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ABSTRACT
Network attacks pose a significant challenge for smart grid networks, mainly due
to the existence of several multi-directional communication devices coupling con-
sumers to the grid. One of the network attacks that can affect the smart grid is the
distributed denial of service (DDoS), where numerous compromised communication
devices/nodes of the grid flood the smart grid network with false data and requests,
leading to disruptions in smart meters, data servers, and the state estimator, ultimately
effecting the services for end-users. Machine learning-based strategies show distinctive
benefits in resolving the challenge of securing the network from DDoS attacks.
Regardless, a notable hindrance in deploying machine learning-based techniques is
the requirement of model retraining whenever new attack classes arise. Practically,
disrupting the normal operations of smart grid is really discouraged. To handle this
challenge effectively and detect DDoS attacks without major disruptions, we propose
the deployment of reconstructive deep learning techniques. A primary benefit of our
proposed technique is the minimum disruption during the introduction of a new
attack class, even after complete deployment. We trained several deep and shallow
reconstructive models to get representations for each attack type separately, and we
performed attack detection by class-specific reconstruction error-based classification.
Our technique experienced rigid evaluation via multiple experiments using two well-
acknowledged standard databases exclusively for DDoS attacks, including their subsets.
Later, we performed a comparative estimation of our outcomes against six methods
prevalent within the same domain. Our outcomes reveal that our technique attained
higher accuracy, and notably eliminates the requirement of a completemodel retraining
in the event of the introduction of new attack classes. This method will not only boost
the security of smart grid networks but also ensure the stability and reliability of normal
operations, protecting the critical infrastructure from ever-evolving network attacks.
As smart grid is advancing rapidly, our approach proposes a robust and adaptive way
to overcome the continuous challenges posed by network attacks.
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INTRODUCTION
A smart grid combines traditional power grid systems and digital networks, enabling
two ways of communication between the grid and the end user, power grid stability
tracking, remote access to smart power appliances, and updates about consumer behavior.
Integration of smart devices, services, protocols, and standards ensured simple and
effective power system operations but made smart grid networks vulnerable to cyber-
attacks. A cyber-attack has the potential to exert a considerable impact on the smart
grid infrastructure and society. Therefore, the binding for robust security measures is
essential to secure the reliable operation of the smart grid network. This challenge has
appeared as a notable research focus recently. Cyber-attackers target cyber resilience
elements like data availability, integrity, and confidentiality to manipulate the data used
for the control and operation of smart grid networks to gain financial benefits or to disturb
the normal operations of the grid network. Multiple techniques for the prevention of
cyber-attacks have undergone rigid analysis and deployment by researchers, to fortify
network infrastructure and data against unauthorized intrusion. Mehrdad et al. (2018)
systematically categorized cyber-attacks into two types: indirect and direct cyber-attacks.
Direct attacks were further categorized into four different groups. Among these groups,
intrusion attacks appeared to be the most dominant, with denial-of-service (DoS) attacks
being recognized as the most destructive. In DoS attacks, the attacker provides false data to
the primary source of services, disrupting the normal legitimate services and operation of
the smart grid network. Its advanced form is a distributed denial of service (DDoS) attack,
in which the attacker simultaneously targets multiple nodes. Detecting a DDoS attack from
a single node becomes challenging because it cannot differentiate between legitimate and
illegitimate service requests, often resulting in unsuccessful DDoS attack prevention. smart
grid networks can be secured from DDoS attacks by analyzing the patterns of network
data. Real-time network data analysis can detect DDoS attacks timely and prevention
measures can reduce the damage significantly. Machine learning-based algorithms have
been gaining popularity in recent times for their effectiveness in detecting DDoS attacks.
Mihoub et al. (2022), Almaraz-Rivera, Perez-Diaz & Cantoral-Ceballos (2022) and Ali & Li
(2019) proposed Multiple DDoS attack detection approaches. A prime challenge faced
by these techniques is to integrate a new class of attack into a learned model whenever
an attacker introduces a new class of attack, which is not practical in run-time scenarios,
specifically in smart grid networks, where disruption of operations is expensive and
discouraged extensively. We proposed an efficient reconstructive machine learning-based
model to resolve this problem. The proposed model allows real-time non-disruptive
addition of new attack classes even after full deployment. More specifically, we train
multiple shallow and deep reconstructive models to learn a class-wise representation
of each attack type extensively and designed a class-specific reconstruction error-based
classification approach for DDoS detection in smart grid networks. Our method offers the
addition of a new attack class without disrupting the already-learned models. After the
introduction of every new attack class, our model needs to learn the only newly added
class-specific reconstructive model. We develop our approach by exploiting multilevel
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deep and shallow reconstructive models for retaining rich features. These include the deep
autoencoder (Sindian & Samer, 2020), Stacked de-noising autoencoder (Manan et al.,
2023), extreme learning machine autoencoder (Sowparnika et al., 2023), and marginalized
stacked denoising autoencoders (Deepa & Sivakumar, 2022). We performed experimental
evaluations on two specified benchmark databases forDDoS attacks, including their subsets.
Hereafter, we compared the outcomes with six advanced methods. Outcomes demonstrate
that our approach surpasses the compared techniques with respect to accuracy while at the
same time does not need re-training if new attack classes are introduced. Among diverse
reconstructive models, the proposed method proves the most convincing performance for
handling the specific problem under consideration.

The following are the main insights of this work:

• To avoid the expensive step of post-deployment system retraining, we propose a
reconstructive model-based DDoS detection system. Attack-specific reconstruction-
based techniques have not been yet analyzed for DDoS detection problems.
• For the above purposewe design a class-specific reconstruction error-based classification
algorithmand study the performance of different shallow and deep reconstructivemodels
in conjunction with our algorithm.
• The proposed method is evaluated using standardized benchmark datasets to evaluate
its significance in detecting DDoS attacks within smart grid networks. The outcomes are
compared to six DDoS detection methods concerning classification accuracy. Outcomes
indicate that our method achieves comparable results while not requiring full model
retraining if new class types are introduced after deployment.

The remaining sections of the paper are structured as: In the ‘‘Literature Overview’’
section, a detailed review of the current literature on deep and shallow machine learning-
based techniques for detecting DDoS attacks within smart grid networks is presented. The
‘‘Proposed Method’’ section defines a problem statement, delves into the realm of deep
learning, and introduces our novel reconstructive-based model designed for classification.
Within this section, we provide brief descriptions of essential features, including the deep
autoencoder, marginalized stacked denoising autoencoder, and the reconstructive model-
based approach to attack classification. Next, we discussed the ensemblemodel learning and
feature encoding scheme used in this work. Next, a complete algorithm employed to detect
DDoS attacks in the smart grid network is introduced. The ‘‘Experimental Setup’’ offers an
in-depth exploration of the experimental evaluation. Two publicly available datasets were
used for testing our model and thereafter showed the results, along with a comparative
analysis against previously used methodologies. The ‘‘Conclusion and Summary’’ section
contains the conclusive decision and summarizes potential directions for future research
in our work.

LITERATURE OVERVIEW
This section explores machine learning-based literature, data sets, real-world applications,
and techniques previously used for DDoS detection. Detailed literature analysis is shown
in Table 1.
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Table 1 Existing machine learning techniques and datasets used for DDoS detection.

Author (Year) Learning method Data set used

Aktar & Nur (2023) Deep Contractive Autoencoder (DCAE) CICIDS2017
Stochastic threshold method NSL-KDD

CICDDoS2019
Ahmed et al. (2023) Multilayer Perceptron (MLP) CTU-13 Dataset

Real Weblogs (Dataset)
Malik, Dutta et al. (2023) Machine Learning model IoT-CIDDS

Cross Validation
Hyperparameter Optimization

Al-Juboori et al. (2023) eXtreme gradient boosting (XGBoost) MTM Dataset
Decision tree
Random forest
Gradient Boosting

Assis et al. (2021) GRU CICDDoS2019
CICIDS2018

Banitalebi Dehkordi, Soltanaghaei
& Boroujeni (2021)

Classification based algorithm UNB- ISCX12

Entropy CTU-132
Floodlight controller

Cil, Yildiz & Buldu (2021) DNN CICDDoS2019
Tuan et al. (2020) Decision tree (DT) UNBS-NB-15,

Unsupervised learning (USML) KDD99
(K-means, X-means)
Support vector machine (SVM)
Artificial neural network (ANN)

Aamir & Zaidi (2019) kNN, RF models, and SVM CICIDS2017
Naagas et al. (2018) DELA Simulated DDoS

(Deep Extreme Learning-based
autoencoders)

Attacks

Wang et al. (2017) Honeypot game theory, AMI data
Bayesian-Nash equilibrium

Diovu & Agee (2017) Cloud-based algorithms Attack vector,
AMI traffic

Srikantha & Kundur (2015) Collaborative reputation-based topology, MATLAB simulation
Nash Equilibrium routing topology, -based data
Game theory

Varalakshmi & Thamarai Selvi
(2013)

Hierarchical Broker Architecture, Network traffic data

Kullback–Leibler Divergence
Kumar & Selvakumar (2011) RBP Boost classification algorithm, KDD Cup,

Backpropagation, DARPA 1999,
Weighted Majority Voting DARPA 2000

Aktar & Nur (2023) proposed a deep learning model employing a contractive
autoencoder, by training model for learning normal traffic patterns from the compacted
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representation of the input data and applied a stochastic threshold technique for DDoS
attack detection. Yaser, Mousa & Hussein (2022) implemented a deep extreme learning
machine-based autoencoder for efficiently detecting illegitimate network traffic during a
simulated DDoS attack. The hybrid method proposed by Wang et al. (2021) combines a
convolutional autoencoder with a long short-term memory (LSTM) network. This fusion
actually captures both temporal and spatial features, resulting in improved detection
accuracy. Recognizing the potential of various reconstructive machine learning models,
Wang et al. (2021) also examined ensemble frameworks to enhance DDoS attack detection
further. Drif, Zerrad & Cherifi (2020) implemented the integrated variational autoencoder
to further improve the DDoS detection accuracy. Naagas et al. (2018) implemented a
multilayered DDoS attack detection system by proposing DELA models. These individual
models achieved the maximum sensitivity and adaptability for DDoS attack detection.
Mylonas, Abdallah & Chatzi (2021) integrated features from power flow, supervisory
control, and SCADA (data acquisition system) with autoencoders, hence further improving
the understanding of network dynamics. Liao (2022) used transfer learning for cross-
domain implementation, proving that transfer learning is a bridge between distinct
domains. Guimaraes et al. (2017) incorporated generative adversarial networks (GANs)
and autoencoders to enhance the adversarial robustness and resilience of the model against
DDoS attacks. Sadaf & Sultana (2020) used autoencoders for the real-time detection of
false data originating from sensors. This focus on real-time capabilities is essential for
promptly preventing and detecting DDoS attacks within smart grid networks. Gao et al.
(2016) implemented a protocol-independent method based on a reflection approach for
DDoS attack detection. Five determined features are used for Machine learning-based
DRDoS detection in a protocol-independent manner. The feature set contains multiple
attributes within a defined time interval without TCP or UDP headers, like the total
packets directed to the target, maximum packets transmitted in a specified time frame,
the size of the packet delivered to the target, and the difference between the total packets
sent to and received from the target within the specified time frame. Singh, Singh & De
(2016) used the naive Bayes-driven classification of machine learning with eight features in
consideration of the CAIDA 07 dataset. The naive Bayes method uses statistical formulas to
compute probabilities for DDoS attack detection. Azab, Alazab & Aiash (2016) proposed
the most powerful feature labeling approach tailored for botnet traffic, directed to as the
‘‘Classification of Network Information Flow Analysis’’ (CONIFA). Their analysis used
a botnet toolkit known as Zeus for the objective of traffic generation and succeeding
analysis. Yusof et al. (2017) proposed an approach that combines features of DoS with
consistency-based subset evaluation (CSE) to determine enhanced features from the
subsets of available DDoS datasets, for comparison with traditional feature selection
methods based on statistical significance. Singh & De (2017) consider 16 features from the
CAIDA’07 dataset to be the most significant, and the proposed ensemble feature selection
approach can integrate statistical significance scores, including chi-square, information
gain, correlation ranking, reliefF, SVM, gain ratio, and symmetrical uncertainty ranking
filters. These scores can be used further to find out a threshold for the exclusion and
inclusion of each feature in the finalized feature set, with the threshold being represented
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as the norm of the unique scores. Khan et al. (2018) presented a novel technique by
incorporating entropy with granular computing to form a feature selection method for
enhanced DDoS detection. Khan et al. (2018) particularly applied entropy computations
to all seven features of the NSL-KDD-09 dataset. Later, each feature is allocated a weight
value based on the anomaly count for streamlining the feature selection process. Alejandre,
Cortés & Anaya (2017) implemented a wrapper method1 using ISCX and ISOT datasets
to choose various feature sets using genetic algorithm and greedy search and then used
C4.5 algorithm for evaluation of those features. The features that yield a higher detection
rate with the C4.5 are given priority. Al-Hawawreh (2017) discussed the detection of
simulated SYN flood attacks studied using various machine-learning techniques. Then
the pre-processing and features extraction phase, the addition of an intersection process
to select features selection is added to get the optimal feature set on the basis of standard
features from gain ratio, information gain, and ReliefF. Li, Liu & Gu (2010) implemented
a neural network technique, learning vector quantization (LVQ) on a simulation-based
dataset. LVQ produces cluster boundaries under supervised learning according to training
data. Neurons exhibiting close relation converge and are eventually grouped jointly within
the same class limit via multiple iterative techniques. The neurons with the most similar
features determine the group class, enforcing the winner-takes-all paradigm. Agrawal
et al. (2011) implemented an artificial neural network (ANN) against the divergences
in entropy of data, and to find out the strength of a DDoS attack. (Gupta et al. (2011)
implemented ANN against the divergences in entropy of data to predict the compromised
nodes behind the DDoS attack. Bansal & Mahapatra (2017) detected the illegitimate botnet
traffic using three different machine-learning techniques. Initially, a clustering technique
is used, clustering with six features called the manual feature extraction with later assigning
labels as, botnet, and malicious to every cluster depending on network data observances of
specific time frame. Zekri et al. (2017) employed a machine learning approach in the cloud
forDDoS detection. A set of five features is examined in this research using the C4.5 decision
tree technique. For improved results, the model is complemented with a signature-based
technique. For comparison, K-means and naive Bayes, two different approaches are
also tested. Yuan, Li & Li (2017) enforced a deep learning-based recurrent neural network
(RNN) for the detection of DDoS attacks, and termed it as Deep Defense. RNN can identify
patterns of the network in time series and by default works on short-term memory cells.
Memory term can be improved by LSTM, ensuring correlation betweenmultiple time steps
in a series. Gore, Padilla & Diallo (2017) applied Markov Chain techniques to the details
of observed cyber threats to determine common vulnerabilities and develop proactive
models. Musumeci et al. (2022) proposed an online DDoS attack detection method, by
using KNN, ANN, support vector machine, and RF algorithms. Their proposed method
achieved 98% accuracy in detecting SYN attacks. Ahuja et al. (2021) integrated random
forest and support vector machine (SVM) methods for the classification of attacked
and non-attacked traffic. Evaluation has been done on a dataset from a software-defined
network (SDN) and achieved 98.8% accuracy withminimal false values.Tonkal et al. (2021)
performed a comparative analysis by implementing multiple machine-learning methods
for SDN data. Phan, Bao & Park (2016) implemented a hybrid method by integrating
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self organizing maps (SOM) and SVM, which improved the classification accuracy for
DDoS flood attack detection against OpenFlow and SDN controllers. Swami, Dave &
Ranga (2021) explored the random forest, MLP, logistic regression, LR, and DT for DDoS
attack detection in an SDN using a network dataset. Nadeem et al. (2022) implemented
naïve Bayes, support vector machine, KNN, and RF to detect the DDoS attack, and tested
the implemented techniques using the NSL-KDD dataset and achieved 99.97% accuracy.
Yuan, Li & Li (2017) sampled 20 network data features of the dataset ISCX 12 to design a
bidirectional RNN performance analysis. Alkasassbeh et al. (2016) simulated DDoS attacks
via HTTP flooding and SQL injection (SIDDOS) along with traditional UDP flooding and
Smurf attacks. Application layer attacks, SIDDOS, and HTTP flooding have drawn more
attention from researchers recently. NS2 network-based simulated dataset of multi-class
with 1,048,575 instances is utilized to detect DDoS attacks namely SIDDOS, Smurf, UDP
flooding, and HTTP flooding.

Literature analysis of DDoS detection in smart grid networks shows that the neural
network-based DDoS detection strategies performed better than the others. However,
deep autoencoders with reconstructive-based detection algorithms eliminating full model
retraining requirements, have not yet been explored for DDoS attack detection. Therefore,
we present an efficient reconstructive model-based scheme to bridge this research gap.
In comparison to other machine learning-based techniques used for DDoS detection, the
proposed performed better in terms of efficiency.

PROPOSED METHOD
This section contains complete details of the technique proposed for detecting DDoS
attacks within smart grid networks. A complete framework of our proposed method,
which leverages the reconstruction model is illustrated in Fig. 1. First, we briefly introduce
the reconstructive models employed in our method. Next, we provide the details of
our reconstruction error-based detection strategy. Specifically, we consider three types
of models in our study. These include the deep autoencoder, the marginalized stacked
denoising autoencoder, and the deep extreme learning machine-based autoencoder.

Proposed class specific reconstruction based method for
classification
The presented approach for DDoS attack detection based on reconstructive models consists
of two primary stages. Firstly, we train a global domain-specific reconstructive model using
the entire dataset in an unsupervised manner. In the second stage, we train class-specific
reconstructive models by utilizing the global representation as an initial starting point.
This methodology enables the encoding of both domain-specific and class-level data
characteristics. Let T= {Xn}

c
n=1 ∈Rd×N be the training data for c attack classes having N

samples:N =
∑c

n=1sn in total, where sn represents the count of training samples within the
attack class denoted by index n which is defined as Xn={xin}

sn
i=1 ∈Rd×sn (where xin ∈Rd is

a d-dimensional feature vector. While the value of sn may vary among different training
classes, the dimension of xin will remain consistent.Consider Y as the set of class labels,
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Figure 1 Block diagram of proposed reconstructive model-based attack classification algorithm.
Full-size DOI: 10.7717/peerjcs.1784/fig-1

denoted as yncn=1, corresponding to the training classes within T. Our task of DDoS attack
detection aims to predict the label yt for the test sample xt using the training dataset T.
Training stage: During the training stage, we initiate the weights of a multi-layer neural
network, forming a global domain-specific reconstructive model, using the autoencoder
training. This model comprises h hidden layers and its parameters are acquired through
an unsupervised manner utilizing all the available samples in T. We represent the global
reconstructive model as LG, composed of its constituent parts W1

G,...,Wh+1
G . Each Wi

G
corresponds to the parameter matrix of layer i, obtained using auto-encoding training
techniques. This global reconstructive model serves as an initial framework, upon which
we build class-specific reconstructive models in our subsequent stages.

As LG encapsulates domain-specific representation, acquired through its training to
reconstruct samples from that domain, we can employ it to build distinct reconstructive
models for all the c training classes separately. That is, rather than starting with random
initialization for the hidden layer weights, we preferred to employ the weights contained
within LG as the initial settings for our class-specific models. As a result, we establish a total
of c reconstructive models, each tailored to one of the c classes, denoted as Ljj = 1c . Each
class-specific model is explicitly defined as Lj =W1

j ,...,W
h+1
j .

Testing stage: During the testing stage, we reconstruct a given test sample xit by applying
each class-specific model from the set Ljj = 1c . The reconstructed sample obtained by the
model Lj is represented as x̂tj i and can be defined as:

x̂itj = f (xitj,Lj)=Wh+1
j g (Wh

j ,...,g (W
1
j x

i
t )) (1)

where the reconstruction function is denoted as f , and g represents the activation function
used by the layers. To quantify the reconstruction error for a given sample xt i, we compute
the distance (e.g., Euclidean) between sample xt i and sample x̂itj, which is expressed as
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e i(j)= |xit − x̂
itj|2. Subsequently, the estimated label l it for x

i
t is determined by identifying

the class associated with the minimum reconstruction error.

l it = arg min
j

ei(j). (2)

The entire process of the two stages discussed is outlined in Algorithm 1.

Algorithm 1 Proposed Reconstructive Model Based Attack Classification Algorithm

Require: :
Training Dataset T containing c sets of attack samples Xs = {xim}

sm
i=1 ∈ Rd×sm grouped

into c categories
Labels of classes denoted by Y={ym}cm=1
Test sample xit ∈Rd

Hidden layers h
Ensure: : The predicted label yt for xt .
Ensure: : Predicted Label yt for xt .

Training Phase:
Train Global Reconstructive Model LG = {W1

G,...,Wh+1
G } using the entire T and h hid-

den layers.
for j = 1 : c do

Train individual reconstructive models Lj ={W1
j ,...W

h+1
j } for each class.

Testing Phase:
for j = 1 : c do

Reconstruct Test Sample: x̂itj = f (xit ;Lj) {Reconstruction (??)}
Compute Reconstruction Error: e i(j)=‖xit − x̂

i
tj‖2

Predicted Label: l it , argmin
j

ei(j)

Different classes of autoencoders used for learning representations
An autoencoder is a neural network architecture trained via a back-propagation algorithm,
wherein the input values are set equivalent to the target values, which blend into the input
samples themselves. An autoencoder comprises two essential components: an encoder
denoted as h(·), responsible for mapping an input data point xi ∈Rd as a latent expression
h(xi) ∈Rdh, further a decoder, referred to as g (·), tasked with reconstructing the input
data xi from this latent representation, ensuring that g (h(xi))≈ xi. The measure of this
reconstruction is estimated using a predefined loss function l(xi,g (h(xi))), which quantifies
the dissimilarity between the original data and its reconstructed part. The primary purpose
is to minimize this loss function to adapt and optimize the parameters of the autoencoder.
Various forms of loss functions are available, including but not confined to squared
error loss or the Kullback–Leibler (KL) divergence. In the field of machine learning
literature, various types of autoencoders have previously been introduced (Rifai et al.,
2011; Baldi & Hornik, 1989; Vincent et al., 2008; Williams & Hinton, 1986; Lee et al., 2009;
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Kavukcuoglu et al., 2009). In this article, we explore three types of autoencoders for our
algorithm. These include the deep autoencoder, extreme learning machine autoencoder,
and the marginalized denoising autoencoder. The encoders are explained briefly in the
next sections.

Deep autoencoder
A deep autoencoder uses multiple layers of hidden units and is an efficient model for
learning the underlying structure of the data. A deep autoencoder consists of a decoder
and an encoder part with each having multiple hidden layers. The role of the encoder is
to compute valuable representations from the input data. An encoder comprises a layers
series interconnected by an activation function (non-linear) that converts the input data x
into a representation h, as illustrated below:

h= s(W(3)
e h2+b(3)e ),

h2= s(W(2)
e h1+b(2)e ), (3)

h1= s(W(1)
e x+b(1)e ),

where W(i)
e ∈Rdi−1×di is the encoder weight matrix for layer i with di nodes, b(i)e ∈Rdi is

the bias vector and s(·) is the element-wise non-linear activation function. In our case we
use a sigmoid defined as s(z)= 1

1+e−z . The encoder parameters are obtained through a
blended training method that involves the decoder and encoder. This combined training
approach aims to reconstruct the input data while minimizing the specified cost function.
The decoder consists of interconnected layers employing a non-linear activation function,
tasked with input reconstructing x on behalf of the output h of the encoder. The resulting
reconstruction, denoted as x̃ , is described as:

x̃ = s(W(3)
d x2+b

(3)
d ),

x2= s(W(2)
d x1+b

(2)
d ), (4)

x1= s(W(1)
d h+b(1)d ).

Subsequently we will denote the model by L= {W(i)
e ,W(i)

d ,b(i)e ,b(i)d }
3
i=1. To ensure the

best performance of autoencoder, it is necessary to initialize the weights appropriately. For
this purpose, we initialize the weights of the encoder by performing layer-by-layer training
through Gaussian restricted Boltzmann machines (RBM).

Marginalized denoising autoencoder
Denoising autoencoders function on the basic principle of purposefully introducing some
corruption to the input samples into the hidden layer representation before mapping. This
technique is used to enhance the learning capability of the model for learning robust and
useful features among noisy or imperfect input data.

Their training process revolves around reconstructing the original input xi from its
corrupted counterpart x̃i through the minimization of l(xi,g (h(x̃i))). Different types of
data corruption are used in denoising autoencoders, including additive isotropic binary
masking noise and Gaussian noise. Binary masking noise is a favored approach, by setting
a part of features to zero within each input sample.
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Vincent et al. (2010) designed stacked denoising autoencoders (SDA) by stacking
multiple denoising autoencoders (MDAs), thereby boosting the learning of deep feature
representations among multiple layers. However, SDAs (Vincent et al., 2010) come
with particular limitations. Like, their training approach can be slow, mainly due to
the utilization of a descent-based stochastic gradient and back-propagation algorithm.
Further, SDAs implicate numerous hyperparameters like the mini-batch size, learning rate,
noise ratio, number of epochs, and network structure, all of which necessitate tuning via
verification data sets. This tuning process can further slow the training process. Additionally,
non-convex optimizationmethodology and the selection of a suitable initializationmethod
mainly affect the final outcomes.

Chen et al. (2012) presented an advanced variant of SDA termed marginalized SDA
(MDA). MDA was developed to enhance training efficiency. One significant edge of MDA
is that it facilitates a closed-form solution, eradicating the need for a back-propagation
algorithm to optimize network parameters. This distinct induces MDA computations
notably efficient in comparison to the traditional SDA. Similarly, the MDA technique
delivers the flexibility of stacking multiple MDAs to construct deep feature representations
than SDA. Notably, Chen et al. (2012) followed that MDA performance in terms of
classification accuracy is better than SDA.

Inspired by the above benefits, this study leverages the MDA algorithm to achieve
powerful feature representations for the aim of DDoS detection. The fundamental
component of Marginalized Denoising Autoencoders (MDA) is a single-layer denoising
autoencoder. From the training, data set X= {xi}Ni=1 ∈Rd×N , Every input sample xi is
corrupted in random by extracting features (changing to 0). Particularly, a feature is
assigned a weight of 0 with probability p≥ 0. The MDA algorithm holds several advantages
over traditional denoising autoencoders. Single iteration over data is One of the noticeable
advantages which provides efficiency.

Extreme learning machine autoencoder
Efficiently obtaining rich data representations is of vital importance for acquiring strong
generalization, specifically on a large scale. This task can commonly be achieved using
autoencoders, where a parametric regressor function is learned to map input data to itself.
While deep neural networks have shown great power across diverse learning tasks, they are
often affected by slow training times. To tackle this problem, we utilize extreme learning
machine-based autoencoders (ELM-AE) (Zheng et al., 2021) for unsupervised learning of
dataset representations. ELMs are recognized for their computational efficiency during
training. A deep ELM, basically a multi-layer neural network, learns its parameters via the
training of multiple ELM layers. This learning technique excels in training speed while
maintaining robust generalization abilities. In ELM-AE, the hidden nodes are provided
with orthogonal random biases and weights, allowing them to project the input data into
different or equal dimensions. DELM (Jiang, Zhang & Zhong, 2022) has demonstrated a
high capability to effectively reveal the non-linear structure present in the data. Compared to
deep neural networks, DELM reduces the need for resource-intensive iterative fine-tuning
of weights.
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Table 2 Labels and features of four packets in IDE2012/11 dataset.

src payload packet dst dst2src src2dst ndpi ndpi
port bytes first header size port packet rate packet rate detection risk

1425 0 40 82 0 0 3 Unrated
4948 0 40 22 12 4 2 Acceptable
5585 0 46 109 913 406 1 Unsafe
64192 0 63 76 0 0 0 Safe

EXPERIMENTAL RESULTS
We have conducted a comprehensive performance analysis of the proposed algorithm,
with a primary emphasis on accuracy metrics. To make sure its significance, we used two
benchmark datasets specifically for intrusion detection and conducted the comparative
analysis of the obtained outcomes with other machine learning-based methods, decision-
tree (Zekri et al., 2017), LSTM (Yuan, Li & Li, 2017), KN (Doshi, Apthorpe & Feamster,
2018), LSVM (Doshi, Apthorpe & Feamster, 2018), random forest (Yuan, Li & Li, 2017),
and naive Bayes (Zekri et al., 2017). For a baseline comparison, we proposed a DDoS
detection model using the ELM autoencoder. We then trained our proposed model on
the unprocessed features, extracted from the labeled training data. Detailed insight of the
datasets used for experimentations are:

UNB ISCX Intrusion Detection Evaluation 2012 dataset
One of the datasets available publicly we incorporated for experimental analysis is the UNB
ISCX Intrusion Detection Evaluation 2012 dataset (Ali & Li, 2019) referred to as IDE2012.
We utilized two testbeds within this dataset. The first one is the testbed of 11th June,
named IDE2012/11, and the second is the 16th June testbed referred to as IDE2012/16 as
documented in UNB (2012). IDE2012/11 testbed contains 204 features each for 325,757
samples. IDE2012/16 testbed contains a total sample of nearly 464,989 and contains 204
features each. Labels provided for each sample are unrated, acceptable, safe, and unsafe.
We further discretized these labels as unsafe (1), and safe (0) for simplification. Some of
the significant attributes of each data packet are event generator, ndpi risk, Payload byte
first, source and destination port, event priority and ndpi detected protocol, etc. 15% of
this dataset (10,000 packets) demonstrated signs of DDoS attack infection. This observed
infection rate serves to emphasize the prevalence and impact of DDoS attacks within the
dataset. Part of this data set is shown in Table 2.

To assess the adaptability of our model among varying portions of data, we selected
10,000 samples randomly of every dataset. Additionally, extending beyond the traditional
two classes 0 for safe and 1 for unsafe, our evaluation encompasses four-class classification
settings. Designated labels are 0 for safe, 1 for unsafe, 2 for acceptable, and 3 for unrated.
A breakdown of these dataset divisions along with names are shown in Table 3.

UNSW-NB15 dataset
One of the publicly available intrusion detection data set used in our experiments is
UNSW-NB15 (UNSW, 2015) dataset. Australian university named The University of New

Naqvi et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1784 12/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1784


Table 3 Details of distinct subsets, packets, and features of IDE2012 dataset.

Data Subset Total Total Labels
Subset Named Packets Features

IDE2012/11 D1 325,757 204 0,1
IDE2012/11 D2 325,757 204 0,1,2,3
IDE2012/16 D3 464,989 204 0,1
IDE2012/16 D4 10,000 204 0,1
IDE2012/16 D5 464,989 204 0,1,2,3

Table 4 Details of distinct subsets, features and packets of UNSW-NB15 dataset.

Data Subset Total Total Labels
Subset Named Packets Features

UNSW-NB15-1 D6 700,001 49 0, 1
UNSW-NB15-2 D7 700,001 49 0, 1
UNSW-NB15-3 D8 700,001 46 0, 1
UNSW-NB15-4 D9 440,044 46 0, 1

South Wales (UNSW), created the data set utilizing the IXIA perfect-storm tool and
offers extensive network data of 700,001 samples with 49 features each, captured under a
controlled environment. To push the limits of the proposedmethod, we further partitioned
the UNSW-NB15 dataset into four distinct subsets are shown in Table 4.

A few features of the UNSW-NB15 dataset are attack category, source IP, transaction
protocol, record start time, destination IP, source jitters (mSec), duration, etc. For
experimentation, we transformed non-numerical features into discrete features. We
further discretized the provided label and assigned ‘‘attack’’ a value of 0 and ‘‘non-attack’’
a value of 1.

EXPERIMENTAL SETUP
We have a total of nine datasets renamed D1 to D9. For evaluation of the proposedmethod,
we divided each dataset randomly to 20% for testing purposes and 80% for training
purposes. The experiments were repeated nine to ten times, and the average accuracy
was calculated on the basis of the outcomes of these experiments. Performance indicators
employed for the evaluation of the proposed method encompass FP (false positive),
TN (true negative), FN (false negative), and TP (true positive). Where, FN indicates
legitimate data detected as abnormal, TN indicates legitimate data seen as legitimate, FP
indicates the abnormal data detected as legitimate, and TP indicates the abnormal data
correctly identified as abnormal. These metrics are utilized in the calculation of Accuracy
=

TP+TN
FN+FP+TP+TN of the proposed method. The proposed method contains parameters

from MSDA. The fundamental parameters operated for feature learning are the total
layers in every MSDA (L), total deep MSDAs (M ), and corruption probability (p). For
experiments, we denoted the total layers in every MSDA as Lm and assigned between [1,
3, 5, 7, 9, 11], (M ) to nine MSDAs, and the corruption probability denoted as pm and
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Figure 2 Average accuracy achieved by our technique on the nine data sets.
Full-size DOI: 10.7717/peerjcs.1784/fig-2

chosen between 0.1, 0.2, . . . , 0.5. These parameters can undergo additional fine-tuning
within a cross-validation framework to potentially improve results. To ensure optimal
performance, we compared the algorithms using the recommended parameters from the
original authors. For evaluation, we employed a 10-fold cross-validation technique for
available datasets and their sub-datasets. The conclusive detection accuracy is calculated
as the standard of these 10-fold. These experiments were conducted in MATLAB on a
computer with NVIDIA Tesla V100 GPUs and 32.5 GB of memory.

CONCLUSIONS AND EVALUATION
Figure 2 illustrates the average accuracy attained by the Deep autoencoder, ELM, and
MSDA on the nine data sets. The accuracy on the large data sets is slightly lower than the
accuracy achieved on the smaller data sets. It Happened because the total test set of these
data sets is larger. Hence, the proposed method learned good features from larger and
smaller data sets equally.
Table 5 presents a comprehensive evaluation of the performance of an extreme learning

machine (ELM)-based classification model across nine datasets (D1-D9). Precision,
recall, specificity, F1 score, and area under the receiver operating characteristic curve
(AUC) are reported for each dataset, providing insights into the model’s discriminative
capabilities, sensitivity to positive instances, ability to correctly identify negative instances,
overall precision–recall balance, and the area under the ROC curve. The average values,
accompanied by standard deviations, show a detailed view of the model’s consistency in
performance.

Table 6 presents a detailed comparison of the accuracy of the proposed algorithm
with machine learning-based other six DDoS attack detection techniques. The proposed
algorithm has performedmuch better than the other methods. Because ourmethod learned
multiple autoencoders and the proposed reconstructive-based scheme for classification.
Also, the use of deep extreme machine learning-based autoencoder enabled us to learn
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Table 5 Average and standard deviations of the different performance metrics of the proposed
method on D1 to D9 Datasets for 10-fold experiments.

Datasets Precision Recall Specificity F1 score AUC

D1 0.92± 0.01 0.93± 0.02 0.90± 0.01 0.92± 0.01 0.95± 0.005
D2 0.96± 0.02 0.98± 0.01 0.95± 0.02 0.97± 0.01 0.98± 0.008
D3 0.89± 0.01 0.91± 0.02 0.88± 0.01 0.90± 0.02 0.94± 0.006
D4 0.94± 0.01 0.96± 0.01 0.93± 0.01 0.95± 0.01 0.97± 0.007
D5 0.89± 0.02 0.91± 0.02 0.88± 0.02 0.90± 0.02 0.94± 0.006
D6 0.95± 0.01 0.96± 0.01 0.93± 0.01 0.95± 0.01 0.97± 0.007
D7 0.92± 0.01 0.92± 0.02 0.90± 0.01 0.92± 0.01 0.95± 0.005
D8 0.93± 0.02 0.95± 0.01 0.92± 0.02 0.94± 0.01 0.96± 0.006
D9 0.88± 0.02 0.90± 0.02 0.97± 0.02 0.89± 0.02 0.93± 0.007
Average 0.92± 0.01 0.93± 0.01 0.91± 0.01 0.92± 0.01 0.95± 0.006

Table 6 Performance metrics and variability from 10-fold cross-validation experiments.

Data LSTM Random
forest

Naive-Bayes Decision-tree KNN LSVM Proposed

sets Yuan, Li
& Li (2017)

Yuan, Li
& Li (2017)

Zekri et al. (2017) Zekri et al. (2017) Doshi, Apthorpe
& Feamster (2018)

Doshi, Apthorpe
& Feamster (2018)

D1 90.5± 1.3 89.7± 1.7 88.1± 2.3 89.9± 1.6 90.0± 1.9 90.1± 2.5 91.0± 2.0
D2 96.3± 2.1 95.2± 2.1 93.6± 1.6 95.8± 1.3 95.9± 2.3 92.8± 1.9 97.0± 2.8
D3 88.7± 1.5 86.1± 1.8 88.5± 1.2 87.3± 1.1 88.1± 1.5 86.4± 2.0 90.0± 1.9
D4 94.7± 1.9 89.8± 1.3 93.3± 1.0 94.1± 1.4 92.3± 2.8 90.5± 1.9 95.5± 2.7
D5 89.1± 2.0 88.2± 1.8 87.5± 1.1 86.8± 2.2 88.3± 1.9 85.5± 1.5 90.0± 1.1
D6 94.2± 1.1 93.3± 2.1 92.6± 0.7 91.8± 1.7 93.4± 2.5 89.7± 1.9 95.5± 2.7
D7 90.2± 2.0 88.2± 1.7 85.5± 1.2 87.8± 1.3 84.7± 1.9 88.3± 2.3 91.0± 2.0
D8 93.6± 1.3 87.7± 1.9 90.2± 1.7 89.5± 2.1 93.3± 1.5 90.2± 2.8 94.0± 2.3
D9 88.7± 1.6 86.7± 1.1 88.1± 1.2 84.5± 1.6 79.3± 2.3 82.3± 2.5 90.0± 1.9
Average 92.8± 1.6 88.5± 1.6 89.4± 1.5 89.2± 1.6 88.7± 2.2 88.0± 2.1 93.0± 2.2

useful features from training data. LSTM (Yuan, Li & Li, 2017) performed better than
the rest of the previously used machine learning-based methods. However, the proposed
method achieved more good outcomes than LSTM based method because of the fusion
of the proposed deep reconstructive machine learning-based classification. 10 fold
experimental results of Deep AutoEncoder, ELM, and MSDA on dataset D1 to D9 are
shown in (Figs. 3, 4 and 5).

Impact of number of neurons over accuracy
We have evaluated the accuracy of the proposed technique by integrating varying numbers
of Neurons to construct the ultimate classifier. The datasets used for experimentations are
D1 to D9. Precisely, we changed the amount of Neurons to be combined, between 2 to
10. Furthermore, we randomly selected the number of layers for each Neuron from the
set Lm= [1,3,5,7,9,11]. Subsequently, these Multi-layer Stacked Denoising Autoencoders
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Figure 3 AutoEncoder: 10 fold experimental results of D1 to D9 data sets.
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(MSDAs) are fused using the Reconstructive-based scheme for classification, resulting in
the creation of our final classifier.

The accuracy results presented in Figs. 6, 7, 8 show the variation in performance by
varying numbers of MSDAs for each dataset. Eventually, the accuracy improved with the
increment of MSDAs.Evidently, as the number of MSDAs increases, the accuracy improves
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Figure 6 AutoEncoder: Impact of varying neuron numbers on accuracy across datasets D1 to D9.
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Figure 7 ELM: Impact of varying neuron numbers on accuracy across datasets D1 to D9.
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across all datasets and starts saturating at approximately sixMSDAs. This trend underscores
the effectiveness of the proposed fusion approach.

CONCLUSION
Interconnection of communication devices from customers to a grid can make it more
vulnerable to network attacks. With the rapid development of smart grids, it is crucial
to have cutting-edge and adaptable solutions to guarantee their secure and efficient
functioning in an increasingly interconnected world. We proposed a reconstructive deep-
learning approach that can easily integrate any new class of attack without the need to
retrain the whole system. The proposed method includes training or shallow and deep
reconstructive models, each geared towards understanding and classifying different attack
types. A novel class-specific reconstructive error-based classification underpinned the
accurate attack identification. Experiments are conducted using two intrusion detection
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Figure 8 MSDA: Impact of varying neuron numbers on accuracy across datasets D1 to D9.
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datasets and their subsets. The outcomes revealed that the proposed approach performed
better than the other approaches under consideration in the aspect of accuracy. The
uniqueness of the proposed method is its capability to learn new attack classes without any
retraining, making it different from conventional methods and minimizing the possibility
of disruption in the regular operation of the smart grid.
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