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ABSTRACT
This article introduces a new hybrid hyper-heuristic framework that deals with single-
objective continuous optimization problems. This approach employs a nested Markov
chain on the base level in the search for the best-performing operators and their
sequences and simulated annealing on the hyperlevel, which evolves the chain and
the operator parameters. The novelty of the approach consists of the upper level of
the Markov chain expressing the hybridization of global and local search operators
and the lower level automatically selecting the best-performing operator sequences for
the problem. Numerical experiments conducted on well-known benchmark functions
and the comparison with another hyper-heuristic framework and six state-of-the-art
metaheuristics show the effectiveness of the proposed approach.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Optimization Theory and
Computation
Keywords Continuous optimization, Hyperheuristics

INTRODUCTION
Optimization is an essential task not only in computer science but also in other research
fields. Most processes can be described as optimization problems, where the best solution
needs to be found from the set of all feasible solutions.

The literature contains many optimization algorithms and heuristics, some inspired by
nature, others inspired by physics, iterative, and hybrid. Finding the appropriate approach
is often problem-specific and can be tedious. Population-based methods may approximate
the global optimum but at a high computational cost. Iterative methods converge to a local
minimum faster but are highly dependent on the initial solution.

Recently, hyper-heuristic algorithms have been of huge interest, as they provide an
automatic way of selecting or generating heuristics for unseen problems (see Ryser-Welch
& Miller, 2014 for a review). These approaches can be thought of as the optimization of the
optimization process. The selection or generation of heuristics yields a problem-specific
optimization algorithm that in many cases performs better than a single standard heuristic.

Application possibilities where different hyper-heuristics were used include
timetabling (Burke, Qu & Soghier, 2014; Burke, Silva & Soubeiga, 2005; Pillay, 2012), the
vehicle routing problem (Qin et al., 2021; Olgun, Koç & Altıparmak, 2021), and scheduling
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problems (Salhi & Vázquez Rodríguez, 2014), aircraft structural design (Allen, Coates &
Trevelyan, 2013).

Although several hyper-heuristic frameworks have been proposed, most of them are
concerned with specific combinatorial optimization problems; only a few are designed
to solve continuous numerical optimization problems. A research gap exists regarding
hyper-heuristic frameworks that balance the exploration-exploitation rate and tune the
operator parameters in an online fashion. As another research gap we can mention the
lack of generality of the proposed hyper-heuristic frameworks, the majority of them are
incorporating domain specific knowledge about a specific problem (for example Guerriero
& Saccomanno, 2023).

The goal of this study is to propose a new hyper-heuristic framework and to present
its advantages for single-objective continuous problems and the comparison with a
well-known hyper-heuristic and six state-of-the-art metaheuristics. The novelty of our
approach consists of introducing a nested Markov chain to the base level for the search for
the best-performing heuristic operators and their sequences. Simulated annealing is used
on the hyperlevel, which evolves the chain and the operator parameters. In our approach,
the upper level of the Markov chain expressing the hybridization of global and local
search operators and the lower level automatically selecting the best-performing operator
sequences for the problem. The general formulation of the model allows the usage of other
arbitrary operators, as well. Our model can be used to achieve good optimization results
without the user having deep domain (problem specific) knowledge. The limitations of our
approach are similar to other hyper-heuristics, finding the right operator configurations
and balance can require many function evaluations.

The remainder of the article is organized as follows: the ‘‘RelatedWork’’ section describes
the related work, the ‘‘Proposed Model’’ section presents the proposed framework, and the
‘‘Numerical Experiments’’ section describes the numerical experiments conducted. The
article ends with conclusions and further research directions.

RELATED WORK
The literature proposes several hyper-heuristic classifications. Two main categories appear
in Burke et al. (2010): selection-based and generation-based. Selection-based approaches
pick the best-performing heuristics from an existing catalogue, while generation-based
approaches design new algorithms from existing components and create problem-specific
ones. Four categories of heuristic selection are mentioned in Chakhlevitch & Cowling
(2008). Metaheuristic-based approaches employ genetic algorithms (Cowling, Kendall
& Soubeiga, 2001), simulated annealing (Bai & Kendall, 2005), tabu search (Kendall &
Hussin, 2005) or some other metaheuristic for the selection process. In Bándi & Gaskó
(2023) on the hyperlevel, a simulated annealing algorithm is used, and on the base level a
genetic algorithm, a differential evolution algorithm and a grey wolf optimizer. Random
approaches employ uniform selection (Cowling & Chakhlevitch, 2003). Other approaches
use reinforcement learning for adaptive selection. McClymont & Keedwell (2011) adapts
a Markov chain that models heuristic sequences. Karapetyan, Punnen & Parkes (2017)
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uses the Conditional Markov Chain Search (CMCS) algorithm for the bipartite Boolean
quadratic programming problem (BBQP). Greedy selectionmethods preliminarily evaluate
all heuristics and choose the one that performs best at each step (Cowling, Kendall &
Soubeiga, 2001). Oteiza, Ardenghi & Brignole (2021) presents a parallel cooperative hyper-
heuristic optimizer (PCHO), which is used to solve systems of nonlinear algebraic equations
(with equality and inequality constraints). It uses a master-worker architecture with three
algorithms on the worker level: GA, SA and PSO.

Since our proposed hyper-heuristic framework uses a hybridization of global and local
search, we will present existing approaches in this category.

The use of local search algorithms is a straightforward direction in the study of
hyper-heuristics but was used mainly for combinatorial optimization problems. Burke,
Kendall & Soubeiga (2003) incorporates tabu search in hyper-heuristics for the timetabling
problem. Turky et al. (2020) proposes a two-stage hyper-heuristic to control the local
search and its operators; the framework is used for two combinatorial optimization
problems. Hsiao, Chiang & Fu (2012) proposes a hyper-heuristic based on variable
neighbourhood search, where local search is used and tested for four combinatorial
optimization problems. Soria-Alcaraz et al. (2016) designs a hyper-heuristic based on
an iterated local search algorithm for a course timetabling problem. Additionally, the
reviews (Ryser-Welch & Miller, 2014; Drake et al., 2020) present several hyper-heuristic
frameworks, such as HyFlex (hyper-heuristics flexible framework) for combinatorial
optimization problems (Ochoa et al., 2012), or Hyperion (Swan, Özcan & Kendall, 2011)
for the Boolean satisfiability problem.

In terms of continuous optimization, Oliva et al. (2022) proposes the HHBNO
framework, a hyper-heuristic approach based on Bayesian learning for single-objective
continuous problems. The framework evolves heuristic sequences by learning their
interdependencies and estimates the best-performing heuristic distributions. In Tapia-
Avitia et al. (2022), an artificial neural network is trained to identify patterns that can be
used to learn the best-performing heuristic sequences. Cruz-Duarte et al. (2021) proposes a
new framework for continuous optimization problems, where new sequences are designed
with the help of different search operators.

Our proposed hyper-heuristic framework incorporates local and global search
algorithms, which were mostly used for combinatorial optimization problems before.
Another advantage of the proposed method consists in the general structure of the base
level, which can be easily extended with other algorithms. At the same time the framework
preserves the general nature, no domain specific knowledge is needed for the optimisation
process.

PROPOSED MODEL
The structure of the proposed hyper-heuristic framework is presented in Fig. 1. The
approach is based on two levels. The base level optimizes the problem, starting with a
population of candidate solutions and a limited number of function evaluations for each
candidate. The hyperlevel guides and improves the base level. The hyperlevel searches
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Figure 1 The structure of the hyper-heuristic framework. The base level is used to optimize the prob-
lem using a given number of function evaluations. On this level a genetic algorithm (GA) and differen-
tial evolution (DE) operator is used in the perturb category, an elitist selector (ES) in the select category,
and in the refiner category the gradient descent (GD) and limited-memory Broyden, Fletcher, Goldfarb,
Shanno algorithm (LBFGS) operators are used. The hyper level is used to guide and improve the base
level.

Full-size DOI: 10.7717/peerjcs.1785/fig-1

the algorithm space by finding the best-performing operator sequences and operator
parameters via simulated annealing. The base level performs the optimization according
to the operator sequence modelled by a nested Markov chain. The first layer models the
transitions between perturb, selection, and refinement operators, and the second layer
models the operator sequences of each category.

Our approach contains a genetic algorithm (GA) and a differential evolution (DE)
operator in the perturb category and an elitist selector (ES) in the select category. It
incorporates a refiner category containing the gradient descent (GD) and Limited-memory
Broyden–Fletcher–Goldfarb–Shanno algorithm (LBFGS) operators that perform the local
search. In this way, the base level is parameterized so that it can express a continuum
between exploration and exploitation.
Formal definition. A more formal definition of the parameterization of the operator
sequence that the base level applies during optimization can be given in the following way.
Let C denote the set of operator categories in the base level, and c ∈ C an operator category.

Let

c1,c2 ...ci∼πC,PC,oc1,o
c
2 ...o

c
j ∼πc ,Pc ,∀c ∈ C
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denote the sequence of categories ci modeled by the Markov chain parameterized by the
initial distribution and transition matrix πC,PC and the sequence of operators ocj modeled
by the Markov chain associated to category c parameterized by the initial distribution and
transition matrix πc ,Pc .

Then the sequence

oc11 ,o
c2
2 ...o

ci
i ∼πC,PC,πc ,Pc∀c ∈ C

is called the operator sequence of the base level modeled by the nested Markov chain.
The set of all operator parameters associated to operators in category c is denoted by βc .

The hyper level searches in the sequence and parameter space

P×β =πC×PC×
∏
ci∈C

πci×Pci×βci

via simulated annealing using linear multiplicative cooling for the best performing base
level configuration.
Hyper-heuristic optimization algorithm. At each step, a statistically significant number of
base-level evaluations are performed and the performance metric is the median plus
interquartile range of the costs. The next step in the design space is taken by perturbing the
previous point by a normally distributed noise factor scaled according to the parameter
bounds. The advantage of this formalization lies in the expressiveness of the base level
as it allows the selection and combination of sets of operators that have different roles
(exploration, exploitation, selection).

The model can perform well in high-dimensional settings, as it can iteratively find
the equilibria between exploration and exploitation operators. The random initialization
of the hyper-heuristic is presented in Algorithm 1. The hyper-heuristic search process
using simulated annealing and the determination of the next simulated annealing step are
detailed in Algorithm 2 and Algorithm 3. Algorithm 4 shows the base-level optimization
procedure that is modelled by the Markov chain and operator parameters.
Operators used. The GA operator is parameterized to allow it to express both arithmetic and
one-point crossover; the mutation is carried out by adding a normally distributed noise
factor as detailed in Algorithm 5. The DE/rand/1/bin scheme is used for the differential
evolution operator; it is parameterized by the crossover rate and scaling factor. The local
search operators are parameterized by the initial step size and the number of iterations
performed. The LBFGS operator also exposes the c1,c2 parameters that control the step
length in the line search phase. The selection operator uses the elitist strategy.
Population evolution. All operators in the perturb category generate a new population
of candidates. The operators in the refine category perform an iterated local search
starting with these candidate solutions. The elitist selection operator then selects the
best-performing points from the old and new populations to become the next generation.
All perturbed points landing in the attraction basin of a better solution are selected into
the next generation when the refiner operators iterate the points closer to these attractors
and the ES operator selects them.
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Algorithm 1Hyper-heuristic parameter initialization
{ lθ ,uθ - bounds of parameter θ }
PC←U (T ) {// random uniform transition matrix}
πC←U (π) {// random uniform initial distribution}
for all θ ∈βc ,∀c ∈ C do
θ←U (lθ ,uθ ) {// random uniform parameter within bounds}

end for
for all c ∈ C do
Pc←U (T ) {// random uniform transition matrix}
πc←U (π) {// random uniform initial distribution}

end for

Algorithm 2 Optimization in the hyper level
{ hl - hyperheuristic step limit}
{ hf - function evaluation limit of offspring per step}
{ T - initial simulated annealing temperature}
{ α - linear multiplicative cooling coefficient}
{ hp - base level performance sample size}
initialize chain and operator parameters (algorithm 1)
t←T
fbest←∞
for l← 0;l < hl;l← l+1 do
P ′,β ′←mutation of P,β (algorithm 3)
for s← 0;s< hp;s← s+1 do
pl,s← performance sample for P ′,β ′ (algorithm 4)

end for
f ← IQR(pl)+median(pl)
if f < fbest then
P,β← P ′,β ′

fbest← f
else
if U (0,1)< e

fbest−f
t then

P,β← P ′,β ′

fbest← f
end if

end if
t← T

1+α·l
end for
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Algorithm 3 Parameter mutation
for all c ∈ C do
β ′c←βc

end for
for all θ ′ ∈β ′c ,∀c ∈ C do
{ // perturb parameters keeping them in bounds }
ε∼N (0, 13)
θ ′← θ ′+ε(uθ ′− lθ ′)
θ ′←max(lθ ′,θ ′)
θ ′←min(uθ ′,θ ′)

end for
for all c ∈ C do
{ // perturb keeping the simplex restrictions }
π ′c←πc+ε

P ′c← Pc+ε
end for
{ // perturb keeping the simplex restrictions }
π ′C←πC+ε

P ′C← PC+ε

NUMERICAL EXPERIMENTS
The results of the numerical experiments conducted were compared to state-of-the-art
metaheuristics and another recent hyper-heuristic that incorporates several state-of-the-art
metaheuristic operators.

Benchmarks
For the numerical experiments, we used six well-known continuous benchmark functions:
Rastrigin, Rosenbrock, Styblinski Tang, Schweffel 2.23, Trid, andQing. The basic properties
of the test functions are presented in Table 1. The dimensionality, convexity, separability,
and multimodality of the functions were varied to assess performance in different
settings.

Parameter tuning
The performance of the simulated annealing algorithm within the hyperlevel is sensitive to
the initial temperature. The performance of the process in the case of the Rosenbrock
function was assessed in various dimensions with varying initial temperatures and
iterations. Figure 2 depicts these results. The plots show that having a higher initial
temperature (10,000) yields improved, more robust results. Detailed results are presented
in the Supplemental Files.
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Algorithm 4 Base level optimization process
{ lx ,ux - problem bounds }
{ G - current generation of offspring }
{ G′ - next generation of offspring }
{ best (G) - cost of best performing offspring in G }
{ ocs - next operator state in the c category}
{ Cs - next category state}
{ fe - objective function evaluation count }
{ fo - function evaluations required by operator o}
for all x ∈G do
x←U (lx ,ux) {// random uniform offspring}

end for
G′←G
for all c ∈ C do
ocs← o, o∼πc {// inital operator state with πc distribution}

end for
Cs← c, c ∼πC {// inital category state with πC distribution}
fe← 0
while fe < hf do
G,G′← oCss (βCs,G,G

′) {// apply the next operator }
fe← fe+ foCss {// track function evaluations}
Cs← c, c ∼ PC,Cs {//go to next category state from Cs}
oCss ← o, o∼ PCs,oCss {// go to next state in PCs from oCss }

end while
return min(best (G),best (G′)) {// return the minimal cost}

Table 1 Test functions and their properties used for numerical experiments.

Function name Properties

Qing Non-convex, separable, multimodal
Rastrigin Non-convex, separable, multimodal
Rosenbrock Non-convex, non-separable, multimodal
Schweffel 2.23 Convex, separable, unimodal
Styblinski Tang Non-convex, separable, multimodal
Trid Convex, non-separable, unimodal

Comparison with other methods
For comparisons, we use another recent hyper-heuristic, the CUSTOMHyS: Customising
Optimisation Metaheuristics via Hyper-heuristic Search framework (downloaded from
https://github.com/ElsevierSoftwareX/SOFTX-D-20-00035) (Cruz-Duarte et al., 2020).

CUSTOMHyS applies operators from several well known metaheuristics on the base
level:
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Algorithm 5 Combined one point and arithmetic crossover for GA
|G| { - number of offspring in G}
n { - dimensionality of the objective function}
α { - arithmetic crossover coefficient}
cr { - crossover rate}
mr { - mutation rate}
mσ { - standard deviation of mutation distribution}
cpr { - crossover point ratio}
pr { - parent pool ratio}
U (G,p) { = {xi ∈G :U (0,1)< p}-random subset of G}
for i← 0, i< |G|, i← i+1 do
x ′i← xi { // x parent, x ′ child}
if U (0,1)< cr then
xj1← best offspring in U (G,pr ) such that j1 6= i
xj2← best offspring in U (G,pr ) such that j1 6= j2 6= i
for k← 0, k < n, k← k+1 do
if k< n · cpr then
x ′i,k←α ·xj1,k+ (1−α) ·xj2,k

else
x ′i,k←α ·xj2,k+ (1−α) ·xj1,k

end if
if U (0,1)<mr then
x ′i,k← xi,k+ε,ε∼N (0,mσ )

end if
end for

end if
end for

Figure 2 Parameter tuning results. The higher initial temperature improves performance.
Full-size DOI: 10.7717/peerjcs.1785/fig-2
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• it uses the central force dynamic operator of the central force optimisation (CFO)
(Formato, 2008) algorithm;
• differential crossover and mutation operators from differential evolution (DE) (Storn
& Price, 1997);
• the genetic mutation and crossover operators from genetic algorithm (GA) (Whitley,
1994);
• the spiral dynamic operator of stochastic spiral optimisation (SSO) (Cruz-Duarte et al.,
2017);
• the gravitational search operator of the gravitational search algorithm (GSA) (Rashedi,
Nezamabadi-pour & Saryazdi, 2009);
• the swarm dynamic operator from particle swarm optimisation (PSO) (Kennedy &
Eberhart, 1995);
• the firefly dynamic operator from firefly algorithm (FA) (Gandomi, Yang & Alavi, 2011);
• the random flight and search operators from random search (RS) and
• uniform random sampling, and the local random walk operator from cuckoo search
(CS) (Yang & Deb, 2013).

CUSTOMHyS uses simulated annealing on the hyperlevel and searches for a fixed-length
operator sequence that is repeated.

The comparison with CUSTOMHyS was performed on the six benchmark functions,
using the same number of function evaluations, base-level sample size, simulated annealing
steps, population and problem size. The approaches were tested with each offspring being
limited to 100 function evaluations to highlight the limitations that appear in costly
optimization problems. The base-level performance sample size was fixed at 30 to ensure
statistical significance. The number of simulated annealing steps was limited to 100. The
population size was fixed at 30. Various problem dimensionalities were considered (5,
50, 100, 500). The minimal median plus interquartile range of the performances at each
simulated annealing step was considered the final performance of eachmethod. This metric
was chosen so that the performances were not affected by outliers.

We compare our results with the following state-of-the-art metaheuristics:
1. The slime mould algorithm (SMA) (Li et al., 2020) which is a biology-inspired

metaheuristic that is based on the oscillation of slime mould;
2. the artificial ecosystem optimizer (AEO) (Zhao, Wang & Zhang, 2019) which is a

system-based heuristic that mimics the behavior of an ecosystem of living organisms;
3. the battle royal optimizer (BRO) (Rahkar Farshi, 2020) which is a human-based

metaheuristic that simulates a survival game;
4. the Archimedes optimization algorithm (ArchOA) (Hashim et al., 2020) which is a

physics-inspired metaheuristic that imitates the phenomenon of buoyancy of objects
immersed in a fluid;

5. the particle swarmoptimizer (PSO) (Kennedy & Eberhart, 1995)which is a swarm-based
metaheuristic that simulates the movement of particles and

6. the coral reef optimizer (CRO) (Salcedo-Sanz et al., 2014) which is a nature-inspired
algorithm that simulates the growth of coral reefs.
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For the comparison, we used the implementations provided by the MEALPY
(downloaded from https://github.com/thieu1995/mealpy, version 2.5.1) library (Thieu
& Mirjalili, 2022), a software package containing most of the cutting-edge metaheuristic
algorithms.

The six metaheuristics were tested in similar settings, resulting in the same number of
total function evaluations. This was achieved by having equal numbers of performance
samples and hyper-heuristic steps; that is, each performance sample had the same size
and total function evaluations as in a hyper-heuristic step. All populations were initialized
uniformly within the problem bounds and were of the same size.

The experiments were performed on a system equipped with an Intel Core i7-
9750H CPU, NVIDIA GeForce GTX 1660 Ti Mobile GPU, and 16 GB of RAM
running Ubuntu 20.04.1 LTS. The 11.4 version of the CUDA Toolkit was used along
with Python version 3.8.10. The results of the experiments are available and can be
reproduced with the public NMHH implementation, which can be accessed on GitHub
(https://github.com/BNandor/MatOpt/tree/main/NMHH).

Metaheuristic parameters. The NMHH operator parameter bounds used are as follows: the
DE operator force F ∈ [0.4,0.7] and crossover rate cr ∈ [0.9,1], the GA operator one-point
crossover rate and point cr ,cpr ∈ [0,1], the arithmetic crossover constant α ∈ [0,1];
the mutation rate and size mr ∈ [0,0.1],mσ ∈ [0,100], and the ratio of the parent pool
pr ∈ [0.2,1]. The GD and LBFGS initial step lengths were α ∈ [0.5,5]. The evaluation limits
were set to fGD ∈ [1,3], fLBFGS ∈ [6,10]. The LBFGS memory was fixed to 5, and the step
coefficients were c1 ∈ [0,0.1], c2 ∈ [0.8,1].

The parameters of the state-of-the-art metaheuristics were set to those suggested by the
MEALPY package. For the CRO, the rate of occupation was set to 0.4, the broadcast/existing
rate (Fb) to 0.9, the duplication rate (Fa) to 0.1, the depredation rate (Fd) to 0.1, the
maximum depredation probability (Pd) to 0.5, the probability of the mutation process
(GCR) to 0.1, the mutation process factors gammamin to 0.02, gammamax to 0.2, and the
number of attempts of a larva to set in reef (ntrials) to 5. For BRO, the dead threshold was
set to 3. For the ArchOA, the factors were set to c1 = 2,c2 = 5,c3 = 2 and c4 = 0.5. The
accelerations were set to accmin = 0.1 and accmax = 0.9. The AEO does not expose any
parameters. The SMA probability threshold was set to 0.3. The local and global coefficient
of the PSO was set to 2.05, the minimum weight to 0.4 and the maximum weight to 0.9.

For CUSTOMHyS, the suggested heuristic collection and parameters were used: The
simulated annealing initial temperature (max_temperature) was set to 200, the temperature
cooling rate (cooling_rate) to 0.05, the stagnation rate (stagnation_percentage) to 0.3 and
the length of the operator sequence (cardinality) to 3. The population size (num_agents)
was set to 30, and each offspring was limited to 100 iterations (num_iterations). The
number of hyper-heuristic steps (num_steps) was limited to 100 with each step having a
performance sample size (num_replicas) of 30. The suggested heuristic (default ) collection
contains variations of twelve operators: random search, central force dynamic, differential
mutation, firefly dynamic, genetic crossover, genetic mutation, gravitational search,
random flight, local random walk, random sample, spiral dynamic and swarm dynamic.

Bándi and Gaskó (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1785 11/20

https://peerj.com
https://github.com/thieu1995/mealpy
https://github.com/BNandor/MatOpt/tree/main/NMHH
http://dx.doi.org/10.7717/peerj-cs.1785


Table 2 Results obtained for the six test functions. The minimal median plus interquartile range is presented. Best ranking results according to
the Wilcoxon rank-sum test are highlighted in bold.

problem dimension NMHH CUSTOMHyS SMA AEO BRO ArchOA PSO CRO

5 1.3805e−30 6.9269e−27 7.7565e−02 6.6547e−01 1.2591e+01 1.9785e+01 1.0583e+03 1.0405e+05

50 3.8581e−03 3.5255e+05 1.4020e+04 2.0684e+04 2.5249e+04 3.8629e+04 2.8970e+10 1.2337e+11

100 2.1094e−05 1.0445e+08 1.6719e+05 1.8468e+05 2.0831e+05 3.0352e+05 7.2997e+10 4.4440e+11
Qing

500 5.5487e−01 2.7925e+08 3.2776e+07 2.5715e+07 2.5508e+07 3.2362e+07 5.1137e+12 4.2136e+12

5 6.8168e−03 2.0791e+00 0.0000e+00 0.0000e+00 0.0000e+00 5.3705e+00 2.2249e+01 1.1563e+01

50 8.1054e+01 1.2439e+02 0.0000e+00 0.0000e+00 0.0000e+00 2.1727e+02 6.1434e+02 4.1291e+02

100 2.5358e+02 3.3217e+02 0.0000e+00 0.0000e+00 0.0000e+00 2.7143e+00 1.2222e+03 1.0735e+03
Rastrigin

500 2.1600e+03 5.4562e+03 0.0000e+00 0.0000e+00 0.0000e+00 1.1132e+00 8.6621e+03 7.4188e+03

5 1.8418e+00 3.9387e+00 3.3818e+00 3.8733e+00 4.0155e+00 4.1998e+00 2.9554e+02 1.0212e+03

50 4.5794e+01 4.9130e+03 4.8965e+01 4.8951e+01 4.8649e+01 4.9374e+01 4.1971e+07 1.4990e+08

100 9.5543e+01 1.5961e+05 9.8964e+01 9.8954e+01 9.8281e+01 9.9508e+01 9.5397e+07 5.6190e+08
Rosenbrock

500 4.9184e+02 1.4714e+07 4.9896e+02 4.9896e+02 4.9535e+02 4.9962e+02 6.6368e+09 5.4849e+09

5 9.5097e−17 4.5248e−92 0.0000e+00 0.0000e+00 0.0000e+00 3.0466e−26 5.7078e−09 4.3097e−04

50 8.0301e−05 4.5912e−04 0.0000e+00 0.0000e+00 0.0000e+00 1.8737e−18 1.6220e+09 1.2841e+09

100 7.7415e−05 1.6397e+02 0.0000e+00 0.0000e+00 0.0000e+00 5.6318e−18 4.4789e+09 8.9519e+09
Schwefel223

500 3.4822e−04 9.4162e+08 0.0000e+00 0.0000e+00 0.0000e+00 3.9716e−18 2.8568e+11 2.0302e+11

5 −1.9583e+02 −1.9583e+02 −1.9569e+02 −1.8076e+02 −1.6963e+02 −1.7348e+02 −1.7592e+02 −1.8158e+02

50 −1.9018e+03 −1.6965e+03 −1.3724e+03 −1.0942e+03 −1.5435e+03 −1.0184e+03 −8.9307e+02 −1.2202e+03

100 −3.4077e+03 −2.8352e+03 −2.3018e+03 −2.0178e+03 −3.0103e+03 −1.8841e+03 −1.5568e+03 −2.0718e+03
Styblinskitang

500 −1.6526e+04 −8.4084e+03 −7.9417e+03 −9.0582e+03 −1.4859e+04 −8.7477e+03 −4.1091e+03 −6.3357e+03

5 −3.0000e+01 −3.0000e+01 −2.9890e+01 −2.9916e+01 −2.4194e+01 −2.8117e+01 −2.9704e+01 −2.1214e+01

50 −8.1106e+03 2.5636e+05 2.6391e+01 4.4701e+01 −1.0558e+02 8.5830e+01 1.6161e+07 2.8479e+07

100 −4.1094e+04 2.9695e+07 7.9457e+01 9.5869e+01 −1.6720e+02 7.4611e+02 5.6313e+08 1.3875e+09
Trid

500 −2.1395e+05 6.2820e+11 4.8293e+02 4.9688e+02 −8.6542e+02 6.5888e+05 9.0493e+12 7.4315e+12

The parameters of all 205 variations can be found in the CUSTOMHyS implementation
(https://github.com/ElsevierSoftwareX/SOFTX-D-20-00035, last accessed 12/11/2022)
(Cruz-Duarte et al., 2020).

Results and discussion
Numerical results are presented in Table 2. The best results are highlighted in bold,
and the Wilcoxon rank-sum statistical test was used for comparison. The results point
to a considerable difference between the hyper-heuristic and standard metaheuristic
approaches.

For the majority of problems (Qing, Rosenbrock, Styblinski Tang, Trid), NMHH
outperformed all metaheuristics and CUSTOMHyS. In the case of Rastrigin and Schwefel
2.23, the SMA, AEO and BRO found the global minimum. For Rastrigin, both hyper-
heuristic approaches performed considerably worse than the metaheuristics, but for
Schwefel 2.23, the NMHH approximated the solution several magnitudes better than
CUSTOMHyS. NMHH found the best solution in 66% of test cases. These results indicate
that in many cases our approach can outperform state-of-the-art metaheuristics and the
investigated selection hyper-heuristic.
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Figure 3 Evolution of the Rosenbrock, Styblinski Tang problems over time, comparing the
CUSTOMHyS and two variants of the method: the presented SA based (NMHH) and the random
based variant (RandomNMHH). The evolution of the minimum median plus interquantile range is
shown.

Full-size DOI: 10.7717/peerjcs.1785/fig-3

Convergence. Figure 3 presents the evolution of the performances for the Rosenbrock
and Styblinski Tang functions. The plots highlight the ability of NMHH to find the best-
performing operators and their sequences. We compared NMHH and CUSTOMHyS to a
modified version of the proposed method (Random NMHH), where simulated annealing
was replaced with random uniform selection and generation. Random NMHH performed
worse than the simulated annealing variant in all cases, pointing to the importance of the
selection and generation mechanism in the hyperlevel.
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Table 3 Average and standard deviation of the computational times measured in seconds for the
Rosenbrock function. Best results are highlighted in bold.

Dimension NMHH (sec) CUSTOMHyS (sec)

5 373.31± 44.20 682.55± 186.73
100 540.7± 57.96 4771.14± 4578.12

Figure 4 The best performing operator category transition matrices for Styblinksi Tang and Rosen-
brock functions. For Styblinksi Tang the alternation of perturb and selection operators with the occa-
sional refinement performed best. In the case of the Rosenbrock function the evolved sequences initially
perform perturbation and finish with constant refinement.

Full-size DOI: 10.7717/peerjcs.1785/fig-4

Computational time. Table 3 shows the measured computational times for the Rosenbrock
function in low- and high-dimensional settings for 10 runs. In the low-dimensional
setting, both NMHH and CUSTOMHyS had times of the same order of magnitude, but
in the high-dimensional setting, NMHH performs an order of magnitude better than
CUSTOMHyS and has a lower variance. This shows that the NMHH implementation
scales well with increasing dimensionality.

Evolved Markov chain. The ability of NMHH to adapt the used operator and operator
category distributions to the problem is best seen in Figs. 4 and 5. Figure 4 depicts the
best-performing operator category transition matrices and initial distributions of the
upper layer in the case of Styblinski Tang and the Rosenbrock function. Figure 5 depicts
the best-performing operator transitions. NMHH adapted the exploration-exploitation
rate to the shape of the cost landscapes. The shape of Styblinski Tang favours a balance
between exploration and exploitation as it contains many local minima. The transition
matrices reflect that the best-performing distributions include both iterated local search
and perturb operators. In 500 dimensions, the optimal optimization approach proved to
be more balanced towards continuous refinement. NMHH adapted to the valley-shaped
landscape of the Rosenbrock test function and evolved to use the iterated local search
approach in the limited function evaluation setting.
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Figure 5 The best performing operator transition matrices for Styblinksi Tang and Rosenbrock func-
tions.While the perturbating operators alternate in the majority of cases, for refinement the gradient de-
scent operator was preferred.

Full-size DOI: 10.7717/peerjcs.1785/fig-5

Table 4 Evolved operator sequences of CUSTOMHyS for Rosenbrock and Styblinksi Tang.

Dimension Rosenbrock Styblinski Tang

5 Genetic crossover120, swarm dynamic194, differential
mutation21

Random search171, random flight139

50 Gravitational search135, swarm dynamic191, genetic
crossover115

Genetic crossover73, spiral dynamic180, random search172

100 Genetic crossover117, swarm dynamic203, random search169 Differential mutation19, swarm dynamic193, genetic
crossover56

500 Random search168, local random walk158, genetic
crossover11

Genetic crossover99, random search174, genetic crossover98

Evolved CUSTOMHyS operator sequences. Table 4 depicts the operator sequences that
CUSTOMHyS evolved for Rosenbrock and Styblinski Tang and shows the index of the
heuristic operator variation within the heuristic collection.

CONCLUSION AND FURTHER WORK
Optimization plays an important role in computational tasks. Hyper-heuristics are a new
paradigm for solving optimization problems as they can significantly improve numerical
results. In this article, we propose a new hyper-heuristic framework (NMHH) with two
main innovations: the use of a nested Markov chain to model complex distributions of
operators and the search for the equilibrium between exploration and exploitation in this
space by balancing the category of iterated local search against metaheuristic exploratory
operators. Numerical experiments conducted on continuous benchmark problems in
high dimensions confirm the effectiveness of the proposed approach. The results show
that NMHH evolved operator sequences and found the exploration-exploitation rate that
outperformed state-of-the-art metaheuristics and the CUSTOMHyS hyper-heuristic in
66% of the cases in the high-dimensional setting.
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As further work, other metaheuristics can be introduced at the base level. Detecting
point clusters that are converging to the same fixed point and keeping the best one
while perturbing the others could facilitate the better exploration of the attraction basins,
improving performance. Another research direction could be the hybridization of the
simulated annealing search operator within the hyperlevel with local search operators. The
formulation of the change of operator parameters during the optimization process as an
optimal control problem is another interesting research direction.
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