respectively. Online k-means is an online
version of k-means. SOM is a competitive learning method used for cluster analysis,
data visualization, and dimensionality reduction. NG, an alternative to SOM, is used for
vector quantization and data representation as a graph. All three methods are online
(incremental) learning techniques suitable for data streams. However, online learning
alone is not sufficient to handle data streams, which need mechanisms to forget outdated
data and adapt to the latest state of nature (Gama, 2010). Online k-means, SOM, and NG
need to be improved because their parameters decay with iterations and they cannot adapt
to the latest state of the data. This problem is resolve by RB updating. This study shows that

Fujita (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1789 2/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1789

OKRB, SOMRB, and NGRB exhibit satisfactory performance in vector quantization and
can quickly adapt to concept drift. Thus, the proposed methods can adapt to concept drift
by using RB updating. Portions of this text were previously published as part of a preprint
(https://export.arxiv.org/abs/2306.12574).

CONCEPT DRIFT
In most real-world applications, a data stream is not strictly stationary, which means
that its concept could change over time (Gama, 2010). This unanticipated evolution of
the statistical properties of a data stream is known as concept drift. Concept drift refers
to situations where the underlying patterns or distributions of the data stream evolve,
resulting in unexpected changes in the statistical properties (Zubaroğlu & Atalay, 2021).

Ramírez-Gallego et al. (2017) have classified concept drift into four types: sudden,
gradual, incremental, and recurring. Sudden concept drift refers to sudden changes in
the statistical properties of a data stream. Gradual concept drift is characterized by an
evolution in which the number of data points generated by a data stream with previous
properties gradually decreases, while those with new properties gradually increase over
time. Incremental concept drift involves the step-by-step transformation of the statistical
properties of a data stream. Recurring concept drift involves the cyclical change of a data
stream between two or more characteristics. More details about these types of concept drift
can be found in Zubaroğlu & Atalay (2021).

RELATED WORK
K-means (MacQueen, 1967; Lloyd, 1982) is the simplest and most well-known clustering
method. K-means has gained widespread recognition and is considered one of the top
ten algorithms used in data mining (Wu et al., 2007). Its popularity is due to its ease
of implementation and efficient performance (Haykin, 2009). K-means is also a useful
vector quantization method because it transforms a dataset into a set of centroids. The
typical k-means algorithm is the Lloyd algorithm (Lloyd, 1982), a well-known instance
of k-means that uses batch learning. Online k-means, also known as sequential k-means
or MacQueen’s k-means (MacQueen, 1967), uses online learning. In particular, online
k-means can be applied to quantization for data streams because it is not limited by the
size of the data using online learning.

The most famous and widely used self-organizing map algorithm is Kohonen’s self-
organizing map (SOM) (Kohonen, 1982). This method represents an input dataset as units
with a weight vector called the reference vector. The SOM can project multidimensional
data onto a low-dimensional map (Vesanto & Alhoniemi, 2000). More specifically, the
low-dimensional map is typically a two-dimensional grid because it is easy to visualize
the data (Smith & Alahakoon, 2009). SOM is essentially to perform topological vector
quantization of the input data to reduce the dimensionality of the input data while
preserving as much of the spatial relationships within the data as possible (Smith &
Alahakoon, 2009). Because of these capabilities, SOM is widely used in data mining,
especially in unsupervised clustering (Smith & Alahakoon, 2009). The versatility of SOM

Fujita (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1789 3/35

https://peerj.com
https://export.arxiv.org/abs/2306.12574
http://dx.doi.org/10.7717/peerj-cs.1789

is demonstrated by its use in a wide range of applications, such as skeletonization (Singh,
Cherkassky & Papanikolopoulos, 2000), data visualization (Heskes, 2001), and color
quantization (Chang et al., 2005; Rasti, Monadjemi & Vafaei, 2011).

Neural gas (NG), proposed by Martinetz & Schulten (1991), is one of the SOM
alternatives. With the ability to quantize input data and generate reference vectors, NG
constructs a network that reflects the manifold of the input data. One of its good features
is its independence from the range of values of data. However, NG needs to improve
when dealing with data streams. The root of NG’s problems with data streamslies in its
time-decaying parameters. While this decay helps NG’s network fit the input data more
accurately, it reduces its flexibility over time. Thus, in scenarios where the characteristics
of the data suddenly change during training, NG cannot adjust its network accordingly.
This inherent inflexibility makes NG unsuitable for data stream applications. In addition,
maintaining static parameters in NG will result in the creation of dead units that have
no nearest data point. In particular, NG with non-decaying parameters tends to create
dead units when reference vectors are distant from the data. These characteristics pose
significant barriers to the application of NG to data streams.

Growing neural gas (GNG) (Fritzke, 1994) is also a kind of SOM alternative (Fiss̃er, Faigl
& Kulich, 2013) and can find the topology of an input distribution (García-RodríGuez et
al., 2012). GNG can also quantize input data and create reference vectors from data.
GNG changes the network structure by increasing the number of neurons during
training. This makes the network remarkably flexible and reflective of the data structure.
GNG has a wide range of applications, including topology learning, such as landmark
extraction (Fatemizadeh, Lucas & Soltanian-Zadeh, 2003), cluster analysis (Canales &
Chacón, 2007;Costa & Oliveira, 2007; Fujita, 2021), reconstruction of 3Dmodels (Holdstein
& Fischer, 2008), object tracking (Frezza-Buet, 2008), extraction of the two-dimensional
outline of an image (Angelopoulou, Psarrou & García-Rodríguez, 2011; Angelopoulou et al.,
2018), and anomaly detection (Sun, Liu & Harada, 2017).

The vector quantization methods discussed previously, including k-means, SOM, NG,
and GNG, are effective for static data processing. However, they face challenges when
applied to non-stationary data, such as data streams. To overcome this limitation, much
research has been devoted to developing both clustering and vector quantization methods
specifically designed for data streams.

Several stream k-means methods have been proposed. Incremental k-means (Ordonez,
2003) is a binary data clustering method based on k-means. StreamKM++ (Ackermann et
al., 2012) is based on k-means++ (Arthur & Vassilvitskii, 2007), which improves the initial
centroid problem of k-means. These methods can store sufficient statistics and extract
features from the entire dataset, even though the methods use a portion of the data at each
step. However, these methods are designed to cluster large datasets on a computer with
small memory, and they do not assume that the characteristics of the data streams change
during training. Thus, they may not be able to capture the feature of a data stream with a
new property because they retain the statistical properties of the old data.

Several researchers have improved self-organizing maps (SOM) and growing neural
gas (GNG) for data stream analysis. Smith’s GCPSOM (Smith & Alahakoon, 2009) is an

Fujita (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1789 4/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1789

online SOM algorithm suitable for large datasets. It incorporates the forgetting factor
and the growing network that allows the network to let go of old patterns and adapt
to new ones as they emerge. However, the increased flexibility and adaptability come at
the cost of increased complexity and a larger parameter set than traditional Kohonen’s
SOM. Ghesmoune, Azzag & Lebbah (2014) and Ghesmoune, Lebbah & Azzag (2015) have
proposed G-stream, an adaptation of GNG designed for data stream clustering. G-stream
incorporates a reservoir to accumulate outliers and stores the timestamps of data points
that belong to a time window. Although these features enhance the precision of the
model, they introduce more hyperparameters. Silva & Marques (2015) have introduced
a variant of SOM for data streams, called ubiquitous SOM, which uses the average
quantization error over time to estimate learning parameters. This approach allows the
model to maintain continuous adaptability and handle concept drift in multidimensional
streams. The output is a meticulously distributed two-dimensional grid, indicative of the
algorithm’s sophisticated data mapping capabilities. However, ubiquitous SOM assumes
that all attributes are normalized. This may undermine its effectiveness in scenarios with
significant fluctuations in data value ranges.

Data stream analysis often uses a two-step approach consisting of an online phase
followed by an offline phase. In the online phase, data is assigned to microclusters, which
are a summary of the data. This is the data abstraction step. The offline phase produces
the clustering result. An example of this method is CVD-stream (Mousavi et al., 2020), an
online-offline density-based clustering method for data streams.

Many researchers have attempted to improve vector quantization methods for data
streams. However, these improvements often introduce additional hyperparameters,
increasing the complexity of the methods. Methods using a growing network can efficiently
adapt to a data stream but not maintain a static number of units unless network pruning
is performed. Their applications are limited because a postprocessing method such as
spectral clustering often requires a fixed number of units (reference vectors). In contrast,
our proposed method blends simplicity with adaptability to a data stream using RB
updating. RB updating focuses on the win probabilities of units to decide which unit
to remove or add. We improve the original vector quantization methods with only two
additional hyperparameters using RB updating to make them adaptable to a data stream.
RB updating allows for easy implementation and tuning of the proposed method.

ONLINE QUANTIZATION METHODS WITH REMOVE-BIRTH
UPDATING
In this study, remove-birth updating (RB updating) is applied to three different online
quantization methods: online k-means, SOM, and NG. This approach allows us to quickly
adapt to changes in the distribution of the data. Online k-means is a type of k-means that
uses online learning, while SOM can project a low-dimensional space. NG can extract the
topology of the input as a graph. By integrating RB updating with these methods, we will
achieve data quantization, dimension reduction, and topology extraction for a data stream.

Fujita (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1789 5/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1789

A B C Remove

Create

Unit with
the most wins

Figure 1 This figure provides a schematic representation of the remove birth (RB) updating process.
Each dot represents a data point, while the open circles represent units. (A) The initial distribution of data
points and their corresponding units. (B) The change in data distribution and the introduction of new
data points, marked in red, resulting from concept drift. At the same time, the units retain their positions
from the initial data distribution. (C) The removal of the least frequent winning unit, marked by the blue
dotted circle. A new unit, marked by the red dotted circle, is then introduced around the most frequent
winning unit, marked by the red-filled circle.

Full-size DOI: 10.7717/peerjcs.1789/fig-1

Metric for RB updating
Concept drift results in a change in the characteristics of a data stream. As a result of this
change, some units representing the data with old characteristics may be outside the data
distribution with new characteristics, as shown in Figs. 1A and 1B. RB updating addresses
this problem by removing units that are far from the current data distribution and creating
new units around the units on the distribution, as shown in Fig. 1C. Developing an effective
metric for determining when and which unit to remove and where to create a unit is critical
to RB updating.

Fritzke (1997) have proposed a metric based on error, which is the difference (distance)
between a data point and its corresponding reference vector. However, the effectiveness of
this error-based metric is affected by the value range of the dataset. Thus, this metric will
face problems for data streams undergoing concept drift because there is no guarantee that
the value range is static for data streams.

This study introduces win probability as an alternative metric. A win of a unit means that
the unit is closest to an input data point. Unlike error-basedmetrics, win probability retains
independence from the value range of the dataset, thereby enhancing its effectiveness in RB
updating even as the value range of the dataset changes due to concept drift. This metric
Mn(t) of unit n is expressed as

Mn(t)=
Pwin,n(t)

maxnPwin,n(t)
=

cn(t)
maxncn(t)

. (1)

Here, Pwin,n(t)= cn(t)/(
∑

mcm(t)) refers to the win probability of unit n, and cn(t) refers
to the number of wins of unit n. In this study, cn(t) shows the decay over iteration as
indicated:

cn(t+1)= cn(t)−βcn(t), (2)

Fujita (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1789 6/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1789/fig-1
http://dx.doi.org/10.7717/peerj-cs.1789

where β is a decay constant. This exponential decay mechanism limits the influence of old
data characteristics, thus improving the overall effectiveness of the RB updating process.

Online k-means with RB updating
Online k-means with RB updating (OKRB) is a modification of the standard online
k-means algorithm designed to quickly adapt to variations within a data stream. However,
online k-means suffers from the problem of dead units. Dead units are units (centroids) to
which no data points are assigned, often due to their initial placement far from the input
dataset. When concept drift occurs, and results in units far from the data distribution,
units close to the dataset may gradually move toward it, while those farther away remain
static. When concept drift occurs and the data distribution changes, online k-means will
generate dead units. OKRB mitigates this shortcoming through RB updating. The detailed
procedure for the OKRB algorithm is described in Algorithm 1.

Consider an input data sequence denoted by X = {x1,x2,...,x t ,...}, where each x t
belongs to a D-dimensional real space RD. The probability distribution generating X may
change during data point generation due to concept drift.

OKRB contains N units, where each unit represents a centroid. Each unit i is associated
with a reference vector wn ∈RD. To accommodate evolving data streams, OKRB iteratively
adapts its reference vectors to the incoming data point x t , eliminating less useful units
through RB updating.

In the initialization phase described in Algorithm 1 (steps 2 and 3), we initialize
the reference vector wn and the win count cn. Specifically, each reference vector wn is
constructed according to the following equation:

wn= (ξ1,...,ξd,...,ξD), (3)

where each component ξd is sampled uniformly at random from the interval [0,1). The
win count cn is initialized to zero.

In each iteration, OKRB processes a single data point x t . Initially, the algorithm receives
x t (Algorithm 1, step 5) and identifies the winning unit n1, which is the unit whose reference
vector is closest to x t (Algorithm 1, step 7). The reference vector of n1 is updated by

wn1←wn1+ε(x t −wn1), (4)

where ε is the learning rate (Algorithm 1, step 8). Unlike traditional online k-means, where
the learning rate decays over time, in OKRB the learning rate remains static. This is because
the data streams are unbounded, making the end of the iteration indeterminable.

RB updating in OKRB serves to prune less winning units while introducing new units
near frequently winning units. Specifically, each iteration n1’s win count cn1 is incremented
by one (Algorithm 1, step 10). The algorithm then identifies the unit with the maximum
number of wins nmax (Algorithm 1, step 11) and the unit with the minimum number
of wins nmin (Algorithm 1, step 12). If cnmin/cnmax exceeds a certain threshold THRB, RB
updating is triggered (Algorithm 1, step 13): the unit nmin is discarded and a new unit nnew
is added near nmax. In Algorithm 1, nnew= nmin. The reference vector and the win count
of nnew are determined by wnnew = (wnmax+w f)/2 and cnnew = (cnmax+ cf)/2, respectively,
where f is the unit closest to nmax (Algorithm 1, steps 14–16).

Fujita (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1789 7/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1789

Finally, the winning counts of all units are exponentially decaying (Algorithm 1, step
18), according to

cn← cn−βcn, (5)

with β as the decay rate.

Algorithm 1 Online k-means with RBirth updating (OKRB)
Require: X ={x1,...,x t ,...}, N
1: Initialize:
2: wn= (ξ1,...,ξd,...,ξD),n=1,...,N , where ξd = [0,1) is uniformed random
3: cn= 0,n=1,...,N
4: loop
5: Receive input x t at iteration t
6: {Update reference vectors:}
7: n1= arg min

n
‖x t −wn‖

8: wn1←wn1+ε(x t −wn1)
9: {RB updating:}
10: cn1← cn1+1
11: nmax= arg max

n
cn

12: nmin= arg min
n

cn

13: if cnmin/cnmax <THRB then
14: f = arg min

n
‖wn−wnmax‖

15: wnmin = (wnmax+w f)/2.
16: cnmin = (cnmax+ cf)/2.
17: end if
18: cn← cn−βcn,n=1,...,N
19: end loop

SOM with RB updating
Self-Organizing Map with RB updating (SOMRB) is based on standard SOM, but with
improved adaptation to changes in the data stream through RB updating. SOMRB projects
high-dimensional input data onto a low-dimensional map that can be used for clustering,
visualization, and dimension reduction. The detailed SOMRB algorithm is given in
Algorithm 2.

SOMRB containsN units, each with a reference vectorwn inRd . These units, positioned
at pn= (pn1,pn2)∈R2 on a two-dimensional map, form a grid structure with pn1 and pn2 as
integers. First, unit n is positioned at pn= (bn/Lc,(modL)), where L=b

√
Nc (Algorithm 2,

steps 2 and 3). Units are connected to their nearest neighbors, forming a 2-dimensional grid
(Algorithm 2, step 4). The reference vector is initialized as wn= (n/L,(modL)/L,0,...,0)
(Algorithm 2, step 5). Such an initialization strategy mitigates the distortion of SOMRB’s
mesh topology. The win count cn are set to 0 (Algorithm 2, step 6).

Fujita (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1789 8/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1789

In each iteration, SOMRB receives a single data point x t (Algorithm 2, step 8) and
adjusts its reference vectors. The winning unit, n1, with the reference vector closest to x t ,
is identified (Algorithm 2, step 10). Then, all reference vectors are updated according to

wn←wn+εh(‖pn−pn1‖)(x t −wn), (6)

where ε is the learning rate and h(·) is the neighborhood function defined as h(d)=
exp(− d2

2σ 2) (Algorithm 2, step 11).
RB updating is used to remove units that rarely win (dead units) and to add new units

around units that frequently win. The win count of unit n1, denoted by cn1 , is incremented
at each iteration (Algorithm 2, step 13). The unit with themaximum count cnmax is identified
from the units with neighboring empty vertices (Algorithm 2, steps 14 and 15). Note that
nmax must have neighboring empty vertices on the grid. The number of edges of the unit
with neighboring empty vertices en is less than four, because a unit on the grid can have a
maximum of four edges (Algorithm 2, step 14). The unit with the minimum count cnmin

is also identified (Algorithm 2, step 16). When cnmin/cnmax exceeds the threshold THRB,
an RB update is performed (Algorithm 2, step 17). This involves removing the minimum
winning unit nmin (Algorithm 2, step 18) and adding a new unit nnew near the maximum
winning unit nmax (Algorithm 2, step 19). In Algorithm 2, nnew= nmin.nnew is placed on an
empty vertex neighboring nmax, which is chosen randomly if there is more than one empty
vertex. nnew is connected to the neighboring units on the grid (Algorithm 2, step 20). The
reference vector wnnew of nnew is computed based on the average of the reference vectors of
the neighboring units if it has more than one neighbor (Algorithm 2, steps 21–23). cnnew is
the average win count of the neighboring units. Conversely, if nnew has only one neighbor
(i.e., nnew connects only to nmax), the reference vector of nnew is the average of the reference
vectors of nmax and its neighbors (Algorithm 2, steps 26–29). In scenarios in which nmax

connects only to nnew, the reference vector wnnew is the average of the reference vectors of
nmax and its nearest unit f (Algorithm 2, steps 30–33).

All winning counts are exponentially decaying according to the following formula
(Algorithm 2, step 37):

cn← cn−βcn, (7)

where β is the decay rate.

Neural gas with RB updating
Neural gas with remove-birth updating (NGRB) is an alternative to Self-Organizing Map
(SOM) for data streams based on neural gas (NG). NGRB quantizes the input data and
generates a network like NG. In addition, NGRB can reconfigure its network structure
more quickly through RB updating. The complete NGRB algorithm is given in Algorithm 3.

The network generated by NGRB consists of N units, with edges connecting pairs of
units. Each unit i has a reference vector w i and a winning counter cn. Edges between units
are neither weighted nor directed. The edge is represented by Cnm, which is 0 or 1. If
Cnm= 1, unit n is connected to unit m, and vice versa. In Algorithm 3, Cnm=Cmn. Each
edge has an age variable, denoted by anm, which informs the decision to keep or discard

Fujita (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1789 9/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1789

Algorithm 2 Self-Organizing Map with RB updating (SOMRB)
Require: X ={x1,...,x t ,...}, N
1: Initialize:
2: L=b

√
Nc

3: pn= (bn/Lc,(n mod L)),n=0,...,N −1
4: Connect each pair of neighboring units
5: wn= (bn/Lc/L,(n mod L)/L,0,...,0),n=0,...,N −1
6: cn= 0,n=0,...,N −1
7: loop
8: Receive input x t at iteration t
9: {Update reference vectors:}
10: n1= arg min

n
‖x t −wn‖

11: wn←wn+εh(‖pn−pn1‖)(x−wn),n=0,...,N −1
12: {RB updating:}
13: cn1← cn1+1
14: M ={n|en< 4}, where en is the number of edges connected to unit n
15: nmax= arg max

n∈M
cn

16: nmin= arg min
n

cn

17: if cnmin/cnmax <THRB then
18: Remove unit nmin

19: Add new unit nmin on the empty vertex neighboring unit nmax

20: Establish edges between unit nmin and its neighboring units
21: Mmin={n|n is a neighbor of nmin}

22: if |Mmin|> 1 then
23: wnmin =

1
|Mmin|

∑
n∈Mmin

wn.
24: cnmin =

1
|Mmin|

∑
n∈Mmin

cn.
25: else F |Mmin| = 1 and unit nmin connects with only unit nmax

26: Mmax={n|n is a neighbor of nmax excluding nmin}∪{nmax}

27: if |Mmax|> 1 then
28: wnmin =

1
|Mmax|

∑
n∈Mmax

wn.
29: cnmin =

1
|Mmax|

∑
n∈Mmax

cn.
30: else F |Mmax| = 1 and unit nmax connects with only unit nmin

31: f = arg min
n
‖wn−wnmax‖

32: wnmin = (wnmax+w f)/2.
33: cnmin = (cnmax+ cf)/2.
34: end if
35: end if
36: end if
37: cn← cn−βcn,n=0,...,N −1
38: end loop

Fujita (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1789 10/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1789

the edge. In NGRB, data points are represented iteratively, and the reference vectors are
refined at each iteration.

In the initialization phase described in Algorithm 3 (steps 2-4), we initialize the reference
vector wn, the win count cn, and Cnm. Specifically, each reference vector wn is constructed
according to the following equation:

wn= (ξ1,...,ξd ,...,ξD), (8)

where each component ξd is sampled uniformly at random from the interval [0,1).cn and
Cnm is initialized to zero.

In each iteration, NGRB processes a single data point. After receiving x t (Algorithm 3,
step 6), NGRB refines its reference vectors and changes the network topology. The reference
vector update procedure is identical to that of NG.We determine the neighborhood ranking
kn of unit n based on the distance between wn and x t (Algorithm 3, step 8). This results in
a sequence of unit rankings (n0,n1,...,nk,...,nM−1) determined by

‖x−wn0‖< ‖x−wn1‖< ...< ‖x−wnk‖< ...< ‖x−wnN−1‖. (9)

Then, the reference vectors of all units are updated according to

wn←wn+εe−kn/λ(x t −wn),n= 1,...,N , (10)

where e−kn/λ is a neighborhood function (Algorithm 3, step 9). λ determines the number
of units that significantly change their reference vectors at each iteration.

At the same time, the network topology evolves in response to the input data through
iterative adaptation. The adaptation procedure of the network topology is also identical to
that of NG. The winning unit n0 and the second nearest unit n1 are identified. If Cn0n1 =

0, we set Cn0n1 = 1 and an0n1 = 0 (Algorithm 3, steps 11–13). If Cn0n1 = 1, we set an0n1 = 0
(Algorithm 3, steps 14 and 15). The age of all edges connected to n0 is incremented
by 1 (Algorithm 3, step 17), and links exceeding the prescribed lifetime are removed
(Algorithm 3, step 18).

In addition, NGRB dynamically restructures its network using RB updating, which
involves removing infrequently winning units and introducing new units around those
that win frequently. The win count of the winning unit, denoted by cn0 , is incremented
at each iteration (Algorithm 3, step 20). The algorithm then identifies the unit with the
maximum wins nmax, and the unit with the minimum wins nmin (Algorithm 3, steps 21 and
22). When cnmin/cnmax exceeds the threshold THRB, nmin is eliminated and a new unit nnew is
added around nmax (Algorithm 3, steps 23–25). In Algorithm 3, nnew= nmin. The reference
vector and the win count of nnew are respectively determined by wnnew = (wnmax+wf)/2
and cnnew = (cnmax+ cf)/2, where f is the neighboring unit of nmax that has the maximum
wins (Algorithm 3, steps 26-33). If nmax has no neighbors, the closest unit to nmax is taken
as unit f (Algorithm 3, step 30). Consequently, nnew is connected to nmax and f , setting
Cnnewnmax = 1 and Cnnewnf = 1 (Algorithm 3, steps 34). The ages of these new edges, anminnmax

and anminf , are set to 0 (Algorithm 3, step 35).
All winning counters are subject to exponential decay, calculated as follows

cn← cn−βcn, (11)

where β is the decay rate (Algorithm 3, step 37).

Fujita (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1789 11/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1789

Algorithm 3 Neural Gas with RB updating (NGRB)
Require: X ={x1,...,x t ,...}, N
1: Initialize:
2: wn← (ξ1,...,ξd,...,ξD),n=1,...,N , where ξd = [0,1) is uniformed random value
3: cn← 0,n=1,...,N
4: Cnm← 0 for all n= 1 to N andm= 1 to N
5: loop
6: Receive input x t at iteration t
7: {Adaptation of reference vectors:}
8: Determine the neighborhood-ranking kn
9: wn←wn+εe−kn/λ(xn−wn),n=1,...,N
10: {Training the network topology:}
11: if Cn0n1 = 0 then
12: Cn0n1 = 1
13: an0n1 = 0
14: else
15: an0n1 = 0
16: end if
17: Increment all the ages of the edge emerging from the unit n1
18: Remove the edge with anm> amax

19: {RB updating:}
20: cn0← cn0+1
21: nmax= arg max

n
cn

22: nmin= arg min
n

cn

23: if cnmin/cnmax <THRB then
24: Remove unit nmin

25: Create a new unit at nmin

26: M ={n|n is a neighbor of nmax}

27: if |M |> 0 then
28: f = arg max

n∈M
cn

29: else
30: f = arg min

n6=nmax

‖wn−wnmax‖

31: end if
32: wnmin = (wnmax+w f)/2.
33: cnmin = (cnmax+ cf)/2.
34: Connect nmin with nmax and f
35: anminnmax = anminf = 0
36: end if
37: cn← cn−βcn,n=1,...,N
38: end loop

Fujita (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1789 12/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1789

Table 1 Parameters for OKRB, OKRB using the error-based metric (OKRB EB-based), and online k-
means.

OKRB OKRB EB-based Online k-means

ε 0.1 0.3 0.5
THRB 0.01 0.01 –
β 0.005 0.005 –

Table 2 Parameters for SOMRB, SOMRB using the error-based metric (SOMRB EB-based), and SOM.

SOMRB SOMRB EB-based SOM

ε 0.2 0.3 0.4
σ 0.5 0.5 0.5
THRB 0.1 0.5 –
β 0.0001 0.0005 –

Table 3 Parameters for NGRB, NGRB using the error-based metric (NGRB EB-based), and NG.

NGRB NGRB EB-based NG

ε 0.3 0.3 0.3
λ 0.5 1 2
amax 75 100 75
THRB 0.01 0.01 –
β 0.005 0.005 –

Parameters
In this study, online k-means, SOM, NG, and GNG are used as comparison methods.
To investigate the efficiency of the win probability based metric on RB updating, OKRB,
SOMRB, and NGRB using the error-based metric were evaluated. For details on RB
updating using the error-based metric, see ‘RB updating using error-based metric’ in
the Appendix. The parameters for all methods except N = 100 are determined using a
grid search technique, details of which can be found in ‘Parameter optimization’ in the
Appendix. The parameters for OKRB, OKRB using the error-based metric, and online
k-means are shown in Table 1. The parameters for SOMRB, SOMRB using the error-based
metric, and SOM are shown in Table 2. The parameters for NGRB, NGRB using the
error-based metric, and NG are shown in Table 3. For GNG, the following parameters were
used: εw = 0.1, εn= 0.0005, λ= 50, α= 0.25, β = 0.999, and amax= 25.

EXPERIMENTAL SETUP
Comparison methods
The proposed methods are compared with four other methods: online k-means, SOM,
NG, and GNG. The algorithm of online k-means is referred to in the Appendix section
labeled ‘Online k-means’. The detailed descriptions of SOM, NG, and GNG are covered
in Fujita (2021). Notably, online k-means, SOM, and NG have parameters that decay over
iterations, but in this study they were kept static in order to process data streams. For

Fujita (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1789 13/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1789

example, in the case of NG, the learning rate is kept constant so that ε= εi= εf , where εi
and εf are the initial and final learning rates, respectively.

Initialization
The initialization for OKRB, SOMRB, and NGRB is described in the Algorithms 1, 2, and
3, respectively. For all comparison methods except SOM, the elements of the reference
vectors are initialized uniformly at random in the range [0,1). For SOM, the reference
vector is initialized as wn = (bn/Lc/L,(modL)/L,0,...,0), where L= b

√
Nc. The units

of SOM on the 2D feature map are placed at pn = (pn1,pn2)= (bn/Lc,modL). Such an
initialization strategy strengthens the network topology of the SOMagainstmap distortions.
Traditionally, reference vectors are either randomly selected data points or derived using
an efficient initialization algorithm such as k-means++ because random initialization often
creates dead units. However, in the context of a data stream, data points are continuously
fed into the system. Furthermore, their characteristics will change due to concept drift,
requiring methods to adapt to the data regardless of the state of the reference vectors.
Consequently, any method designed for a data stream must not only extract relevant
features from the data, but also strive to minimize the generation of dead units, regardless
of how the initial reference vectors are set.

Evaluation metrics
In this study, the performance of vector quantization algorithms is evaluated using two
metrics: the mean squared error (MSE) and the number of dead units Ndead. The MSE
quantifies the average squared distance between each data point and its nearest unit,
expressed as follows

MSE=
1
M

M∑
i=1

N∑
n=1

kin‖xi−wn‖
2, (12)

where M is the number of data points. The data point xi is assigned to the unit s if
s= argminn‖xi−wn‖

2, and as a result kis= 1. Otherwise kin= 0. The unit n is considered
a dead unit if Mn=

∑M
i=1kin= 0. So Ndead= |{n|Mn= 0}|.| · | is the number of elements in

a set.
To evaluate the topological properties of the networks generated by SOMRB and NGRB,

the average degree and the average clustering coefficient are used. The average degree k̄ is
the average number of edges per unit and can be expressed as

k̄=
2L
N
, (13)

where L is the total number of edges and N is the number of units. The average clustering
coefficient C is defined as C = 1

N
∑N

n=0cn, where cn is the clustering coefficient of the unit
n. The clustering coefficient cn is calculated as cn = 2tn

kn(kn−1)
, where tn is the number of

triangles around the unit n and kn is the number of edges formed by the unit n. If kn< 2,
then cn= 0.

The RB updating frequency indicates the number of RB updating occurrences. It is a
candidate metric for concept drift detection because RB updating is assumed to occur in
response to dynamic changes in a data stream caused by concept drift.

Fujita (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1789 14/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1789

Table 4 Characteristics of datasets.

Dataset N D STD Max Min

Blobs 1,000 2 – – –
Circles 1,000 2 – ∼1 ∼−1
Moons 1,000 2 – ∼2 ∼−1
Aggregation 788 2 9.44 36.6 1.95
Compound 399 2 8.69 42.9 5.75
t4.8k 8,000 2 147 635 14.6
t7.10k 10,000 2 170 696 0.797
Iris 150 4 1.97 7.9 0.1
Wine 178 13 216 1,680 0.13
digits 1,797 64 6.02 16 0

Software
The implementation of OKRB, SOMRB, NGRB, online k-means, SOM, NG, and GNG
was done in Python using several Python libraries including NumPy, NetworkX, and
scikit-learn. NumPy facilitated linear algebra computations, while NetworkX aided in
network manipulation and network coefficient computations. Scikit-learn was used to
generate synthetic data. The source code used in this study is publicly available and can be
found at https://github.com/KazuhisaFujita/RemoveBirthUpdating.

Datasets
In this study, six synthetic datasets and three real-world datasets are used to evaluate the
proposed methods. The synthetic datasets include Blobs, Circles, Moons, Aggregation
(Gionis, Mannila & Tsaparas, 2007), Compound, t7.8k (Karypis, Han & Kumar, 1999),
and t8.8k (Karypis, Han & Kumar, 1999). Blobs, Circles, and Moons are generated using
the make_blobs, make_circles, and datasets.make_moons functions from the scikit-learn
library, respectively. Blobs are derived from three isotropic Gaussian distributions with
default parameters formean and standard deviation. Circles are composed of two concentric
circles generated with noise and scale parameters set to 0.05 and 0.5, respectively. Moons
are composed of two moon-shaped distributions generated with the noise parameter set to
0.05. Aggregation, Compound, t4.8k, and t7.10k serve as representative synthetic datasets
commonly used to evaluate clustering methods. In addition to the synthetic datasets, three
real-world datasets from the UCI Machine Learning Repository are used, including Iris,
Wine, and Digits. Table 4 details the characteristics of each dataset, showing the number
of data points (N), dimensions (D), standard deviation (STD), maximum values (MAX),
and minimum values (MIN). Note that the STD, MAX, and MIN are not explicitly defined
for Blobs, Circles, and Moons due to the random nature of data point generation.

RESULTS
The numerical experiments were performed to evaluate the performance and explore the
features of OKRB, SOMRB, and NGRB. All experimental values are the average of 10 runs

Fujita (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1789 15/35

https://peerj.com
https://github.com/KazuhisaFujita/RemoveBirthUpdating
http://dx.doi.org/10.7717/peerj-cs.1789

with random initial values. An input vector is uniformly and randomly selected from a
dataset at each iteration during training.

Comparison of network structures from synthetic datasets
Figure 2 shows the distributions of the reference vectors of OKRB, SOMRB, NGRB,
online k-means, SOM, NG, and GNG for synthetic datasets; Blobs, Circles, Aggregation,
Compound, t4.8k, and t8.8k. The reference vectors are trained by each algorithm over
5×104 iterations. An input is a data point randomly selected from the dataset at each
iteration. In this experiment, the random generator uses the same seed. These visualizations
provide insight into the structure of the reference vectors and the generated networks.

The figure shows that OKRB, SOMRB, NGRB, and GNG successfully extract the
topologies of all datasets. While the SOM-generated network contains some dead units,
most of its reference vectors accurately capture the topologies of the datasets. The SOM
network topology is a two-dimensional lattice, which often leads to the creation of dead
units between clusters. In contrast, online k-means and NG tend to generate dead units
when the initial position of the units is significantly away from the dataset. While this dead
unit problem could be mitigated by refining the initial value, such a solution is not feasible
for data streams, given their unbounded nature and the potential for changing ranges of
values in the dataset. This suggests that methods other than online k-means and NG may
be more appropriate for dealing with data streams.

Evaluating method performances on static datasets
Figure 3 shows the evolution of theMean Squared Error (MSE) over iterations for the static
datasets: Blobs, Circles, Aggregation, Compound, t4.8k, t7.10k, Iris, Wine, and Digits. At
each iteration, MSE is calculated between all data points in the dataset and the current
reference vectors. All four methods (OKRB, SOMRB, NGRB, and GNG) can maintain
low MSEs from the 104 iterations. In particular, the MSEs of OKRB and NGRB decay
rapidly. The performance of OKRB and NGRB is equal to that of GNG and better than
other methods. The MSE of SOMRB is slightly larger than those of OKRB, NGRB, and
GNG, but smaller than that of SOM. Despite the lack of parameter decay and possibility
to generate dead units, SOM shows a respectable performance. On the other hand, both
NG and Online k-means show bad performance, mainly due to the lack of optimal initial
reference vector values and a step decay mechanism. However, for the Circle dataset, NG
and Online k-means perform well because the initial values are within the data distribution
(the range of values for Circle is from −1 to 1).

Figure 4 shows the evolution of dead units over iterations for the static datasets. At each
iteration, the number of dead units is calculated between all data points in the dataset and
the current reference vectors. OKRB and NGRB keep the number of dead units close to
zero from the 104 iterations. SOMRB’s rate of decrease in dead units is slower than OKRB
and NGRB. Interestingly, despite the 2-dimensional lattice bias and the lack of parameter
decay, SOM generates a relatively limited number of dead units. However, compared to
methods that use RB updating, the number of dead units produced by SOM is higher. For
the Blobs, Circles, Aggregation, t4.8k, t8.8k, and Digits datasets, the number of dead units

Fujita (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1789 16/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1789

Figure 2 2D plots of reference vectors and distributions of datasets. The first, second, third, fourth,
fifth, sixth, and seventh rows show reference vectors generated by OKRB, SOMRB, NGRB, online k-means
(OKMEANS), SOM, NG, and GNG, respectively. The data points are represented by cyan dots, while the
black dots denote units. The black lines symbolize the edges of the networks.

Full-size DOI: 10.7717/peerjcs.1789/fig-2

generated by GNG is approximately zero across all iterations. Conversely, NG and Online
k-means have a higher number of dead units and a slower rate of decay of the number of
dead units.

These results suggest that the proposed methods, namely OKRB, SOMRB, and NGRB,
show sufficient performance with static data. However, due to the constraints of the
network topology, SOMRB and SOM show relatively inferior performance compared to
OKRB andNGRB. Online k-means andNG, in the absence of parameter decay and efficient
initialization algorithms, provide inferior results even with static data. It is suggested that

Fujita (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1789 17/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1789/fig-2
http://dx.doi.org/10.7717/peerj-cs.1789

102 103 104 105

0.5

1.0

1.5

2.0

M
SE

A Blobs

102 103 104 105

0.1

0.2

0.3

0.4

B Circles

102 103 104 105
1

2

3

4

5

6

7

8

C Aggregation
OKRB
SOMRB
NGRB
OKMEANS
SOM
NG
GNG

102 103 104 105

1

2

3

4

5

6

M
SE

D Compound

102 103 104 105
10

20

30

40

50

60

70

80

E t4.8k

102 103 104 105
20

40

60

80

100

120

F t7.10k

102 103 104 105
Iterations

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
SE

G Iris

102 103 104 105
Iterations

0

20

40

60

80

100

120

H Wine

102 103 104 105
Iterations

20

25

30

35

I digits

Figure 3 Iteration evolution of mean squared error (MSE) for various methods for static datasets. The
horizontal axis represents the training iteration, while the vertical axis represents the MSE. Each panel rep-
resents a different dataset: (A) Blobs, (B) Circles, (C) Aggregation, (D) Compound, (E) t4.8k, (F) t7.10k,
(G) Iris, (H) Wine, and (I) Digits.

Full-size DOI: 10.7717/peerjcs.1789/fig-3

Fujita (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1789 18/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1789/fig-3
http://dx.doi.org/10.7717/peerj-cs.1789

102 103 104 1050

20

40

60

80

De
ad

 U
ni

ts

A Blobs

102 103 104 1050

10

20

30

40

50

60

70
B Circles

102 103 104 1050

20

40

60

80

C Aggregation

OKRB
SOMRB
NGRB
OKMEANS
SOM
NG
GNG

102 103 104 1050

20

40

60

80

100

De
ad

 U
ni

ts

D Compound

102 103 104 1050

20

40

60

80

E t4.8k

102 103 104 1050

20

40

60

80

F t7.10k

102 103 104 105

Iterations
0

20

40

60

80

100

De
ad

 U
ni

ts

G Iris

102 103 104 105

Iterations
0

20

40

60

80

100
H Wine

102 103 104 105

Iterations
0

20

40

60

80

100
I digits

Figure 4 Iteration evolution of the number of dead units for various methods for static datasets. The
horizontal axis represents the training iteration, while the vertical axis represents the number of dead
units. Each panel represents a different dataset: (A) Blobs, (B) Circles, (C) Aggregation, (D) Compound,
(E) t4.8k, (F) t7.10k, (G) Iris, (H) Wine, and (I) Digits.

Full-size DOI: 10.7717/peerjcs.1789/fig-4

Fujita (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1789 19/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1789/fig-4
http://dx.doi.org/10.7717/peerj-cs.1789

Sudden concept drift

Gradual concept drift

Recurring concept drift

data1 data2 data3 data4 data5 data6

data1

data2

data3

data4

data5

data6

data1 data2 data1 data2 data1 data2

Figure 5 Illustration of the data streams used in this experiment.Data1 through data6 correspond to
the aggregation, blobs, circles, compound, t4.8k, and t7.10k datasets, respectively. For both sudden and
recurring concept drifts, the drifts occur every 100,000 iterations. In the case of gradual concept drift, a
gradual transition from one dataset to another is implemented over the same iteration interval. During
this drift, the probability of data generation gradually shifts.

Full-size DOI: 10.7717/peerjcs.1789/fig-5

online k-means and NG without decay parameters are also likely unsuitable for stream
data.

Performance for data stream
In this subsection, the proposed methods with RB updating are evaluated for data streams.
We consider three types of concept drifts: sudden, gradual, and recurring concept drifts,
as shown in Fig. 5. The data stream consists of several different datasets. A concept drift
event, which occurs every 100,000 iteration, causes a change from one dataset to another.

For sudden concept drift, the dataset responsible for generating the input undergoes an
abrupt change. For gradual concept drift, the dataset generating the input gradually shifts
from the old dataset to the new dataset. To elaborate, at each iteration, a dataset generating
an input is probabilistically selected, and an input is uniformly and randomly chosen
from the selected dataset. The selection probabilities of the old and the new datasets are
represented by pold= (Tdriftstart+Tdur− t)/Tdur and pnew= 1−pold, where t is the number
of iterations, Tdur is the duration of the drift, and Tdriftstart is the start iteration of the drift.
In this experiment we set Tdur= 10000 and the initial Tdriftstart to 90,000. For the recurring
concept drift, two datasets alternately generate the input, switching every 100,000 iteration.

The experiments in this subsection compute theMean Squared Error (MSE), the number
of dead units, the average degree, and the average clustering coefficient. At each iteration
t , the MSE and the number of dead units are calculated using the data points collected

Fujita (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1789 20/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1789/fig-5
http://dx.doi.org/10.7717/peerj-cs.1789

0 1 2 3 4 5 6
×105

10−1

100

101

M
SE

A Sudden

0 1 2 3 4 5 6
×105

0

20

40

60

80

100

De
ad

 U
ni

ts

D Sudden

OKRB
SOMRB
NGRB
SOM
GNG

0 1 2 3 4 5 6
×105

10−1

100

101

M
SE

B Gradual

0 1 2 3 4 5 6
×105

0

20

40

60

80

100

De
ad

 U
ni

ts

E Gradual

0 1 2 3 4 5 6
Iterations ×105

100

M
SE

C Recurring

0 1 2 3 4 5 6
Iterations ×105

0

20

40

60

80

100

De
ad

 U
ni

ts

F Recurring

Figure 6 (A, B, C) The evolution of the mean squared errors (MSE) under sudden concept drift, grad-
ual concept drift, and recurring concept drift scenarios, respectively. (D, E, F) The evolution of the
number of dead units under the same scenarios: sudden, gradual, and recurring concept drifts, respec-
tively. The horizontal axis shows the training iteration. The vertical axis shows MSE in A–C and the num-
ber of dead units in D–F.

Full-size DOI: 10.7717/peerjcs.1789/fig-6

from iteration steps t −1000 to t and the current reference vectors. Additionally, the RB
updating frequency at iteration t is defined as the number of RB updating occurrences
from iteration steps t−1000 to t .

Figures 6A, 6B, and 6C show the MSE evolution of OKRB, SOMRB, NGRB, SOM, and
GNG for all types of concept drifts. OKRB, SOMRB, NGRB, and SOM quickly converge to

Fujita (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1789 21/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1789/fig-6
http://dx.doi.org/10.7717/peerj-cs.1789

lowMSE values. However, theMSE of SOM is consistently higher than that of the proposed
method with RB updating. Although GNG converges quickly to a low MSE value after the
arrival of the first stream, it converges to a highMSE value after any concept drift. Figure 6C
shows a rapid convergence of GNG’s MSE between steps 200,000 and 300,000. This rapid
convergence is due to the fact that the third dataset active during this interval is identical
to the first. Therefore, GNG maintains its reference vectors that adapt to data1 after the
first concept drift. Examples of the reference vector distributions of OKRB, SOMRB, and
NGRB during gradual concept drift can be found in ‘Evolution of the reference vectors’ of
the Appendix.

Figures 6D, 6E, and 6F illustrate the progression of dead units for OKRB, SOMRB,
NGRB, SOM, and GNG. In all scenarios, the dead units of OKRB and NGRB quickly
converge to zero after the concept drift. SOMRB’s dead units decrease more slowly than
OKRB and NGRB. SOM’s dead units decrease more slowly than the proposed methods,
and its amount also converges higher than the proposed methods. For sudden concept
drift and gradual concept drift, OKRB, SOMRB, NGRB, and SOM have few dead units
between data5 (t4.8k) and data6 (t7.10k) because Data5 and Data6 are widely distributed
with noise. GNG has more dead units than other methods after the first concept drift.

These observations suggest that OKRB, SOMRB, and NGRB deal with concept drift
efficiently. Significantly, OKRB, SOMRB, and NGRB are not affected by changes in the
value range of the data due to concept drift. This range independence is attributed not
only to RB updating but also to a property of online k-means, SOM, and NG, namely
the independence of the hyperparameters on the value range of the data. The learning
rates of online k-means, SOM, and NG, as well as the parameters of the neighborhood
functions of NG and SOM, do not need to be adjusted based on the value range of the data,
despite changes in the characteristics of a dataset. For example, we typically do not change
the learning rate whether the maximum value of the data is 100 or 1. In addition, the
hyperparameters of the neighborhood functions of SOM and NG depend on the location
of the units on the feature map and the neighborhood ranking, respectively.

Interestingly, SOM does not show poor performance with concept drift. In general,
SOM can only learn static datasets because once a map learns and stabilizes, it loses its
ability to reshape itself as new structures manifest in the input data (Smith & Alahakoon,
2009). The decay parameters provide this stability by giving the SOM the flexibility to adapt
to a static dataset in the early stages of training while maintaining stable reference vectors.
On the other hand, the static parameters derive the SOM’s flexibility for concept drift
because the static parameters provide a continuous learning capability. In addition, when
concept drift occurs, and the SOM’s reference vectors diverge significantly from the input
vectors generated by a data stream with new characteristics, multiple reference vectors
are simultaneously adapted to the input vectors through the neighborhood function. As
a result, SOM without decay can quickly adapt to the new characteristics and maintain
flexible learning even as data characteristics change.

Figures 7A, 7B, and 7C show the evolution of the average degree of SOMRB and NGRB.
The average degree at each iteration is calculated from the network obtained at that time.
For sudden and gradual concept drifts, the average degree of SOMRB shows a rapid change

Fujita (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1789 22/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1789

0 1 2 3 4 5 6
×105

2.5
3.0
3.5
4.0
4.5

De
gr
ee

A Sudden

0 1 2 3 4 5 6
×105

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Cl
us
te
rin

g

D Sudden
SOMRB
NGRB

0 1 2 3 4 5 6
×105

2.5
3.0
3.5
4.0
4.5
5.0

De
gr
ee

B Gradual

0 1 2 3 4 5 6
×105

0.0
0.1
0.2
0.3
0.4
0.5

Cl
us
te
rin

g

E Gradual

0 1 2 3 4 5 6
Iterations ×105

2.5
3.0
3.5
4.0
4.5
5.0

De
gr
ee

C Recurring

0 1 2 3 4 5 6
Iterations ×105

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Cl
us
te
rin

g

F Recurring

Figure 7 (A, B, C) The evolution of the average degree under sudden concept drift, gradual concept
drift, and recurring concept drift scenarios, respectively. (D, E, F) The evolution of the average cluster-
ing coefficient under the same scenarios: sudden, gradual, and recurring concept drifts, respectively.
The vertical axis shows the average degree in A–C and the average clustering coefficient in D–F.

Full-size DOI: 10.7717/peerjcs.1789/fig-7

at each drift event, except for the transition from data5 to data6. It shows a continuous
decay that does not stabilize within each period. The average degree of NGRB peaks at
each drift event. However, it does not occur during the transition from data2 to data3 in
the gradual concept drift. The average degree of NGRB shows a rapid decay and stabilizes
within each drift period. Furthermore, its convergence value is different for each dataset.

Figures 7D, 7E, and 7F show the evolution of the average clustering coefficient of
SOMRB and NGRB. The average clustering coefficient at each iteration is calculated from
the network obtained at that time. Since the units of SOMRB are placed on vertices of the
2D grid, they cannot form triangular clusters, resulting in a clustering coefficient of zero.
On the other hand, NGRB’s clustering coefficient shows a peak at each drift, except for the
transition from data5 to data6 for the gradual concept drift. Similar to its degree, NGRB’s
clustering coefficient decays rapidly and stabilizes within each drift period. Furthermore,
these convergence values are different for each dataset.

Fujita (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1789 23/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1789/fig-7
http://dx.doi.org/10.7717/peerj-cs.1789

While the value ranges for data5 (t4.8k) and data6 (t7.10k) are similar, and the MSEs
for these data are also similar, there are differences in the convergence values of the average
degree and the average clustering coefficient. These results suggest that these two metrics
can effectively identify shifts in data stream characteristics (concept drift occurrences)
when using SOMRB and NGRB.

Figure 8 shows the evolution of RB updating frequency in OKRB, SOMRB, and NGRB.
A strong peak in update frequency is observed coinciding with the onset of each concept
drift. However, the peaks for the gradual concept drift are lower than for the other drifts. In
particular, the peak observed during the transition from data5 to data6 shows a significant
reduction. Figures 8D, 8E and 8F show that the peak shapes for OKRB and NGRB are
almost identical. Conversely, the peaks for SOMRB are lower in height and broader in
width than those for OKRB and NGRB. In addition, the peaks for SOMRB are delayed
from the onset of drift. These findings suggest the potential of RB update frequency as an
effective indicator for detecting the occurrence of concept drift.

The proposed methods may also be useful for drift detection. As shown in Fig. 6,
both the Mean Squared Error (MSE) and the number of dead units increase significantly
with concept drift. Similarly, Fig. 7 shows significant changes in the average degree and
clustering coefficient when concept drift occurs. Furthermore, these two measures show
different values for each data characteristic. Figure 8 shows that the frequency of RB updates
shows spike-like fluctuations in response to concept drift. Therefore, these measures could
be effectively used to detect concept drift. Moreover, if we use these measures and the
proposed methods multiply and simultaneously, we will be able to detect drift even more
accurately.

Figures 9A, 9B, and 9C show the evolution of the MSEs for OKRB, SOMRB, and NGRB
using the error-based metric. For details on RB updating using the error-based metric, see
‘RB updating using error-based metric’ in the Appendix. The MSEs of the methods using
the error-based metric show rapid convergence. However, for gradual concept drift, the
MSEs of OKRB and NGRB using the error-based metric are larger than those of OKRB and
NGRB using the win probability based metric during the data4, data5, and data6 phases.

Figures 9D, 9E, and 9F show the evolution of the number of dead units of OKRB,
SOMRB, and NGRB using the error-based metric. In all tested scenarios, the number of
dead units fluctuates significantly. Furthermore, these methods show a larger number
of dead units when using the error-based metric compared to the win probability based
metric. Strikingly, NGRB shows an exceptionally high number of dead units for gradual
concept drift.

These results suggest that the proposed methods using the win probability based metric
demonstrate proficiency in dealing with concept drift. In addition, they significantly
mitigate the occurrence of dead units.

CONCLUSIONS AND DISCUSSIONS
In this study, we proposed three improved vector quantization methods using RB updating
for data streams (OKRB, SOMRB, and NGRB). These proposed methods demonstrate fast

Fujita (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1789 24/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1789

0 1 2 3 4 5 6
×105

0
20
40
60
80

100

RB
 u

pd
at

in
g

A Sudden

8.0 9.0 10 11.0 12.0 13.0
0

20

40

60

RB
 u

pd
at

in
g

D

×104

Sudden
OKRB
SOMRB
NGRB

0 1 2 3 4 5 6
×105

0
20
40
60
80

100

RB
 u

pd
at

in
g

B Gradual

8.0 9.0 10 11.0 12.0 13.0
0

20

40

60

RB
 u

pd
at

in
g

E

×104

Gradual

0 1 2 3 4 5 6
Iterations ×105

0
20
40
60
80

100

RB
 u

pd
at

in
g

C Recurring

8.0 9.0 10 11.0 12.0 13.0
Iterations

0

20

40

60

RB
 u

pd
at

in
g

F

×104

Recurring

Figure 8 (A, B, C) The evolution of the frequency of RB updating in OKRB, SOMRB, and NGRB un-
der sudden, gradual, and recurring concept drifts, respectively. (D, E, F) Close-up views of RB updat-
ing occurrences within the iteration range of 80,000 to 130,000. These close-up views reveal the intricate
behavior of the RB updating occurrences during this specific interval. The horizontal axis and the vertical
axis represent training iteration and the frequency of RB updating, respectively.

Full-size DOI: 10.7717/peerjcs.1789/fig-8

adaptability to concept drift and provide efficient quantization of a dataset. In addition,
both SOMRB and NGRB can generate a graph that reflects the topology of the dataset.
However, the performance of SOMRB is slightly inferior to the other proposed methods.
Therefore, OKRB is recommended when only vector quantization is required for a data
stream. If the task requires not only quantization but also graph generation from a data
stream, NGRB is a more suitable option. SOMRB and SOM can be used to quantize data
streams and project them into two-dimensional space. SOM is particularly useful when a
network structured as a two-dimensional grid is required.

Why is win probability effective in dealing with concept drift? The answer lies in its
dependency of a metric on the range of values in the data. The error-based metric depends
on the Euclidean distance between two points. This means that the range of values in
the data strongly influences the metric. In addition, it can become more sensitive when

Fujita (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1789 25/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1789/fig-8
http://dx.doi.org/10.7717/peerj-cs.1789

0 1 2 3 4 5 6
×105

10−1

100

101

M
SE

A Sudden

0 1 2 3 4 5 6
×105

0

20

40

60

80

100

De
ad

 U
ni

ts

D Sudden
OKRB
SOMRB
NGRB

0 1 2 3 4 5 6
×105

10−1

100

101

102

M
SE

B Gradual

0 1 2 3 4 5 6
×105

0

20

40

60

80

100

De
ad

 U
ni

ts

E Gradual

0 1 2 3 4 5 6
Iterations ×105

100

M
SE

C Recurring

0 1 2 3 4 5 6
Iterations ×105

0

20

40

60

80

100

De
ad

 U
ni

ts

F Recurring

Figure 9 (A, B, C) The evolution of the Mean Squared Errors (MSEs) of OKRB, SOMRB, and NGRB
using an error-based metric under the conditions of sudden, gradual, and recurring concept drifts, re-
spectively. Correspondingly, (D, E, F) The number of dead units under the same drift scenarios: sud-
den, gradual, and recurring concept drifts. The horizontal axis shows the training iteration. The vertical
axis shows the MSE in A–C and the number of dead units in D–F.

Full-size DOI: 10.7717/peerjcs.1789/fig-9

dealing with high-dimensional data. This problem is known as the curse of dimensionality.
Conversely, a win probability based metric is independent of the range of data values. It
works consistently, no matter how spread out the data values are. Thus, a win probability
based metric is suitable for concept drift.

Our future work will focus on investigating the effectiveness of the proposed method
in a two-step approach that includes an approximate clustering method (Vesanto &
Alhoniemi, 2000; Fujita, 2021). In the first step of this approach, a dataset is transformed
into sub-clusters. In the second step, these sub-clusters are treated as individual objects
and combined into larger clusters. This approach is known to be effective in handling a
large dataset (Vesanto & Alhoniemi, 2000; Fujita, 2021) and a data stream Mousavi et al.

Fujita (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1789 26/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1789/fig-9
http://dx.doi.org/10.7717/peerj-cs.1789

(2020). In the first step of this approach, the reduction of dead units is critical because dead
units potentially become outliers. In data mining, outliers can negatively affect processing
accuracy, making outlier detection a key aspect of the field (Zubaroğlu & Atalay, 2021).
In cases where concept drift occurs, data points produced by the data stream with old
properties and the centroids derived from them could become outliers. The proposed
methods quickly reduce the dead units caused by concept drift (i.e., they quickly adapt to
the new properties of a data stream), thereby efficiently preprocessing the data stream with
new properties. We hypothesize that using our proposedmethods in the first sub-clustering
step will improve the performance of two-step approximate clustering for the dynamic
nature of data streams. We will evaluate this in future work.

APPENDIX
Online k-means
Online k-means is an online variant of k-means. This study uses an algorithm derived
from the one described in Abernathy & Celebi (2022). For data streams, the online k-means
used in this study does not consider the time decay of the parameter. The pseudocode for
implementing online k-means can be found in Algorithm 4.

Algorithm 4 Online k-means
Require: X = x1,...,x t ,...,N
1: Initialize:
2: wn= (ξ1,...,ξd,...,ξD),n=1,...,N , where ξd = [0,1) is uniformed random
3: loop
4: {Update reference vectors:}
5: Receive input x t at iteration t
6: s= arg min

n
‖x t −wn‖

7: w s←w s+ε(x t −w s)
8: end loop

Parameter optimization
In this study, grid search is used for hyperparameter optimization. As a fundamental
method for hyperparameter tuning, grid search is both easy to implement and widely
accepted (Bergstra & Bengio, 2012; Feurer & Hutter, 2019).

For grid search, the parameter sets for OKRB, SOMRB, NGRB, online k-means, SOM,
NG, and GNG are detailed in Table 5. For each combination of parameters, these methods
quantize three different datasets ten times: Blobs, Circles, and Moons.

The goal of the grid search is to find the parameter set that minimizes the normalized
mean square error (NMSE), which is computed as follows

NMSE=
∑
m∈M

MSEm
MSEmax,m

, (14)

Fujita (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1789 27/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1789

Table 5 Sets of parameters.

OKRB
ε 0.05, 0.1, 0.2, 0.3
ThRB 0.01, 0.05, 0.1, 0.5
β 0.005, 0.001, 0.0005, 0.0001

SOMRB
ε 0.05, 0.1, 0.2, 0.3
σ 0.5, 0.75, 1, 2
ThRB 0.01, 0.05, 0.1, 0.5
β 0.005, 0.001, 0.0005, 0.0001

NGRB
λ 0.5, 1, 2, 4
ε 0.05, 0.1, 0.2, 0.3
Amax 25, 50, 75, 100
ThRB 0.01, 0.05, 0.1, 0.5
β 0.005, 0.001, 0.0005, 0.0001

ok-means
ε 0.05, 0.1, 0.2, 0.3, 0.4, 0.5

SOM
ε 0.05, 0.1, 0.2, 0.3, 0.4
σ 0.5, 0.75, 1, 2, 3

NG
λ 0.5, 1, 2, 4
ε 0.05, 0.1, 0.2, 0.3
Amax 25, 50, 75, 100

GNG
λ 50, 100, 200
εw 0.05, 0.1, 0.2
εns 0.0005, 0.005, 0.05
α 0.25, 0.5, 1.0
β 0.99, 0.999, 0.9999
amaxs 25, 50, 100

whereM is the set of datasets: Blobs, Circles, Moons. The MSE for a datasetm is calculated
as follows

MSEm=
1
Nm

Nm∑
i=1

min
n
‖x i−wn‖, (15)

whereNm is the number of data points in the datasetm, and x i is a data point in the dataset
m.MSEmax,m is the maximum MSE derived from all possible parameter combinations for
a given dataset m.

Evolution of the reference vectors
Figures 10, 11 and 12 show the evolution of the reference vectors in OKRB, SOMRB, and
NGRB, respectively, along with the distribution of the generated data points during the
gradual concept drift (transition from Aggregation to Blobs). This drift phase occurs within

Fujita (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1789 28/35

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1789

Figure 10 Scatter plot of data points and corresponding OKRB reference vectors.Data points are rep-
resented by cyan circles, while reference vectors are denoted by black circles.

Full-size DOI: 10.7717/peerjcs.1789/fig-10

the time step range of t = 90000 to t = 100000. The plotted data points are generated within
the time span of t−1000 to t .

During this gradual concept drift, all three methods successfully capture the topological
changes and integrate the old and new features of the data. In particular, after the drift,
the reference vectors of OKRB and NGRB, representing the old dataset, quickly disappear.
In contrast, for SOMRB, the reference vectors representing the old dataset decrease more
slowly.

RB updating using error-based metric
Each unit has an associated error term, En, initialized to 0. At each iteration, the error term
of the winning unit, denoted Es1 , is updated according to the following formula:

Es1← Es1+‖x t −w s1‖
2, (16)

Fujita (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1789 29/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1789/fig-10
http://dx.doi.org/10.7717/peerj-cs.1789

Figure 11 Scatter plot of data points and corresponding SOMRB reference vectors.Data points are
represented by cyan circles, while reference vectors are denoted by black circles. Edges are denoted by
black solid lines.

Full-size DOI: 10.7717/peerjcs.1789/fig-11

where x t is the input vector and w s1 is the reference vector of the winning unit. The error
term En for all units undergoes a decay process described by the equation:

En← En−βEn, (17)

where β is the decay rate. In addition to the error term, each unit is also associated with a
utility term, Un, which is initialized to 0. At each iteration, the utility of the winning unit,
Us1 , is updated according to:

Us1←Us1+‖x t −w s2‖
2
−‖x t −w s1‖

2, (18)

where s2 is the second nearest unit of the input vector x t . Like the error term, the utility
Un decays at each step according to the following equation:

Un←Un−βUn. (19)

Fujita (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1789 30/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1789/fig-11
http://dx.doi.org/10.7717/peerj-cs.1789

Figure 12 Scatter plot of data points and corresponding NGRB reference vectors.Data points are rep-
resented by cyan circles, while reference vectors are denoted by black circles. Edges are denoted by black
solid lines.

Full-size DOI: 10.7717/peerjcs.1789/fig-12

In RB updating with an error-basedmetric, a unit nwithminimum utilityUn is removed
and a new unit is created near the unit qwith maximum error Eq if the following conditions
are satisfied:
Un

Eq
<THRB. (20)

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Fujita (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1789 31/35

https://peerj.com
https://doi.org/10.7717/peerjcs.1789/fig-12
http://dx.doi.org/10.7717/peerj-cs.1789

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Kazuhisa Fujita conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The codes and the below datasets are available at Github and Zenodo:
- https://github.com/KazuhisaFujita/RemoveBirthUpdating
- Kazuhisa Fujita. (2023). KazuhisaFujita/RemoveBirthUpdating: New release (release).

Zenodo. https://doi.org/10.5281/zenodo.10076879
The datasets, Blobs, Circles, and Moons were generated using the ’make_blobs’,

’make_circles’, and ’datasets.make_moons’ functions, respectively, from the Scikit-learn
library (https://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets).

The Aggregation and Compound datasets are available at: Available at https:
//cs.joensuu.fi/sipu/datasets/. The T7.8k and t8.8k datasets are available at Github:
https://github.com/milaan9/Clustering-Datasets/blob/master.

The real-world datasets such as Iris (Fisher, https://archive.ics.uci.edu/dataset/53/iris),
Wine (https://archive.ics.uci.edu/dataset/109/wine), and Digits (https://archive.ics.uci.edu/
dataset/80/optical+recognition+of+handwritten+digits) are available at the UCI Machine
Learning Repository.

REFERENCES
Abernathy A, Celebi ME. 2022. The incremental online k-means clustering algo-

rithm and its application to color quantization. Expert Systems with Applications
207(C):117927.

AckermannMR,Märtens M, Raupach C, Swierkot K, Lammersen C, Sohler C. 2012.
Streamkm++: a clustering algorithm for data streams. ACM Journal of Experimental
Algorithmics 17 DOI 10.1145/2133803.2184450.

Alothali E, Alashwal H, Harous S. 2019. Data stream mining techniques: a review.
TELKOMNIKA (Telecommunication Computing Electronics and Control) 17:728
DOI 10.12928/telkomnika.v17i2.11752.

Angelopoulou A, García-Rodríguez J, Orts-Escolano S, Gupta G, Psarrou A. 2018.
Fast 2d/3d object representation with growing neural gas. Neural Computing and
Applications 29:903–919 DOI 10.1007/s00521-016-2579-y.

Angelopoulou A, Psarrou A, García-Rodríguez J. 2011. A growing neural gas algorithm
with applications in hand modelling and tracking. In: Cabestany J, Rojas I, Joya G,
eds. Advances in computational intelligence. Berlin, Heidelberg: Springer, 236–243.

Fujita (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1789 32/35

https://peerj.com
https://github.com/KazuhisaFujita/RemoveBirthUpdating
https://doi.org/10.5281/zenodo.10076879
https://cs.joensuu.fi/sipu/datasets/
https://cs.joensuu.fi/sipu/datasets/
https://github.com/milaan9/Clustering-Datasets/blob/master
https://archive.ics.uci.edu/dataset/53/iris
https://archive.ics.uci.edu/dataset/109/wine
https://archive.ics.uci.edu/dataset/80/optical+recognition+of+handwritten+digits
https://archive.ics.uci.edu/dataset/80/optical+recognition+of+handwritten+digits
http://dx.doi.org/10.1145/2133803.2184450
http://dx.doi.org/10.12928/telkomnika.v17i2.11752
http://dx.doi.org/10.1007/s00521-016-2579-y
http://dx.doi.org/10.7717/peerj-cs.1789

Arthur D, Vassilvitskii S. 2007. K-means++: the advantages of careful seeding. In:
Proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms.
Philadelphia: Society for Industrial and Applied Mathematics, 1027–1035.

Bergstra J, Bengio Y. 2012. Random search for hyper-parameter optimization. Journal of
Machine Learning Research 13(10):281–305.

Beyer O, Cimiano P. 2013. Dyng: dynamic online growing neural gas for stream data
classification. In: ESANN 2013 proceedings. 497–502.

Canales F, ChacónM. 2007. Modification of the growing neural gas algorithm for
cluster analysis. In: Rueda L, Mery D, Kittler J, eds. Progress in pattern recogni-
tion, image analysis and applications. Berlin, Heidelberg: Springer, 684–693
DOI 10.1007/978-3-540-76725-1_71.

Chang C-H, Xu P, Xiao R, Srikanthan T. 2005. New adaptive color quantization method
based on self-organizing maps. IEEE Transactions on Neural Networks 16:237–249
DOI 10.1109/TNN.2004.836543.

Costa JAF, Oliveira RS. 2007. Cluster analysis using growing neural gas and graph
partitioning. In: Proceedings of 2007 international joint conference on neural networks.
3051–3056.

Ding S, Zhang J, Jia H, Qian J. 2015. An adaptive density data stream clustering algo-
rithm. Cognitive Computation 8:1–9.

Fatemizadeh E, Lucas C, Soltanian-Zadeh H. 2003. Automatic landmark extraction
from image data using modified growing neural gas network. IEEE Transactions on
Information Technology in Biomedicine 7(2):77–85 DOI 10.1109/TITB.2003.808501.

Feurer M, Hutter F. 2019. Automated machine learning, chapter hyperparameter optimiza-
tion. Springer, 3–33.

Fis̃er D, Faigl J, KulichM. 2013. Growing neural gas efficiently. Neurocomputing
104:72–82 DOI 10.1016/j.neucom.2012.10.004.

Frezza-Buet H. 2008. Following non-stationary distributions by controlling the vector
quantization accuracy of a growing neural gas network. Neurocomputing 71(7–
9):1191–1202 DOI 10.1016/j.neucom.2007.12.024.

Fritzke B. 1994. A growing neural gas network learns topologies. In: Proceedings of
the 7th international conference on neural information processing systems, NIPS’94.
Cambridge: MIT Press, 625–632.

Fritzke B. 1997. A self-organizing network that can follow non-stationary distributions.
In: Gerstner W, Germond A, Hasler M, Nicoud J, eds. Artificial neural networks—
ICANN’97, ICANN 1997. Lecture Notes in Computer Science, vol. 1327. Berlin,
Heidelberg: Springer, 613–618 DOI 10.1007/BFb0020222.

Fujita K. 2021. Approximate spectral clustering using both reference vectors and
topology of the network generated by growing neural gas. PeerJ Computer Science
7:e679 DOI 10.7717/peerj-cs.679.

Gama J. 2010. Knowledge discovery from data streams. Boca Raton: CRC Press.
Gama J, Žliobaitundefined I, Bifet A, Pechenizkiy M, Bouchachia A. 2014. A survey on

concept drift adaptation. ACM Computing Surveys 46(4):1–37.

Fujita (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1789 33/35

https://peerj.com
http://dx.doi.org/10.1007/978-3-540-76725-1_71
http://dx.doi.org/10.1109/TNN.2004.836543
http://dx.doi.org/10.1109/TITB.2003.808501
http://dx.doi.org/10.1016/j.neucom.2012.10.004
http://dx.doi.org/10.1016/j.neucom.2007.12.024
http://dx.doi.org/10.1007/BFb0020222
http://dx.doi.org/10.7717/peerj-cs.679
http://dx.doi.org/10.7717/peerj-cs.1789

García-RodríGuez J, Angelopoulou A, García-Chamizo JM, Psarrou A, Orts Escolano
S, Morell Giménez V. 2012. Autonomous growing neural gas for applications
with time constraint: optimal parameter estimation. Neural Networks 32:196–208
DOI 10.1016/j.neunet.2012.02.032.

GhesmouneM, Azzag H, LebbahM. 2014. G-stream: growing neural gas over data
stream. In: Loo CK, Yap KS, Wong KW, Teoh A, Huang K, eds. Neural information
processing. Cham: Springer International Publishing, 207–214.

GhesmouneM, LebbahM, Azzag H. 2015. Clustering over data streams based on
growing neural gas. In: Cao T, Lim E-P, Zhou Z-H, Ho T-B, Cheung D, Motoda H,
eds. Advances in knowledge discovery and data mining. Cham: Springer International
Publishing, 134–145.

Gionis A, Mannila H, Tsaparas P. 2007. Clustering aggregation. ACM Transactions on
Knowledge Discovery from Data 1(1):1–30 DOI 10.1145/1217299.1217300.

Haykin SS. 2009.Neural networks and learning machines. Third edition. Upper Saddle
River: Pearson Education.

Heskes T. 2001. Self-organizing maps, vector quantization, and mixture modeling. IEEE
Transactions on Neural Networks 12:12–1299.

Holdstein Y, Fischer A. 2008. Three-dimensional surface reconstruction using
meshing growing neural gas (MGNG). The Visual Computer 24(4):295–302
DOI 10.1007/s00371-007-0202-z.

Karypis G, Han E, Kumar V. 1999. Chameleon: hierarchical clustering using dynamic
modeling.

Kohonen T. 1982. Self-organized formation of topologically correct feature maps.
Biological Cybernetics 43:59–69 DOI 10.1007/BF00337288.

Lloyd SP. 1982. Least squares quantization in pcm. IEEE Transactions on Information
Theory 28(2):129–136 DOI 10.1109/TIT.1982.1056489.

MacQueen JB. 1967. Some methods for classification and analysis of multivariate
observations. In: Cam LML, Neyman J, eds. Proc. of 5th Berkeley Symp. Math. Stat.
Probab. volume 1. Univ. California Press, 281–297.

Martinetz T, Schulten K. 1991. A neural-gas network learns topologies. Artificial Neural
Networks I:397–402.

Mousavi M, Khotanlou H, Bakar AA, VakilianM. 2020. Varying density method for
data stream clustering. Applied Soft Computing 97:106797
DOI 10.1016/j.asoc.2020.106797.

Ohtsuki H, Hauert C, Lieberman E, NowakMA. 2006. A simple rule for the evolu-
tion of cooperation on graphs and social networks. Nature 441(7092):502–505
DOI 10.1038/nature04605.

Ordonez C. 2003. Clustering binary data streams with k-means. In: Proceedings of the 8th
ACM SIGMOD workshop on research issues in data mining and knowledge discovery,
DMKD ’03. New York, NY: Association for Computing Machinery, 12–19.

Ramírez-Gallego S, Krawczyk B, García S, WoźniakM, Herrera F. 2017. A survey on
data preprocessing for data stream mining: current status and future directions.
Neurocomputing 239:39–57 DOI 10.1016/j.neucom.2017.01.078.

Fujita (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1789 34/35

https://peerj.com
http://dx.doi.org/10.1016/j.neunet.2012.02.032
http://dx.doi.org/10.1145/1217299.1217300
http://dx.doi.org/10.1007/s00371-007-0202-z
http://dx.doi.org/10.1007/BF00337288
http://dx.doi.org/10.1109/TIT.1982.1056489
http://dx.doi.org/10.1016/j.asoc.2020.106797
http://dx.doi.org/10.1038/nature04605
http://dx.doi.org/10.1016/j.neucom.2017.01.078
http://dx.doi.org/10.7717/peerj-cs.1789

Rasti J, Monadjemi A, Vafaei A. 2011. Color reduction using a multi-stage kohonen
self-organizing map with redundant features. Expert Systems with Applications
38(10):13188–13197 DOI 10.1016/j.eswa.2011.04.132.

Silva B, Marques N. 2015. Ubiquitous self-organizing map: learning concept-drifting
data streams. Advances in Intelligent Systems and Computing 353:713–722
DOI 10.1007/978-3-319-16486-1_70.

Singh R, Cherkassky V, Papanikolopoulos N. 2000. Self-organizing maps for the
skeletonization of sparse shapes. IEEE Transactions on Neural Networks and Learning
Systems 11:241–248 DOI 10.1109/72.822527.

Smith T, Alahakoon D. 2009.Growing self-organizing map for online continuous cluster-
ing. Berlin: Springer Berlin Heidelberg, 49–83.

SultanM. 2022. Sampling streaming data with parallel vector quantization—PVQ. CoRR
abs/2210.01792.

Sun Q, Liu H, Harada T. 2017. Online growing neural gas for anomaly detection in
changing surveillance scenes. Pattern Recognition 64:187–201
DOI 10.1016/j.patcog.2016.09.016.

Vesanto J, Alhoniemi E. 2000. Clustering of the self-organizing map. IEEE Transactions
on Neural Networks 11:586–600 DOI 10.1109/72.846731.

WuX, Kumar V, Quinlan JR, Ghosh J, Yang Q, Motoda H, McLachlan GJ, Ng A, Liu B,
Yu PS, Zhou Z-H, SteinbachM, Hand DJ, Steinberg D. 2007. Top 10 algorithms in
data mining. Knowledge and Information Systems 14:1–37.

Zubaroğlu A, Atalay V. 2021. Data stream clustering: a review. Artificial Intelligence
Review 54(2):1201–1236 DOI 10.1007/s10462-020-09874-x.

Fujita (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1789 35/35

https://peerj.com
http://dx.doi.org/10.1016/j.eswa.2011.04.132
http://dx.doi.org/10.1007/978-3-319-16486-1_70
http://dx.doi.org/10.1109/72.822527
http://dx.doi.org/10.1016/j.patcog.2016.09.016
http://dx.doi.org/10.1109/72.846731
http://dx.doi.org/10.1007/s10462-020-09874-x
http://dx.doi.org/10.7717/peerj-cs.1789

