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ABSTRACT
Background. Joint local context that is primarily processed by pre-trained models
has emerged as a prevailing technique for text classification. Nevertheless, there are
relatively few classification applications on small sample of industrial text datasets.
Methods. In this study, an approach of employing global enhanced context representa-
tion of the pre-trained model to classify industrial domain text is proposed. To achieve
the application of the proposed technique, we extract primary text representations
and local context information as embeddings by leveraging the BERT pre-trained
model. Moreover, we create a text information entropy matrix through statistical
computation, which fuses features to construct the matrix. Subsequently, we adopt
BERT embedding and hyper variational graph to guide the updating of the existing
text information entropy matrix. This process is subjected to iteration three times.
It produces a hypergraph primary text representation that includes global context
information. Additionally, we feed the primary BERT text feature representation
into capsule networks for purification and expansion as well. Finally, the above two
representations are fused to obtain the final text representation and apply it to text
classification through feature fusion module.
Results. The effectiveness of this method is validated through experiments on multiple
datasets. Specifically, on the CHIP-CTC dataset, it achieves an accuracy of 86.82%
and an F1 score of 82.87%. On the CLUEEmotion2020 dataset, the proposed model
obtains an accuracy of 61.22% and an F1 score of 51.56%. On the N15News dataset, the
accuracy and F1 score are 72.21% and 69.06% respectively. Furthermore, when applied
to an industrial patent dataset, the model produced promising results with an accuracy
of 91.84% and F1 score of 79.71%. All four datasets are significantly improved by using
the proposedmodel compared to the baselines. The evaluation result of the four dataset
indicates that our proposed model effectively solves the classification problem.

Subjects Algorithms and Analysis of Algorithms, Digital Libraries, Natural Language and Speech,
Text Mining, Neural Networks
Keywords Hyper variational graph, Text information entropy matrix, Industrial applications,
Capsule network

INTRODUCTION
Text classification holds great promise in a multitude of disciplines, including information
retrieval, digital libraries, and intelligence filtering. It is the action of automatically
classifying text based on certain classification techniques or criteria, as demonstrated by
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Liu et al. (2020). Although text classification is essential while building an industrial
knowledge graph, there are currently few text classification models available for data in
the industrial field. Early approaches to text classification were based on statistical learning
techniques. The conventional method involves two steps to extract text features. First,
human-made design or its inherent features are extracted from the text, such as term
frequency-inversed document frequency (TF-IDF) (Aggarwal & Zhai, 2012; Ramos, 2003;
Zhang, Gong & Wang, 2005). and then the classifier of the text is obtained by learning a
support vector machine (SVM) (Cortes & Vapnik, 1995). Some researchers constructed the
LSI (Wang & Zhang, 2006) model through SVM by leveraging the Dirichlet distribution.
The Latent Dirichlet Allocation (LDA) model (Li, Sun & Zhang, 2008), which incorporates
topics with Bayesian clustering algorithm to categorize texts, has produced better results
in multiple classification text task. It is an appropriate approach to extract text feature
information by using standard models, however these models lack useful semantic fusion
feature.

The conventionalmodels have low fault tolerance, whichmakes it incapable of enhancing
text classification performance. Deep learning models have become one of the important
methods for text feature extraction. However, most sequence deep learning models lack
the extraction of local words or characters information, such as TextCNN (Shin et al.,
2018; Zhang, Zhao & LeCun, 2015), TextRCNN (Wang et al., 2019) models, etc. But these
models raise the issues that sequence learning cannot entirely focus on local information,
especially the long-term dependencies among words in long texts. Although the LSTM and
gated recurrent units (GRU) have partially fixed this issue, some features of words are less
learned in long dependencies, which make it difficult to analyze long texts efficiently.

Several researchers, including Yao, Mao & Luo (2019), Zhang et al. (2020), Wu et al.
(2022), Luo et al. (2023) and Zeng et al. (2023), have proposed addressing the limitations of
sequence models by employing GCN models. GCN models utilize a message transmission
approach to effectively handle word relationships and update graph data. Text can be
approached by using two different graph types: static (Yao, Mao & Luo, 2019) and dynamic
(Zhang et al., 2020) graphs. For static graph, to begin with the training task, it is necessary to
establish a larger static graph that contains all the information between words or characters.
Only the weights of the static graph can be modified, necessitating the creation of a text
representation using static graphs that incorporate all available features. While this method
produces better results for small sample datasets, it performs poorly for large sample
datasets. As an alternative, another method is to construct text using a dynamic graph.
Alternatively, dynamic graphs are employed to construct text representations. Unlike
static graphs, dynamic graphs do not require the inclusion of all words from every text
to establish static features. Instead, they dynamically generate graph features based on the
text encountered during model training. While this approach is efficient and enables the
modeling of lengthy texts, it suffers from lower precision and accuracy compared to the
static graph approach.

Despite the benefits of current models, there are still specific issues that need to be
addressed. Firstly, adding single information while creating a graph is not advisable
because such frequency attributes do not accurately convey the meanings of text. Secondly,
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word vector-based text classification techniques only predict without additional semantic
features to do the downstream tasks. Although the BERT combined with spatial feature
representation solves most of the problems, it does not fuse the features expressed in the
form of graphs. Thirdly, there is limited acquisition of text from single perspective, which
fails to achieve the semantic unification of graph and sequence. To tackle these issues, the
article proposes a dual-stream with hyper variational graph and semantic fusion model
for text classification, know as HVGSFM, designed to handle medium and long texts.
It combines hyper variational graph features through a fusion network to handle text
classification.

In summary, this article presents the following significant contributions:

• We introduce the utilization of relative entropy statistical data information to construct
the Text Information Entropy Matrix (TIEM) for graph neural networks. This approach
effectively captures and expresses the graph features for sentence words, and the
incorporation of a sliding window further enhances the model’s effectiveness.
• We propose the introduction of a semantic fusion unit (SFU) layer, which significantly
enhances the semantic connection between two streams within the network. The trained
model demonstrates remarkable improvements in this aspect.
• We enhance the interpretability of high-level text feature layers by leveraging an
improved multi-layer capsule dynamic routing algorithm.

The organization of this article is as follows. Firstly, we provide a comprehensive review
of related work in order to provide readers with a background understanding of the
field. Next, we present in detail our proposed method, including its design principles and
implementation steps. Subsequently, we describe the experiments conducted to validate
the effectiveness of our method and present the experimental results and analysis. Finally,
we summarize the main findings of the article and discuss future research directions.

RELATED WORK
The sequential feature of text makes models based on sequence processing an initially
considered more suitable feature extraction technique. The applicability of RNN models
to sequential features led to their first application in the natural language field, particularly
in text feature extraction. For text classification, some researchers proposed the TextRNN
model (Liu, Qiu & Huang, 2016; Li et al., 2016a) using word vectors and LSTM encoding.
Subsequently, related researchers proposed attention mechanisms (Raffel & Ellis, 2015;
Chaudhari et al., 2021) to further enhance the representation of text features. Additionally,
some researchers proposed encoding through bidirectional recursive attention networks,
resulting in significant improvements in model accuracy. On the other hand, some scholars
have also noted the problem of single word granularity and text length dependence in
longer texts. In response, they proposed the HANmodel (Yang et al., 2016; Xu et al., 2021),
which assigns different weight values to phrases at word granularity level, combined with
attention mechanisms. This approach achieved good results in classification tasks. Some
researchers have also proposed an improved bat algorithm(IBANN) (Bangyal, Ahmad &
Rauf, 2019) in data classification tasks, the proposed approach modifies the standard BA
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by enhancing its exploitation capabilities and avoids escaping from local minima, and have
a good results. There are also methods that use only Counter Propagation network (CPN)
algorithm (Bangyal, Ahmad & Abbas, 2013) to recognize offline handwritten English
characters.

Recent years, the usage of convolutional neural networkmodels has alsomade significant
progress in natural language processing. The first proposal for CNN models in text
classification was made by Zhang, Zhao & LeCun (2015). Wang et al. (2019) proposed the
RCNN model which uses long short-term memory (LSTM) to traverse left and right
sentence vectors, concatenates the obtained sentence vectors, performs convolutional
pooling operations to form text features, and produces final classification results. Based
on this model, Li & Ning (2020) added a HighWay layer (Srivastava, Greff & Schmidhuber,
2015) to improve the representation of text features. Zhao et al. (2018) hold the belief that
the rich structure of text inevitably limits spatially insensitive methods and that differences
between local and global information lead to different classification results. Based on this
theory, a capsule neural network method for text classification has been proposed with
good results. These methods use different approaches to aggregate text features. While
these text processing methods yield good results, the lack of word or word spatial semantic
features does not further improve the performance of the models.

Graph Neural Networks (GNNs) (Defferrard, Bresson & Vandergheynst, 2016; Kipf
& Welling, 2016) have demonstrated remarkable success in text classification tasks by
effectively capturing semantic relations between words. These tasks can be categorized
as isomorphic or heterogeneous graph-based, depending on the structure employed.
Isomorphic graph-based text classification models typically represent words in a text as a
graph composed of word nodes, which is then utilized for document graph classification.
TLGNN (Huang et al., 2019), TextING (Zhang et al., 2020), and HyperGAT (Ding et al.,
2020) are examples of such models that establish relationships between edges and nodes
using various text or word features. On the other hand, models like TextGCN (Yao, Mao
& Luo, 2019), TensorGCN (Liu et al., 2020), and HeteGCN (Ragesh et al., 2021) operate on
heterogeneous corpus-level graphs. These models consider text and words as nodes and
employ node classification to classify unlabeled text. They employ diverse construction
and processing strategies to accommodate the diverse nature of nodes and edges. However,
these techniques may not be suitable for short texts with limited length, as the features
tend to have less varied information, resulting in weak information correlation within the
matrix.

Sequence models primarily focus on word positions and characteristics while
disregarding spatial features. The attention mechanism addresses the relationship between
interrelatedwords during training, which is why the BERTmodel outperforms conventional
models in handing spatial relationships. XLNET combines the permutation languagemodel
and dual low attention for text feature construction. However, this computational approach
is still lacking in graphical feature fusion, limiting the model’s ability to continuously
improve prediction performance. Exploring the graphmodel provides an avenue to address
graph construction by leveraging information entropy as a measure of text information
quantity. The information entropy of asymmetric structure significantly enhances the

Zhang and Hu (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1788 4/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1788


semantic meaning between words. Given the numerous challenges encountered in the
aforementioned model, we introduce the HVGSFM model as an alternative approach that
leverages dual flow characteristics to address the issue of word feature interaction. This
model encompasses the following components: the generation of word adjacency matrix
features within the hypergraph, incorporating enhanced entropy properties, as well as
the segmentation of the capsule network for aggregating word features. Ultimately, the
semantic fusion unit (SFU) module is employed to filter the necessary features, leading to
a satisfactory outcome in the field of industrial text classification.

PROPOSED METHOD
Assuming along text W = {w1,w2,...,wn}, where wk,k =1 ,2,...,n represents the words
in the text. The task of text classification involves outputting O ∈ {s1,s2,...,st },where si
denotes the classification category. In this study, we propose a novel approach for text
classification called hyper variational graph and semantic fusion model (HVGSFM),
employing a dual-stream architecture. The complete HVGSFM architecture is depicted in
Fig. 1 This section is structured into four parts. The first part pertains to the input layer,
which incorporates both BERT and graph text information entropy matrix processing
layer. The second part comprises of a dual-stream layer consisting of a hyper variational
graph layer and a dynamic routing capsule layer. Next, the third part encompasses the
semantic fusion layer utilized for aggregating semantic information, and it includes both
graph structure information and capsule aggregate information. Finally, the fourth layer
serves as the text classification output layer. In the subsequent sections, we elaborate on
the specific structures of each neural network layer in the proposed HVGSFM.

Input layer
In the present section, character or word tokens with its masks, and the text information
entropy matrix for inputs are presented. The subsequent statements illustrate how these
elements are processed.

Word tokens processing
In this study, experiments are conducted on four distinct domain datasets. The ambiguity
and uncertainty of sentences across different domains pose challenges in feature extraction.
To address this, BERT Tokenizer (Devlin et al., 2019) is used with sentence pipeline
segmentation to process the input level. Masks are applied to distinguish between words
in the sentence. As shown in Fig. 2, the word parts are filled with ones while the padding
parts are filled with zeros.

The text information entropy matrix (TIEM)
The construction of the text information entropy matrix (TIEM) includes three steps, the
details are shown as follows:

• Word frequency statistics: First, compute frequency values on the text to get the set S
of words or characters, and then obtain the frequency vector F .
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Figure 1 As shown in figure, the HVGSFM architecture compasses two streams. After the input tokens
layer, the first stream began with the hyper variational graph layer, which was used for text entropy in-
formation matrix (TIEM) reconstruction and primary text feature extraction. The input to this layer was
both BERT embedding and TIEM, and the output was text features along with the weights of TIEM up-
dated by variational Gaussian distribution. The second stream involves the capsule layer, with BERT em-
bedding as input and capsule text features as output. Next, the semantic fusion unit (SFU) was adopted to
combine the features from both streams. Finally, the predictions were performed by using the last layer of
the model.

Full-size DOI: 10.7717/peerjcs.1788/fig-1
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Figure 2 The graph key words input tokens.
Full-size DOI: 10.7717/peerjcs.1788/fig-2

• Sliding window effect: To emphasize the significance of words in the weight matrix, a
sliding window was adopted to cover several words in the text window, and then the
frequency of the words inside the window was obtained, which is defined as Wi. The
frequency was added to the word frequency in the prior step to produce the final total
weight score V , which satisfies:

Vi= Fi+Wi,i= 1,2,...,NS (1)

Here we call the vector V as the document weight score vector.
• Text Information EntropyMatrix: The weight score between two words is constructed
with improved relative entropy. The obtained text weight score vector is expressed as V .
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Subsequently, the adjacency matrix of the relative entropy of word features is given as:

Ai,j =Vj ∗ log
(
1.0+

Vi

Vj

)
(2)

Here we designate the adjacency matrix A as the Text Information Entropy Matrix
(TIEM). Notably, the asymmetric entropy strategy utilized in generating the adjacency
matrix resulted in a significant distribution difference. This refinement enabled us to
effectively extract the quantity of information features among words present in the
document.

Dual-stream layer
The dual-stream layer has been organically coupled with the hypergraph and capsule
network. Specifically, the context words are meticulously analyzed via a hyper variational
graph, which has been encoded with the BERT model in the initial phase. Subsequently,
the multiple dynamic routing capsule network is applied in the second phase. These two
parts together form the dual-stream layer of the model.

Hyper variational graph layer
HyperGAT (Ding et al., 2020) is a network designed for generating and processing graph
structures. Due to the advantages of utilizing graph attention networks in hypergraphs for
feature extraction, it was leveraged to propose hypergraph variational graph layer for text
feature representation in this study. To obtain text graph features, two distinct aggregation
algorithms were employed, facilitating the learning of heterogeneous high-order context
representations on nodes and edges within the hypergraph. The mathematical formulation
for the aforementioned process is expressed as follows:

hli =AGGRl
edge

(
hl−1i ,

{
f lj
∣∣∀ej ∈ εi})

f lj =AGGRl
node

({
hl−1k

∣∣∀vk ∈ ej }) (3)

εi denotes to the set of hyperedges which is connected to node vi , f lj is the representation
of ej edge at the l layer. The function AGGRl

edge aggregates all the hyperedge features of the
graph to the node, and AGGRl

node function gathers the characteristics of nodes to the edge.

Node attention. Given a specific node vi, theHyperGraph layer will learn the representation
of all edges that connected to the node, whereas not all edges connected to this node have
the same weight. Thus the weights are assigned through the attention mechanism, which
satisfies:

f lj = σ

∑
vk∈ej

αjkW1hl−1k

 (4)

where σ is a nonlinear activation function, usually refers to the sigmoid function, W1 is a
trainable matrix, αjk refers to the coefficient of edge ej at the node vk , which is calculated
as follows:

αjk =
exp

(
aT1 uk

)∑
vp∈ej exp

(
aT1 up

)
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uk = LeakyReLU
(
W1hl−1k

)
(5)

Edge attention. For all edge representations
{
hl−1k | ∀vk ∈ ej

}
, the attention mechanism is

also used to learn the node representation of the next layer. It is formulated in the following
function:

hli = σ

∑
ej∈εi

βijW2f lj

 (6)

where hli denotes the output representations of the node vi,W2 is a trainable matrix, βjk
expresses the attention weight coefficients, which satisfies:

βij =
exp(aT2vj)∑

ep∈εi exp(a
T
2vp)

vj = LeakyReLU([W2flj ||W1hl−1i ]). (7)

The HyperGraph layer incorporates a two-way attention mechanism for nodes and
edges, enabling it to capture high-level interactions between words while highlighting the
weight distribution at different levels of granularity. In sentences, where word semantics
can be ambiguous, it is crucial to appropriately maintain or eliminate different semantic
information. Resolving this ambiguity requires the establishment of a relatively stable
feature distribution.

To address this challenge, we propose the reconstruction of the text information entropy
matrix (TIEM). Given an encoded graph, we solve the problem by sampling the feature
distribution to avoid semantic ambiguity during the graph reconstruction process. Initially,
we obtain an encoded feature distribution denoted as Z , serving as an intermediate variable.
The relationship between the encoded feature distribution h and the matrix A(TIEM) can
be expressed as follows:

q(Z |H ,A)=
n∏

j=1

q
(
zj |H ,A

)
q
(
zj |H ,A

)
=N

(
zj
∣∣µj,σj

)
(8)

where µ= AGGRl
µ(H ,A),σ = AGGRl

µ(H ,A) represent the mean and variance of the
distribution, and Z follows Gaussian distribution. Next sampling from its distribution.
Since the direct sampling process does not contain gradient information, it is useless for
the whole network. Thus, the result is resampled: Z =µ+ εσ , where ε∼N (0,1). The
decoder reconstructs the graph by calculating the probability of an edge between any two
nodes in the graph:

p(A|Z )=
n∏

j=1

n∏
k=1

p
(
Ai,j

∣∣zi,zj )
p
(
Âi,j

∣∣zi,zj )= σ (zTi zj) (9)
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where Â is the reconstructed TIEM, and the final feature presentation is obtained:

f1= conv1
(
relu(ÂHW )

)
f2= conv2

(
relu(ÂHW )

)
···

fn= convn
(
relu(ÂHW )

)
hf = [f1,f2,...,fn]

(10)

The variable n represents the number of filters for the convolution layer. These filters
play a crucial role in enhancing fragment fusion syntactic information. Moreover, the
hypergraph layer is particularly important, because it enables the mapping of text features
from a word-based perspective. This ultimately results in the production of a reconstructed
feature vector, which can then be subjected to further backpropagation processing. The
article shows how to successfully reconstruct TIEM, so we called this layer as hyper
variational graph (HVG).

Dynamic routing capsule layer
Recently, significant strides have been made in text classification with the help of capsule
networks, as observed by researchers (Zhao et al., 2018; Sabour, Frosst & Hinton, 2017).
Drawing inspiration from these advancements, we implement a similar approach in our
own work. Specifically, we begin by extracting features using a BERT model. The resulting
feature vector then undergoes routing through a primary capsule layer. Subsequently, a
secondary capsule network is employed to dynamically route and weight various fragments
of the text feature vector. This approach enhances the accuracy of the classification process.
We construct the primary capsule layer using a multi-layer convolution, mathematically
expressed as follows:

hv = conv(hB) (11)

To better visualize the proposedmodule, the details of secondary capsule layer are provided
in Fig. 3.

We introduce a summation variable, denoted by v , while W and u are treated as
trainable parameters. The variable hc in the primary capsule layer is partitioned into n
capsules to facilitate feature aggregation. First we initialize the value vector:

hv = [v1,v2,...,vj,...,vn] (12)

b= [0,...,0] (13)

And calculation is expressed as follows:

ci= softmax(bi)
ûj|i=Wjivj
si=

∑
i

cij ûj|i

vj = g
(
sj
)
=

∣∣∣∣sj∣∣∣∣2
1+

∣∣∣∣sj∣∣∣∣2 · sj∣∣∣∣sj∣∣∣∣2
bij = bij+ ûj|i ·vj

(14)
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Figure 3 The secondary capsule layer computation.
Full-size DOI: 10.7717/peerjcs.1788/fig-3

where g (.) is a squashing nonlinear activation function used to ensure that the short vector
distribution is close to 0 and the long one is close to 1. bij is an a priori relationship between
ui and vj . The following routing algorithm can be used to produce the final result.

Algorithm 1 Routing algorithm

ROUTING
(
ûj|i,r,l

)
all capsule i in layer l and capsule j in layer (l+1):bij← 0.
for r interactions do
for all capsule i in layer l :ci← softmax(bi)
for all capsule j in layer (l+1):sj←

∑
i
cij ûj|i

for all capsule j in layer (l+1):vj← squash
(
sj
)

for all capsule i iin layer l and capsule j in layer (l+1):bij← bij+ ûj|i ·vj
end for

And the number of capsule should equal to the number of the filter in HVG. Finally,
the output hv feature vector is as followed:

hv =
[
v1,v2,...,vj,...,vd

]
(15)

The capsule layer combines larger features into the final output feature vector through
aggregation, and further merges them into the final classification result.

Semantic fusion layer
The semantic fusion unit is capable of integrating two separate information aspects by
leveraging a structured gate, which is termed the semantic fusion unit (SFU). The gate
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computation is formulated by following functions:
fg = tanh

(
Wghg +Bg

)
fv = tanh(Wvhv+Bv)
fu = σ

(
Wu[hg ,hv ]+Bu

)
d = fu ∗ fv+ (1− fu)∗ fg

(16)

where hg denotes the features extracted from Hyper Variational Graph, and hv represents
the ones from the capsule layer. The innovative concept of incorporating gated structures
within the capsule network draws inspiration from the HighWay structure (Srivastava,
Greff & Schmidhuber, 2015). This accomplished effective gating mechanism governs the
incorporation of feature vector. Thus, the capsule layer is capable of yielding highly accurate
and comprehensive models that outperform conventional structures.

Output layer
The output of the model is defined as the following formula:

p(o|v )= softmax

(
Wo

n∑
i=0

di+Bo

)
(17)

Finally, we obtain the distribution of predictions from the output layer. Suppose p̂ for
label, p for predicted probability, for every target labels, the output loss is described as an
cross entropy loss:

L
(
pk,p̂k

)
= pk · logpk+ (1− p̂k) · log(1− p̂k)

Thus, the loss function of our model is defined as follows:

L=−
1
N

N∑
k=0

L
(
pk,p̂k

)
(18)

The upcoming section will give a comprehensive overview of conducting experiments.

EXPERIMENTS
The results were acquired through a high-performance setup that comprised a PC with 80
GB RAM, an Intel Xeon Gold 6330 CPU, as well as a powerful 48 GB NVIDIA A40 device.
The Pytorch deep learning framework was utilized for implementing the model.

Datasets
The model in this study was trained based on the following datasets that originated from
different domains and languages. The datasets are listed in Table 1. The datasets came from
different Internet public resources. The detailed information of the datasets are as follows:

• CLUEEmotion2020 (Li et al., 2016b) This dataset is emotion analysis corpus Li et al.
(2016b) labeled with each sample annotated with one emotion label, and contains train,
validation and test dataset. The label set is like, happiness, sadness, anger , disgust , fear
and surprise for seven emotions classification.
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Table 1 Dataset summary.

Dataset Texts Class Avg.length Max.length Words Train/test(ratio)

CLUEEmotion2020 35,694 7 47.11 208 5,272 88.9/11.1
CHIP-CTC 30,644 44 27.16 342 2,566 74.9/25.1
N15News 61,218 24 18.68 155 138,229 70.0/30.0

Notes.
The bold values indicates that compared to several ablation experiments, the HVGSFMmodel proposed in this article has the
best F1 score and accuracy score when trained on three datasets.

• CHIP-CTC (Zong et al., 2021) The dataset is categorized based on the screening criteria
utilized in clinical trials. It is sourced entirely from authentic clinical trial cases with the
abbreviated data, and obtained from the standardized module within the public Chinese
clinical website.
• N15News (Wang et al., 2022) It is generated from New York Times with 24 categories
and contains both text and image information in each news. Here we use the text with
body tag for news classification as test dataset.

Compared models
In our article, the HVGSFM compared with the following models, which divided into four
groups:

• Baselines. This group includes two pre-trained models, BERT (Devlin et al., 2019) and
XLNET (Yang et al., 2019). In the BERT model, the fine-tuning BERT model adds a
perceptron layer composed of two full connection layers for classification. In the XLNET
model, we still add the same perceptron as the classification layer.
• Seqs. This group of models includes four hybrid models, one is the TextCNN (Shin
et al., 2018) with BERT and XLNET embedding for classification, and the other one is
the CapsuleNet (Zhao et al., 2018) with BERT and XLNET embedding for classification.
These two models take BERT, XLNET, etc. as the pre-trained embedding, and add a
layer of TextCNN or CapsuleNet as the feature extraction layer, and added a perceptron
for classification output layer.
• Graphs. This category consists of four hybrid GNN models. To compare extracted
features performance, BERT and XLNET models have been fine-tuned and combined
with GNNs. Additionally, a common perceptron classification layer has been added at
the final layer. This group of models includes TextGCN (Yao, Mao & Luo, 2019) and
HyperGAT,ding2020more as compared experiments.
• Ours.We use different pre-trainedmodels as embedding to validate the proposedmodel
in this group. Here we use BERT or XLNET model as embedding.

In conformity with the baselines reported in the research article, we have re-implemented
the model. Utilizing BERT and XLNET pre-trained models as model embeddings, an
optimal hyperparameter configuration was settled, which was subsequently adopted for
all model parameters during training. Furthermore, we present evaluation task results
for the dataset, which are meticulously compared against the findings obtained by the
aforementioned model detailed in the article under consideration.
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Experiments settings
Hyperparameter setting
In this study, grid search methodology was employed for all models to determine the
optimal parameter values. For the HVGSFM, specific parameter configurations were set,
and namely, a sliding window size of 4, Hyper Variational Graph layer dimension size of
150 with three layers and a dropout rate of 0.2 for each model layer. It is worth noting that
the Pytorch deep learning framework was utilized to implement the HVGSFM, and as well
as other models discussed in this study.

Evaluation metrics
As theAdamW(Kingma & Ba, 2014) optimization algorithmhas beenproven to be superior
for ourmodel, it was employed formodel training purposes in this study. The algorithmwas
implemented at least 20 times while maintaining a learning rate of 10−5. Our classification
performance was measured based on test accuracy and macro-averaged F1 score, which
are commonly used metrics for evaluating the performance of text classification models.

Benchmark comparison
This section we compare baselines and analyzed the models from the following aspects:
performance, parameters and ablation comparison. These three different aspects cover the
advantages and disadvantages of the model in more details.

Performance comparison
In the present section, the aim is to summarize the results obtained from themodels trained
using multiple baselines and HVGSFM across three datasets, as listed in Tables 2 and 3. The
presented results indicated that the results were significantly better, ranging from 1%–3%
higher than those recorded for BERT and XLNET baseline models. Moreover, compared to
various hybrid models based on pre-trained models, the HVGSFM has been approximately
1%–2% higher regarding the test set training results. Notably, the text feature construction
method of hypergraph can contribute to the increase of the feature uncertainty of its text.
However, the HVGSFM model still exhibits a relatively weaker advantage compared to
single capsule neural networks. Furthermore, for short and medium texts datasets, such as
CLUEEmotion2020 and CHIP-CTC dataset, the HVGSFM outperformed the classification
model inclusive of pre-trained models by approximately 2%–3% higher than BERT and
XLNET, specifically in terms of F1 scores. In brief, the HVGSFM exhibited noticeable
classification performance even comparing with hybrid models, making it an exceptional
model. Finally, the model’s efficiency was tested on English datasets with shorter texts such
as N15News, showing promising generalization results across both Chinese and English
datasets.

Model ablation
We conducted a comprehensive model ablation experiment to examine the effects of
different models on our results. The experiment involved evaluating a single pretraining
model, two individual stream models, and the HVGSF model. The findings, presented in
Tables 4 and 5, demonstrate noteworthy insights.
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Table 2 The comparedmodel results for F1 score, we compared four different group to test model.

Group Model CHIP-CTC CLUEEmotion2020 N15News

BERT 0.8127 0.4779 0.6671
Baselines

XLNET 0.8129 0.4228 0.5132
TextCNN (BERT) 0.4835 0.2638 0.6281
TextCNN (XLNET) 0.4154 0.3361 0.4956
CapsNet (BERT) 0.8205 0.5011 0.6876

Seqs

CapsNet (XLNET) 0.8214 0.5045 0.6806
TextGCN (BERT) 0.4772 0.5080 0.6649
TextGCN (XLNET) 0.5382 0.5015 0.6238
HyperGCN (BERT) 0.8185 0.5061 0.6827

Graphs

HyperGCN (XLNET) 0.8141 0.4827 0.6539
HVGSFM (XLNET) 0.7851 0.4954 0.6777

Ours
HVGSFM (BERT, ours) 0.8287 0.5156 0.6906

Notes.
The bold values indicates that compared to several ablation experiments, the HVGSFMmodel proposed in this article has the
best F1 score and accuracy score when trained on three datasets.

Table 3 The comparedmodel results for accuracy, we compared four different group to test model.

Group Model CHIP-CTC CLUEEmotion2020 N15News

BERT 0.8473 0.5925 0.6933
Baselines

XLNET 0.8313 0.5633 0.5142
TextCNN (BERT) 0.8241 0.4317 0.6587
TextCNN (XLNET) 0.8207 0.5668 0.5321
CapsNet (BERT) 0.8516 0.6074 0.7165

Seqs

CapsNet (XLNET) 0.8475 0.6024 0.7065
TextGCN (BERT) 0.7574 0.6063 0.6912
TextGCN (XLNET) 0.7907 0.6075 0.6629
HyperGCN (BERT) 0.8495 0.6051 0.7011

Graphs

HyperGCN (XLNET) 0.8536 0.5937 0.6988
HVGSFM (XLNET) 0.8561 0.5953 0.7084

Ours
HVGSFM (BERT, ours) 0.8682 0.6122 0.7221

Notes.
The bold values indicates that compared to several ablation experiments, the HVGSFMmodel proposed in this article has the
best F1 score and accuracy score when trained on three datasets.

Table 4 The model ablation results for F1 score.

Model CHIP-CTC CLUEEmotion2020 N15News

BERT 0.8127 0.4779 0.6671
BERT+HVG 0.8185 0.5061 0.6827
BERT+CapsNet 0.8205 0.5011 0.6876
HVGSFM (Ours) 0.8287 0.5156 0.6906

Notes.
The bold representations show that compared to several baselines, sequence models and graph models, the HVGSFMmodel
proposed in this article has the best F1 score and accuracy score when trained on three datasets.
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Table 5 The model ablation results for accuracy.

Model CHIP-CTC CLUEEmotion2020 N15News

BERT 0.8473 0.5925 0.6933
BERT+HVG 0.8495 0.6051 0.7011
BERT+CapsNet 0.8516 0.6074 0.7165
HVGSFM (Ours) 0.8682 0.6122 0.7221

Notes.
The bold representations show that compared to several baselines, sequence models and graph models, the HVGSFMmodel
proposed in this article has the best F1 score and accuracy score when trained on three datasets.

Comparing the HVGSF model with the BERT model, we observed an improvement
of approximately 1.6% in terms of performance. Moreover, in contrast to the individual
channel models, the HVGSFmodel leverages combined text features, resulting in enhanced
prediction accuracy. The analysis of the tables reveals that the single-streammodels perform
poorly on the test dataset. Conversely, the HVGSFM outperforms all other models across
the entire dataset. However, its impact on the CHIP-CTC and N15News datasets is not
as pronounced. Further analysis suggests that the presence of noise in the dataset and the
inclusion of stop words tend to weaken crucial features during the construction of graph
features.

Incorporating BERT text feature information into the HVGSFM compensates for the
lack of inherent keyword features and leads to better performance results. Additionally,
while BERT embedding captures character granularities details, it lacks specific keyword
features information for the whole text. In light of this, HVGSFM addresses the issue by
adding more keyword features from the context. So the HVGSFM model has been shown
to be more effective than the single-stream model, it can effectively capture the semantic
information of the text.

Parameter comparison
The present summary primarily delves into the influence of the number of Hyper
Variational Graph (HVG) layers and TIEM slide window size on the results of model
predictions. Therefore, we designed several experiments to evaluate the performance of
HVGSFM.

Layer number effects. In the previous section, we provided a detailed explanation of
the multi-layer HVG structure. The number of HVG layers, denoted by N, is a crucial
hyperparameter in the multi-layer reasoning structure model, as it directly affects the
model’s reasoning ability. To thoroughly investigate this matter, we conducted an ablation
experiment to compare and analyze the model. In particular, we created five variations of
the model, corresponding to N = 1, 2, 3, 4, and 5, respectively. As shown in Fig. 4, when
N was set to 1 or 2, there was a slight increase in the model’s prediction accuracy. On the
other hand, setting N to 3 resulted in the highest accuracy and F1 score. However, when
N was set to 4 or 5, there was a significant decrease in the results. Based on our extensive
experimental data, we can conclude that N = 3 is the optimal hyperparameter for the
HVG layers, thus confirming the feasibility and effectiveness of our proposed algorithm.

Zhang and Hu (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1788 15/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1788


Figure 4 (A–D) The HVG layer effects onmodel performance.
Full-size DOI: 10.7717/peerjcs.1788/fig-4

As a result, the multi-layer hypergraph variational reasoning module HVG can accurately
represent text features, thereby enhancing its capabilities in text classification.

Window size effects. This section aims to investigate the impact of different window
sizes on matrix construction through a series of experiments. Specifically, several model
experiments were conducted using window size values ranging from W = 1 to W = 6. As
shown in Fig. 5, the experimental results convincingly demonstrate that the size of the
window has a significant impact on the performance of the model. Moreover, for longer
text classification datasets, such as the CLUEEmotions2020, the window effect is more
prominent, especially when the window size is set to 4, 5, or 6. Among these, N = 4 shows
the best results. Conversely, for shorter texts, the effect is less apparent. Although increasing
the window size leads to some marginal improvement, the optimal situation still occurs
when N = 4.

Noteworthily, the sliding window determines the range of key information covered
in the sentence. Accordingly, better prediction results can be obtained by selecting an
appropriate sentence length and window size, thereby verifying the effect of the window
effect on the performance gain of the model.

APPLICATIONS
Our research focuses on the application of HVGSFM in the classification of an industrial
text dataset. To accomplish this objective, we obtained a corpus of text specifically
from the industrial domain. The dataset was sourced from the Chinese National Patent
Database and underwent a series of preprocessing steps to ensure its quality. Firstly,
we performed deduplication to eliminate any duplicate text samples. Subsequently, we
conducted a meticulous manual screening process to select text data that is relevant to
the industrial domain. For the chosen text data, we employed a manual semi-supervised
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Figure 5 (A–D) The effects of window size on results.
Full-size DOI: 10.7717/peerjcs.1788/fig-5
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Figure 6 The distribution of the industrial dataset.
Full-size DOI: 10.7717/peerjcs.1788/fig-6

labeling approach, wherein corresponding labels were assigned to the text samples by
human annotators. These labeled samples were then utilized for training the subsequent
classification model.

Throughout the process, we established a dataset consisting of 5,312 patent information
on self-built industrial equipment, which was used for training and evaluation in the field

Zhang and Hu (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1788 17/23

https://peerj.com
https://doi.org/10.7717/peerjcs.1788/fig-5
https://doi.org/10.7717/peerjcs.1788/fig-6
http://dx.doi.org/10.7717/peerj-cs.1788


Table 6 The comparedmodel results for F1 score on Patents dataset.

Group Model Accuracy F1 Score

BERT 0.9046 0.7149
Baselines

XLNET 0.8757 0.7035
TextCNN (BERT) 0.8958 0.7324
TextCNN (XLNET) 0.8795 0.6198
CapsNet (BERT) 0.9046 0.7465

Seqs

CapsNet (XLNET) 0.9121 0.7891
TextGCN (BERT) 0.9008 0.7139
TextGCN (XLNET) 0.8721 0.6324
HyperGCN (BERT) 0.8273 0.7715

Graphs

HyperGCN (XLNET) 0.8833 0.7398
HVGSFM (XLNET) 0.9146 0.7711

Ours
HVGSFM (BERT, ours) 0.9184 0.7971

Notes.
The bold representations show that the HVGSFMmodel proposed in this article has the best F1 score and accuracy score com-
pared to several baselines, sequence and graph models on the industrial text dataset.

of industrial text classification. This dataset covers a multitude of categories, and Fig. 6
depicts the distribution of each category within the dataset:

The dataset encompasses four categories, including equipment, process, material, and
other. The text descriptions of industrial equipment account for a higher proportion.
Based on the distribution of categories in the graph, we split it into a training dataset with
70% and a testing dataset with 30%. Furthermore, these four categories have the same
proportion in both the training and testing datasets. Firstly, we train the HVGSFM using
the training dataset. Then, we evaluate the performance of the model on the testing dataset
and obtain the results shown as in Table 6.

The results indicated that there was a significant improvement compared to the BERT
and XLNET baselines, with an increase of approximately 8.22% and 9.36% respectively.
Compared to the hybrid model, there was an improvement of around 3% to 10%, which
further suggested the model’s significant enhancement in text data classification within
the industrial domain. Noteworthily, compared to internet datasets, HVGSFM exhibited a
higher improvement rate in patents datasets, especially in categories such as equipment and
materials, which covered a larger number of entities. This higher accuracy in classification
can be attributed to the better feature extraction capability in the HVG layer. According
to the results in Table 7, the impact of the BERT and XLNET pre-training models on
HVGSFM is not pronounced, as evidenced by an increase of only nearly 2% in the F1
score.

The model ablation experiments, as presented in Table 7, reveal interesting findings.
When comparing the model with only the HVG layer to the baseline, a significant
improvement in accuracy was not observed. However, there was an approximate 5.66%
increase in the F1 score. Since the F1 score takes into account both precision and recall,
this suggests that the HVG layer plays a role in filtering multi-level constrained text
features but has minimal impact on accuracy enhancement. Similarly, when comparing the
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Table 7 The model ablation results on patents dataset for F1 score.

Model Accuracy F1 Score

BERT 0.9046 0.7149
BERT+HVG 0.8273 0.7715
BERT+CapsNet 0.9046 0.7465
HVGSF (Ours) 0.9184 0.7971

Notes.
The bold representations show that the proposed HVGSFMmodel has the best F1 score and accuracy score compared to sev-
eral ablation experiments on the industrial text dataset.

model with only the capsule network layer to the baseline, the accuracy remained largely
unaffected, with only a marginal increase of approximately 3.16% observed in the F1 score.
However, when considering the results from both channels, there was an overall accuracy
improvement of approximately 1.38% and an increase in the F1 score by approximately
8.22%. These outcomes indicate that the collaborative establishment of text classification
features using the dual channel approach can lead to superior classification results to some
extent.

CONCLUSIONS
This study presents the HVGSFM (hyper variational graph and semantic fusionmodel) as a
novel approach for text feature aggregation. The HVGSFM comprises two key components:
a hyper variational graph network and a capsule network. Notably, the hyper variational
layer operates in conjunction with the Text Information Entropy Matrix (TIEM) to
reconstruct the matrix, enabling the generation of a Gaussian distribution for word
meaning level inference. Moreover, the multilayer hyper variational layers aggregate text
information, such that semantic filters are formed. By processing edges and nodes within
the hyper variational graph layer, the model effectively captures node feature information,
thereby facilitating subsequent high-order feature processing. The semantic fusion unit
(SFU) adeptly merges features from both streams, contributing to the final classification
outcome. Experimental results demonstrate the superior performance and success of the
model in text classification and inference, especially across diverse domains. In brief, the
proposed hyper variational graph and text information entropy matrix play a crucial role in
extracting text features and hold promise for other downstream NLP tasks. Future research
endeavors may explore the potential of these techniques in open domain entity relationship
extraction.
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