
Cloud type classification using deep
learning with cloud images
Mehmet Guzel1, Muruvvet Kalkan1, Erkan Bostanci1, Koray Acici2 and
Tunc Asuroglu3

1 Department of Computer Engineering, Ankara University, Ankara, Turkey
2Department of Artificial Intelligence and Data Engineering, Ankara University, Ankara, Turkey
3 Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland

ABSTRACT
Clouds play a pivotal role in determining the weather, impacting the daily lives of
everyone. The cloud type can offer insights into whether the weather will be sunny or
rainy and even serve as a warning for severe and stormy conditions. Classified into
ten distinct classes, clouds provide valuable information about both typical and
exceptional weather patterns, whether they are short or long-term in nature. This
study aims to anticipate cloud formations and classify them based on their shapes
and colors, allowing for preemptive measures against potentially hazardous
situations. To address this challenge, a solution is proposed using image processing
and deep learning technologies to classify cloud images. Several models, including
MobileNet V2, Inception V3, EfficientNetV2L, VGG-16, Xception, ConvNeXtSmall,
and ResNet-152 V2, were employed for the classification computations. Among
them, Xception yielded the best outcome with an impressive accuracy of 97.66%. By
integrating artificial intelligence technologies that can accurately detect and classify
cloud types into weather forecasting systems, significant improvements in forecast
accuracy can be achieved. This research presents an innovative approach to studying
clouds, harnessing the power of image processing and deep learning. The ability to
classify clouds based on their visual characteristics opens new avenues for enhanced
weather prediction and preparedness, ultimately contributing to the overall accuracy
and reliability of weather forecasts.

Subjects Algorithms and Analysis of Algorithms, Computer Vision, Data Mining and Machine
Learning, Neural Networks
Keywords Cloud types, CNN, Deep learning, Image classification, Transfer learning

INTRODUCTION
The field of meteorology, which has gained widespread recognition across the globe in
recent years, encompasses a multitude of factors when formulating weather forecasts.
Among these factors, humidity, temperature, and pressure stand out as crucial elements.
However, it is the study of clouds that lies at the heart of weather prediction.
Meteorological systems demonstrate remarkable accuracy, particularly in short-term
forecasts, achieved through the meticulous classification of clouds based on their coverage
percentage and types (Kalkan et al., 2022).

In addition, in climate change research clouds have a key role. While clouds affect the
climate, at the same time climate also influences clouds, in other words there is a powerful
correlation between the two. Although this correlation is complex and uncertain at times,

How to cite this article Guzel M, Kalkan M, Bostanci E, Acici K, Asuroglu T. 2024. Cloud type classification using deep learning with cloud
images. PeerJ Comput. Sci. 10:e1779 DOI 10.7717/peerj-cs.1779

Submitted 4 October 2023
Accepted 5 December 2023
Published 3 January 2024

Corresponding author
Tunc Asuroglu,
tunc.asuroglu@tuni.fi

Academic editor
Khalid Raza

Additional Information and
Declarations can be found on
page 26

DOI 10.7717/peerj-cs.1779

Copyright
2024 Guzel et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.1779
mailto:tunc.�asuroglu@�tuni.�fi
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1779
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

two important examples could be clouds’ effect on water resources distribution and water
cycle (World Meteorological Organization, 2017). Thus, it should be considered that
identifying and understanding cloud types plays a critical part not only in determining
weather conditions but also in fathoming climate change better.

Clouds are fundamentally grouped under ten categories. They are classified by two
factors: the first is the height and the second is the shape of clouds. According to their
height, the clouds are grouped under three superclasses, see Table 1 and Fig. 1.

High clouds: cirrus, cirrocumulus, cirrostratus.
Mid-height clouds: altocumulus, altostratus, nimbostratus.
Low clouds: stratus, stratocumulus, cumulus, cumulonimbus.

Table 1 Cloud type heights.

Cloud type Low clouds Mid-height clouds High clouds

Altocumulus (Ac) X

Altostratus (As) X

Cumulonimbus (Cb) X

Cirrocumulus (Cc) X

Cirrus (Ci) X

Cirrostratus (Cs) X

Cumulus (Cu) X

Nimbostratus (Ns) X

Stratocumulus (Sc) X

Stratus (St) X

Figure 1 Cloud types by height (Akin, 2020). Full-size DOI: 10.7717/peerj-cs.1779/fig-1

Guzel et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1779 2/28

http://dx.doi.org/10.7717/peerj-cs.1779/fig-1
http://dx.doi.org/10.7717/peerj-cs.1779
https://peerj.com/computer-science/

Each cloud type carries distinct characteristics, allowing for specific interpretations.
Consider the following examples: Stratocumulus clouds often result in a light drizzle, while
Nimbostratus clouds bring forth heavy rainfall accompanied by thunder and hail. The
presence of Altostratus clouds indicates the likelihood of extreme weather events, as they
have the potential to develop into nimbostratus clouds, which can generate rain as well as
snow (Akin, 2020). Cirrus clouds, although capable of producing precipitation, never reach
the ground as they evaporate before reaching the surface. These examples highlight how
the shape and altitude of clouds enable experts to make precise weather predictions.
Leveraging modern artificial intelligence technologies, rather than relying on outdated
methods, can significantly reduce prediction errors.

Deep learning, an advanced field within artificial intelligence, offers a practical
technique for image classification in conjunction with image processing. It operates
through specialized architectures known as artificial neural networks, which mimic the
structure and functionality of human and animal brains (Alzubaidi et al., 2021). Taking
this concept further, convolutional neural networks (CNNs) perform calculations using
artificial neurons that traverse specific layers. As a powerful branch of deep learning, CNNs
are particularly effective in image classification tasks, hence their selection for this
experiment (Yılmaz et al., 2020).

In everyday applications of deep learning, a method called transfer learning proves
highly valuable. Transfer learning involves leveraging previously acquired knowledge
when encountering new problems. By retaining and reusing learned information, this
approach enables easier problem-solving and faster results. Unlike traditional machine
learning methods that require relearning for each task, deep learning methods with
transfer learning achieve higher accuracy rates by leveraging results and weights acquired
from previous tasks. Therefore, the research utilized the transfer learning method in
training the deep learning models.

The academic work is elaborated in the following sections. The Literature Review
section presents relevant prior studies and the literature on the employed methods. The
Methodology section explains the chosen experimental approach, including the input
dataset and a step-by-step algorithm. The Experimental Results and Discussion sections
provide the outcomes of the experimental program and discuss them, respectively. Finally,
the Conclusion section summarizes the study, offers insights into the future, and provides
suggestions for further improvement.

LITERATURE REVIEW
In recent decades, application of artificial intelligence technologies have become much
more common compared to before. Although various fields employ AI solutions for
certain problems, there are not many studies and applications on the issue of “classification
of cloud types”. With neural networks, the task of classifying cloud images had been done
with approaches that contain a few linear layers. Then, neural networks with nonlinear and
non-parametric layers became able to handle it. These architectures tried to base their
work on cloud textures as distinguishing features (Lee et al., 1990). Later on, the cloud
pictures from satellites were classified with extracting texture features via Singular Value

Guzel et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1779 3/28

http://dx.doi.org/10.7717/peerj-cs.1779
https://peerj.com/computer-science/

Decomposition (SVD) and Wavelet Packet (WP) matrix transforms (Tian et al., 1999;
Azimi-Sadjadi & Zekavat, 2000). Heinle, Macke & Srivastav (2010) managed to classify
cloud types from sky images, which is the same task this study aims to deliver, but with a
different approach, and it follows a K nearest neighbor based algorithm. Another study
with the same type of input and goal used the scale invariant feature transform (SIFT) and
a linear support vector machine (SVM) to accomplish the task (Xiao et al., 2016). In
addition, academic works that preferred semantic approaches also undertook the
classification of cloud types (Liu et al., 2019; Zhang et al., 2020). The same dataset of the
experiment was processed for classifying weather’s being cloudy or clear and calculating
the cloud coverage percentage in a study (Kalkan et al., 2022). However, the main
inspiration of this work is the CloudNet designed by Zhang et al. (2018), using the same
dataset, the Cirrus Cumulus Stratus Nimbus (CCSN) Database, with the same goal and
following different but similar methods involving CNNs. There are also other research
teams who experimented with CCSN dataset. One of them areGyasi & Swarnalatha (2023)
who designed a CNN model that is composed of modified MobileNet blocks and their
model is called Cloud-MobileNet. A new channel attention module is developed by Zhu
et al. (2022) to classify CCSN dataset. Lastly, a transfomer model approach is preferred by
Li et al. (2022) in their study of cloud classification in CCSN.

The target of this study is to experiment with CNNs based on pre-trained models
(implementing transfer learning) and to improve the outcomes produced. With the
techniques applied correctly, it is expected that the proposed approach of this academic
work surpasses the preceding studies.

A deep learning method called transfer learning is using the information obtained while
solving a past problem when an entirely different problem is encountered, which is similar
to how humans solve problems. Keeping previously learned information and using it for
new situations allows both to produce easier solutions and to get results in a shorter time.
While traditional machine learning methods relearn for each new task, deep learning
architectures using transfer learning yield higher accuracy rates, because they can benefit
from previously learnt results or weights. Transfer learning allows working on datasets
from different fields (Pan & Yang, 2009). For all these reasons, the transfer learning was
chosen for experimental models while conducting the research.

In the field of deep learning, various techniques are employed to enhance the
effectiveness of models. One such technique, known as freeze-out fine-tuning, aims to
elevate accuracy rates by selectively disabling (or freezing) certain layers within a model
during training. While the untouched layers are trained conventionally, the weights and
biases of the frozen layers remain unchanged (Brock et al., 2017). In this study, fine-tuning
was implemented by freezing one third of the model during the training process. The
experimental results section provides a comprehensive analysis of the impact and
outcomes derived from the fine-tuning procedure.

Since the method proposed by the experiment is transfer learning, certain pre-trained
models are selected as bases for main models: MobileNet V2, Inception V3,
EfficentNetV2L, VGG-16, Xception, ConvNeXtSmall and ResNet-152 V2. MobileNets,

Guzel et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1779 4/28

http://dx.doi.org/10.7717/peerj-cs.1779
https://peerj.com/computer-science/

mobile applications as their major target, were first proposed by Google researchers and
they strive to be fast, lightweight and adaptable (Howard et al., 2017, 2018).

Built by Google engineers and researchers, Inception architectures have dedicated layer
blocks called inception blocks. These blocks have a genuine parallel convolutional layer
structure, and they contain a concat layer at the end which concatenates the outputs of the
predecessor parallel layers into a single output. Along with the unorthodox parallel
convolutional layers, Inception models settle the setbacks of having a very deep network by
calculating loss values in the intermediate layers and combining them with the final loss
value (Christian et al., 2015).

Published by Google, EfficientNets are powerful models that are based on a MobileNet
like structure and scaled efficiently into much more accurate. Scaling CNNs is a common
practice and it can be done on width, depth or resolution of layers, but finding optimal
scaling coefficients was problematic. What EfficientNets proposed is to do a compound
scaling on an existing architecture following a certain way. The baseline model for
compound scaling has an architecture similar to MobileNet V2 and the compound scaled
EfficientNets have produced superior results compared to MobileNets and ResNets on
ImageNet dataset (Tan & Le, 2019, 2021).

Developed by the Visual Geometry Group (VGG) of Oxford University, VGG models
are deep architectures consisting of small convolutional filters. VGG models achieve their
goal of high accuracy, which is proven by rankings of ILSVRC-2014 (ImageNet Large Scale
Visual Recognition Competition) (Simonyan & Zisserman, 2014).

Developed by Chollet (2016) from Google, Xception is an architecture that takes the
structure of the Inception models to extreme, so Xception model managed to surpass
Inception models and it is named “Extreme Inception”.

After the introduction of transformers, CNNs started to go out of date. To catch up with
transformers certain design approaches are taken to modernize CNNs, so ConvNeXts were
proposed (Liu et al., 2022).

First designed and implemented by Microsoft researchers, ResNets aspire to build
deeper layered architectures and resolve the shortcomings of having deep layers by residual
mapping (He et al., 2015, 2016).

METHODOLOGY
One of the most common methods used on image classification today is convolutional
neural networks. With the aim of classifying cloud types by their pictures, CNNs are
chosen for this academic work. In another previous study, the same classification has been
made on the same dataset with an architecture called CloudNet, which prefers this
technology and builds its own model from scratch. However, in this experiment, pre-
trained models of deep learning technology were preferred with the transfer learning
technique.

The dataset used in the experiment consists of 11 folders of pictures, each representing a
cloud type (Liu, 2019). Clouds are basically divided into ten classes. The eleventh type,
contrail (Ct) is the vapor trail of airplanes as a separate class, since they look similar to
actual clouds from ground. The dataset consists of 2,543 images. A total of 70% of them are

Guzel et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1779 5/28

http://dx.doi.org/10.7717/peerj-cs.1779
https://peerj.com/computer-science/

reserved for the training dataset, 20% for the validation dataset and the remaining 10% for
the test dataset. This split is random but balanced and made for each pre-trained model’s
experiment. All mentioned dataset partitions by their classes are given in the Table 2.

The Google Colab environment used in the study was preferred because it meets
technical requirements of this experiment, provides free access, does not require any
installation and it is cloud-based and suitable for collaboration. It is an environment where
machine learning and deep learning projects are often implemented. It is compatible with
the Python programming language and Tensorflow, which is an open source library
containing CNN structures and functionalities.

The hyperparameters chosen for this experiment are given in the Table 3.
The experimental program follows certain steps, these steps start with fetching the input

dataset. It continues with building a model using the determined pre-trained model as base
and training it. Finally the experiment steps end with evaluating the final model by test
dataset and producing predictions on some samples. This procedure is repeated for each
seven pre-trained models, only changing the base model, so that scientifically appropriate

Table 2 An example partition of cloud classes into training validation and testing classes.

Cloud type Train Validation Test

Ac 154 45 22

As 131 32 25

Cb 174 50 18

Cc 190 56 22

Ci 99 30 10

Cs 197 54 36

Ct 140 44 16

Cu 127 31 24

Ns 191 54 29

Sc 240 70 30

St 141 37 24

Table 3 Hyperparameters of the experiment.

Hyperparameter Value(s)

Train, validation, test split ratios 0.7: 0.2: 0.1

Batch size 32

Dropout 0.2

Learning rate 0.0001

Optimizer Adam

Loss type Categorical cross entropy

Epoch count 100

Fine tuned layers First 1/3 of base model layers are frozen out

Guzel et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1779 6/28

http://dx.doi.org/10.7717/peerj-cs.1779
https://peerj.com/computer-science/

outcomes would be produced and interpreted. The experimental program is described in
the following steps:

1. The images are loaded, then rescaled to the size of 224 × 224.

2. The dataset consisting of 2,543 images is partitioned into 70% as training, 20% as
validation and the remaining 10% as test dataset.

3. Data augmentation layer is defined. With “data augmentation”, the number of images
is increased synthetically. The image set with 2,543 images would become more than
tenfold of itself.

4. Each image in the dataset consists of pixels that are 1D matrices of RGB (red, green,
blue) values. These RGB values are in the range of [0,255]. These values are scaled into
the range [0,1] or [−1,1] to speed up and simplify the calculations. The preprocess
layers of the pre-trained models decide which target interval will be used. Therefore,
the required preprocess layer would be defined.

5. Pre-trained models, named as base models in this study, are loaded into the program
from Tensorflow library.

6. Models have multiple layers. During the training, the layers at a certain rate are frozen
and the training is done with the remaining layers. Aforementioned, this process is
called freeze-out fine tuning technique. In the experiment, training of about the first
one-third of the layers are disabled, namely frozen.

7. The pooling layer is created. In this layer, the global average pooling method is
preferred.

8. Then, the prediction layer which will produce outputs of the model is defined. Softmax
is chosen as the activation function, because input images’ probabilities of belonging to
each class are desired and softmax is the most fit solution to this issue.

9. The main model is built with these layers and base model. All pre-trained models
become the base model for its own experiment and the same steps are repeated for each
seven of them. Layer structure of main models are given in Fig. 2.

10. Next, the main model is compiled with categorical cross entropy loss and evaluation
metrics. The evaluation metrics are accuracy, precision, recall, F1-score, ROC AUC
(Area Under the Curve of Receiver Operating Characteristic).

11. In the following step, with 100 epochs, training of the main model is initialized. Train
and validation datasets are processed during the training. In each epoch, loss and
metric results are saved into a training history record.

12. After training is finished, recorded history of metric/loss results by epochs are
displayed as learning curves, since such data is perfect for visualizing the learning
process of CNNs.

13. In order to determine the success of an experimental main model, the trained main
model is evaluated by the test dataset, again with the same loss and metrics. These final
results allow main models to be compared.

Guzel et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1779 7/28

http://dx.doi.org/10.7717/peerj-cs.1779
https://peerj.com/computer-science/

14. Finally, a sample of predictions made on input images are displayed with the images
and their graphical prediction results. Some of them can be seen in Fig. 3.

These steps are also given in the following Algorithm 1.

EXPERIMENTAL RESULTS
All experiments were done in the cloud environment of Google Colab and the hardware
used is provided by it, as well. The GPU that ran the program is NVIDIA Tesla T4 whose
specifications include a memory with the size of 16 GB GDDR6 and the bandwidth up to
320 GB per second.

Aforementioned, the trained models make some predictions on random sample inputs
from the test dataset. Test dataset is chosen for the sample input, because the models were
not exposed to the test dataset, so the trained models are unbiased towards the test dataset

Figure 2 Layer structure of main models. Full-size DOI: 10.7717/peerj-cs.1779/fig-2

Guzel et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1779 8/28

http://dx.doi.org/10.7717/peerj-cs.1779/fig-2
http://dx.doi.org/10.7717/peerj-cs.1779
https://peerj.com/computer-science/

and would produce more objective results. The type of a prediction is in the form of a 1D
array/vector, because the final activation function of the prediction layer in all main
models is softmax function and classification type is categorical. The length of the array is
the number of classes, here it is eleven. Each element of the array is a number between zero
and one ([0, 1]) and the sum of all elements is always one. Namely, each index represents a
class and the element of that index is the input image’s probability of belonging to that
class. The final single predicted class is the one with the highest probability. Some samples
of these prediction results are displayed in the Fig. 3. Bar charts display the mentioned
array of probabilities, labels with percentages represent the final predicted classes along

Figure 3 Sample prediction results (Liu, 2019). Images that are predicted correctly are blue labeled,
while incorrect ones are red labeled. In the bar chart, probabilities of belonging to each class calculated by
a model are given. Real class is displayed as blue. If the highest probability is wrong, then it is red. The rest
of the probabilities are dyed to gray. Full-size DOI: 10.7717/peerj-cs.1779/fig-3

Guzel et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1779 9/28

http://dx.doi.org/10.7717/peerj-cs.1779/fig-3
http://dx.doi.org/10.7717/peerj-cs.1779
https://peerj.com/computer-science/

with their probability and finally the actual classes they belong to are displayed within
parenthesis. The color blue means accurate guesses, the gray demonstrates the other
probabilities and the red shows the incorrect predictions.

Evaluation metrics
For each model, training and test scores by the six metrics, accuracy, loss, precision, recall,
F1-score, ROC AUC, are produced and saved for examination and comparisons. In
addition, training runtimes are also taken into consideration for each model in order to

Algorithm 1 Building the experimental model, model training with fine tuning and evaluation.

Fetch the dataset

Split them as training, test and validation datasets

Approximately 70% training, 20% validation, 10% test

baseModel get the pretrained model (MobileNet V2, VGG-16, ResNet-152 V2, Xception, Inception
V3, EfficentNetV2L, ConvNeXtSmall)

model create the experimental model

model:layers empty, initial value

model.layers.insert(inputLayer)

model.layers.insert(dataAugmentationLayer

model.layers.insert(preprocessLayer)

model.layers.insert(baseModel)

model.layers.insert(globalAveragePoolingLayer)

model.layers.insert(predictionLayer)

baseModel:trainable True

fineTuneAt approximately 1/3 of the number of layers in the model

for k 2 f0; . . . ; fineTuneAtg do
baseModel:layers½k�:trainable False

end for

metrics ½accuracy; loss; precision;
recall; f 1Score; roc�
model.compile(metrics)

Train the model

Draw the learning curves

Evaluate model by the test dataset

Guzel et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1779 10/28

http://dx.doi.org/10.7717/peerj-cs.1779
https://peerj.com/computer-science/

measure the time performance. All these factors explicitly and numerically are given in this
section and fully scrutinized in the following Discussion section.

Each of the six metrics are calculated for all the eleven classes and the arithmetic average
of per class scores is calculated and accepted as the overall score. Except for the loss, the
five metrics are calculated from prediction values, the number of true/false positives and
negatives, Fig. 4.

� TP: Number of correctly predicted positive values, true positives

� TN: Number of correctly predicted negative values, true negatives

� FP: Number of incorrectly predicted as positive, but actually negative values, false
positives

� FN: Number of incorrectly predicted negative, but actually positive values, false
negatives

Accuracy is the most commonly accepted metric for evaluating a model’s overall
success, Eq. (1).

Accuracy ¼ TP þ TN
TP þ FP þ TN þ FN

(1)

Precision represents a prediction system’s skill of not hitting false positives. The higher
it is, the purer the set of predicted positives, in terms of true positives, Eq. (2).

Precision ¼ TP
TP þ FP

(2)

Figure 4 Prediction value definitions. Full-size DOI: 10.7717/peerj-cs.1779/fig-4

Guzel et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1779 11/28

http://dx.doi.org/10.7717/peerj-cs.1779/fig-4
http://dx.doi.org/10.7717/peerj-cs.1779
https://peerj.com/computer-science/

Recall shows how good the system is at not missing possible positives. The higher it is,
the more actual positives are predicted as positives, Eq. (3).

Recall ¼ TP
TP þ FN

(3)

Precision and recall are opposite polars in prediction systems. Depending on the
domain and the goal of the system, one of them may become more important, but in this
academic work a balance of them is preferrable. The metric chosen for evaluating the
balance of precision-recall is the F1-score. The higher it is, the more quality predictions are
produced by the model. The F1-score formula is given in Eq. (4).

F1 ¼ TP
TP þ 1

2 ðFP þ FNÞ (4)

If a model’s skill on predicting correctly vs incorrectly wanted to be presented, then the
receiver operating characteristic (ROC) curve could easily show it. Axis of the ROC curve
are TPR and FPR, see Eqs. (5) and (6). However, the numeric metric which shows the
skillfulness of a model is actually the area under the curve (AUC) of ROC, or shortly ROC
AUC, see Fig. 5.

TPR ¼ TP
TP þ FN

(5)

FPR ¼ FP
FP þ FN

(6)

The final metric is the cross entropy loss. There are various loss types, but the categorical
cross entropy loss is selected. The loss represents how far is the prediction from the actual
value. The less it is, the more accurate predictions are being made by the architecture.

Since the training is done with epochs and in each epoch evaluation metrics are
calculated, it is possible to draw learning curves. Also, the models are trained with two
datasets, training and validation, so for each model and accuracy-loss metrics there are two
learning curves.

Figure 5 ROC curve and its AUC. Full-size DOI: 10.7717/peerj-cs.1779/fig-5

Guzel et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1779 12/28

http://dx.doi.org/10.7717/peerj-cs.1779/fig-5
http://dx.doi.org/10.7717/peerj-cs.1779
https://peerj.com/computer-science/

First of all, for all the models and two datasets, accuracy and loss curves are much more
varying depending on the model. The following observations are made on the learning
curves. MobileNet V2 based model’s learning curves display that this model learning and
mastering process is overall moderate in Figs. 6 and 7. The curves of the VGG-16 are
gradual and even close to linear in all metrics in Figs. 8 and 9. The learning curves of the
ResNet-152 V2, Inception V3, EfficientV2L, Xception, ConvNeXtSmall based models are
all steep, see Figs. 10–19.

In addition, a confusion matrix is made for each model. Since this is a multi-class
classification, the confusion matrices are based on actual vs predicted classes of test dataset
images. Since dataset’s random split of train, validation and test is made for each model,
the image classes are distributed differently. The confusion matrices by classes are given in
Figs. 20 and 21.

The final evaluation was done with the test dataset, so by each metric models based on
transfer learning can be objectively compared. By accuracy and loss, Xception gave the best
result with 97.66% and 0.06, followed closely by, and equal in loss, ConvNeXtSmall.
Xception also got all the highest precision, recall and F1-Score by wide margins. In terms of
ROC AUC, ConvNeXtSmall with the first place got 99.99% and Xception with the second
got a close 99.98%. Overall Xception got all the best scores, except for ROC AUC but
became second with a 0.01% difference. See Table 4 along with Figs. 22–24.

In order to test the affect of freezeout fine tuning on the proposed models, the same
experiment is repeated without it. Namely, all layers of the base models are enabled for
training. The accuracy results of them are compared and given in Table 5. As it can be seen
from these results, freezeout fine tuning technique has an overall positive impact on the
accuracy of all models.

The best produced accuracy of the proposed method with Xception based model is
compared against some of the latest literature that also scored themselves with CCSN
dataset. The comparison is given in Table 6 and it can be seen that our proposed approach
cam best among the other DL models.

For machine learning solutions one of the biggest challenges is time performance of
models/algorithms. Time efficiency of algorithms depending on the input size n can be
expressed with the big O notation like O(n). However, for complex solutions like CNN
architectures of deep learning, the time efficiency is mostly independent of input size. The
impacting factors of their performance are the model’s structural features, for example the
number, width and depth of layers, and they are not single numbers that can be shown like
the n of the O(n). Thus, it is not possible to express the time efficiency of CNNs with big O
notations. Although formulating the time performance is not possible, the runtime speed
of the training sessions of CNNs can be measured in seconds, so that model speed can be
compared with each other.

Since it is built for mobile purposes with an expectancy of being fast, MobileNet V2
became the fastest model of all by a wide margin. Inception V3, Xception, VGG-16,
ResNet-152 V2 had moderate time efficiency, while ConvNeXtSmall and EfficientNetV2L
got the last places. See Table 7.

Guzel et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1779 13/28

http://dx.doi.org/10.7717/peerj-cs.1779
https://peerj.com/computer-science/

Figure 6 Accuracy learning curves of MobileNet V2. Full-size DOI: 10.7717/peerj-cs.1779/fig-6

Figure 7 Loss learning curves of MobileNet V2. Full-size DOI: 10.7717/peerj-cs.1779/fig-7

Figure 8 Accuracy learning curves of VGG-16. Full-size DOI: 10.7717/peerj-cs.1779/fig-8

Guzel et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1779 14/28

http://dx.doi.org/10.7717/peerj-cs.1779/fig-6
http://dx.doi.org/10.7717/peerj-cs.1779/fig-7
http://dx.doi.org/10.7717/peerj-cs.1779/fig-8
http://dx.doi.org/10.7717/peerj-cs.1779
https://peerj.com/computer-science/

Figure 9 Loss learning curves of VGG-16. Full-size DOI: 10.7717/peerj-cs.1779/fig-9

Figure 10 Accuracy learning curves of ResNet-152 V2. Full-size DOI: 10.7717/peerj-cs.1779/fig-10

Figure 11 Loss learning curves of ResNet-152 V2. Full-size DOI: 10.7717/peerj-cs.1779/fig-11

Guzel et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1779 15/28

http://dx.doi.org/10.7717/peerj-cs.1779/fig-9
http://dx.doi.org/10.7717/peerj-cs.1779/fig-10
http://dx.doi.org/10.7717/peerj-cs.1779/fig-11
http://dx.doi.org/10.7717/peerj-cs.1779
https://peerj.com/computer-science/

Figure 12 Accuracy learning curves of Inception V3. Full-size DOI: 10.7717/peerj-cs.1779/fig-12

Figure 13 Loss learning curves of Inception V3. Full-size DOI: 10.7717/peerj-cs.1779/fig-13

Figure 14 Accuracy learning curves of EfficentNetV2L. Full-size DOI: 10.7717/peerj-cs.1779/fig-14

Guzel et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1779 16/28

http://dx.doi.org/10.7717/peerj-cs.1779/fig-12
http://dx.doi.org/10.7717/peerj-cs.1779/fig-13
http://dx.doi.org/10.7717/peerj-cs.1779/fig-14
http://dx.doi.org/10.7717/peerj-cs.1779
https://peerj.com/computer-science/

Figure 15 Loss learning curves of EfficentNetV2L. Full-size DOI: 10.7717/peerj-cs.1779/fig-15

Figure 16 Accuracy learning curves of Xception. Full-size DOI: 10.7717/peerj-cs.1779/fig-16

Figure 17 Loss learning curves of Xception. Full-size DOI: 10.7717/peerj-cs.1779/fig-17

Guzel et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1779 17/28

http://dx.doi.org/10.7717/peerj-cs.1779/fig-15
http://dx.doi.org/10.7717/peerj-cs.1779/fig-16
http://dx.doi.org/10.7717/peerj-cs.1779/fig-17
http://dx.doi.org/10.7717/peerj-cs.1779
https://peerj.com/computer-science/

When all the results are considered, Xception can be considered to get the most desired
outcomes with being the best or the second best in all metrics and the third in time
performance. The VGG-16 based model got the results that can be considered the worst
among its peers.

DISCUSSION
As mentioned earlier, the Xception-based experimental model emerged as the top-
performing model, achieving an impressive accuracy rate of 97.66%, which is widely
recognized as a key metric of model success. In addition to exhibiting the lowest loss, the
model also achieved the second-highest ROC AUC score, with a marginal difference of
only 0.01%. Notably, high precision and high recall are typically challenging to achieve
simultaneously, as these metrics are often at odds with each other. However, the Xception
model achieved the highest values for both precision and recall, striking a remarkable

Figure 18 Accuracy learning curves of ConvNeXtSmall.
Full-size DOI: 10.7717/peerj-cs.1779/fig-18

Figure 19 Loss learning curves of ConvNeXtSmall. Full-size DOI: 10.7717/peerj-cs.1779/fig-19

Guzel et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1779 18/28

http://dx.doi.org/10.7717/peerj-cs.1779/fig-18
http://dx.doi.org/10.7717/peerj-cs.1779/fig-19
http://dx.doi.org/10.7717/peerj-cs.1779
https://peerj.com/computer-science/

balance represented by the F1-score. This underscores the effectiveness of leveraging the
parallel convolution of InceptionNets for accurate cloud classification tasks.

The ConvNeXtSmall model indisputably secured the second position, demonstrating an
accuracy of 97.27%, making it the second-best model with predictions surpassing 97%.
Despite ranking fourth in precision, it exhibited the highest recall. However, given the
emphasis on achieving balance in this experiment, the F1-Score provides a better indicator
of the model’s overall quality, revealing that the ConvNeXtSmall architecture delivered the
second-best balance. Modernized convolutional neural networks (CNNs) aimed at
bridging the gap with transformers also demonstrate promising capabilities in predicting
such targets.

The EfficientNetV2L model can be considered the third most successful model,
delivering satisfactory outcomes with an accuracy of 96.48%. In terms of precision-recall
and their balance, this model leans toward precision, but the F1-score demonstrates a

Figure 20 Confusion matrices by classes, representing image counts of test dataset. (A) MobileNet V2, (B) VGG-16, (C) ResNet-152 V2, (D)
Inception V3. Full-size DOI: 10.7717/peerj-cs.1779/fig-20

Guzel et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1779 19/28

http://dx.doi.org/10.7717/peerj-cs.1779/fig-20
http://dx.doi.org/10.7717/peerj-cs.1779
https://peerj.com/computer-science/

Figure 21 Confusion matrices by classes, representing image counts of test dataset. (E) EfficientNetV2L, (F) Xception and (G) ConvNeXtSmall.
Full-size DOI: 10.7717/peerj-cs.1779/fig-21

Table 4 Evaluation metrics by base models.

Models Accuracy (%) Loss Precision (%) Recall (%) F1-score (%) AUC of ROC

MobileNet V2 96.36 0.17 94.84 91.88 93.34 99.83

VGG-16 86.33 0.42 87.42 84.78 86.09 98.75

ResNet-152 V2 95.70 0.11 97.40 94.15 95.75 99.78

Inception V3 95.31 0.10 96.92 93.55 95.21 99.91

EfficentNetV2L 96.48 0.10 97.51 95.86 96.68 99.95

Xception 97.66 0.06 98.28 97.90 98.09 99.98

ConvNeXtSmall 97.27 0.06 97.11 96.95 97.03 99.99

Guzel et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1779 20/28

http://dx.doi.org/10.7717/peerj-cs.1779/fig-21
http://dx.doi.org/10.7717/peerj-cs.1779
https://peerj.com/computer-science/

Figure 22 Graph of accuracy and ROC AUC on test dataset.
Full-size DOI: 10.7717/peerj-cs.1779/fig-22

Figure 23 Graph of precision, recall and F1-score on test dataset. Full-size DOI: 10.7717/peerj-cs.1779/fig-23

Guzel et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1779 21/28

http://dx.doi.org/10.7717/peerj-cs.1779/fig-22
http://dx.doi.org/10.7717/peerj-cs.1779/fig-23
http://dx.doi.org/10.7717/peerj-cs.1779
https://peerj.com/computer-science/

Figure 24 Graph of categorical cross entropy loss on test dataset.
Full-size DOI: 10.7717/peerj-cs.1779/fig-24

Table 6 Benchmark: comparison of the best accuracy in the latest technological approaches in the
literature and this study.

Study Best overall accuracy (%)

Zhang et al. (2018) 88.8

Li et al. (2022) 92.70

Zhu et al. (2022) 95.60

Gyasi & Swarnalatha (2023) 97.45

Ours (Xception) 97.66

Table 5 Evaluation metrics by freezeout fine tuning.

Models Accuracy (%) with fine tuning Accuracy without fine tuning

MobileNet V2 96.36 95.24

VGG-16 86.33 84.00

ResNet-152 V2 95.70 94.86

Inception V3 95.31 94.22

EfficentNetV2L 96.48 95.99

Xception 97.66 97.12

ConvNeXtSmall 97.27 96.59

Guzel et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1779 22/28

http://dx.doi.org/10.7717/peerj-cs.1779/fig-24
http://dx.doi.org/10.7717/peerj-cs.1779
https://peerj.com/computer-science/

commendable balance between the two. Scaling the architecture’s features to optimize
efficiency can be argued as a successful approach for this challenge.

The primary model based on ResNet-152 V2 generated results that can be deemed
intermediate among its peers. With an accuracy rate of 95.7%, ResNet-152 V2 achieved a
high success rate in its evaluation metrics. Thus, very deep architectures incorporating
residual mapping prove to be effective designs for this experiment.

MobileNet V2 is a model designed to prioritize speed while compromising prediction
quality as minimally as possible. Although there are cases where this trade-off may result in
a faster yet less accurate model, the 93.36% accuracy and other gratifying metric results
validate MobileNet V2’s proposed structure as a suitable choice in this experiment.

On the other hand, the VGG-16-based experimental model ranked last across all
metrics and significantly lagged behind its counterparts. With an accuracy of 86.33%, it is
the only model with accuracy below 90%. It exhibited the highest categorical cross-entropy
loss, indicating a greater deviation from correct predictions compared to other models.
Furthermore, it displayed the lowest precision and recall, along with the worst balance
result, as reflected in the F1-score. Although VGG models are deep CNNs composed of
small convolutional layers and have been successful in certain studies such as cloud
coverage classification (Kalkan et al., 2022), VGG-16 produced disappointing results in
this experiment.

In addition to evaluation metrics, another crucial factor for comparing the models is
their time efficiency. As previously mentioned, training runtimes were measured for all
models, providing the sole but sufficient data to assess this aspect. Unsurprisingly, the
fastest model was MobileNet V2, with a runtime of 45 min, as it prioritizes excellent time
performance. The Inception V3-based model secured the second position, closely followed
by its “extreme version,” Xception. Immediately after Xception, we have VGG-16, and
these four models can be considered in the range of very fast to moderately fast. ResNet-
152 V2 falls closer to the middle among all models. Lastly, ConvNeXtSmall ranks sixth,
while EfficientNetV2L concludes as the slowest, both considered more resource-intensive
models for data processing in this study.

These results clearly demonstrate that the Xception-based model not only produced the
best results in terms of accuracy but also exhibited good time performance.

Table 7 Training time table.

Models Training time (min)

MobileNet V2 45

VGG-16 68.33

ResNet-152 V2 91.66

Inception V3 56.66

EfficentNetV2L 145

Xception 65

ConvNeXtSmall 121.66

Guzel et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1779 23/28

http://dx.doi.org/10.7717/peerj-cs.1779
https://peerj.com/computer-science/

ConvNeXtSmall stands as the second-best model despite its slower architecture.
MobileNet V2, EfficientNetV2L, ResNet-152 V2, and Inception V3 all possess the
capability to deliver satisfyingly accurate predictions, with MobileNet V2 being the fastest,
EfficientNetV2L the slowest, and the rest falling in between, leaning toward the faster side.
However, VGG-16, despite its arguably time-efficient structure, generated the most
unsatisfactory results.

When considering the entire set of experimental results, it can be confidently stated that
the obtained outcomes are quite impressive, boasting very high accuracy and mostly
acceptable performance in other aspects. In this regard, employing a CNN with transfer
learning to classify cloud types proves to be an efficient approach, particularly when
compared to one of the major inspirations for this research and the publisher of the dataset
used in this experiment. The CloudNet achieved a maximum of 90% accuracy in class
accuracies (Zhang et al., 2018), further highlighting the efficacy of the proposed approach.

CONCLUSION
With the advancements in technology, accessing weather forecasts has become
commonplace, especially with the widespread use of smartphones. However, despite its
widespread usage, meteorological predictions still suffer from high error rates. One crucial
factor that significantly influences weather forecasts is the accurate identification and
classification of cloud types. Enhancing the precision of this process can help address this
challenge. Moreover, the classification of clouds not only improves the accuracy of weather
forecasts but also enables individuals to anticipate extreme weather events that have the
potential to cause disasters. By leveraging cutting-edge artificial intelligence technologies,
specifically deep learning, cloud type classification can be streamlined. Consequently, this
study focuses on employing convolutional neural networks (CNN) with transfer learning,
utilizing pre-trained models and fine-tuning techniques. The results obtained from this
study are presented, compared, and interpreted herein.

Base models of MobileNet V2, Inception V3, EfficientNetV2L, VGG-16, Xception,
ConvNeXtSmall, and ResNet-152 V2 were used, with the Xception model yielding the
most promising outcome. It is worth noting that the accuracy of most models exceeded
95%, with the exception of VGG-16. These results far surpass previous works on the same
subject, such as Cloud-MobileNet (Gyasi & Swarnalatha, 2023), which achieved the high
accuracy of 97.45%. Hence, it can be concluded that transfer learning, coupled with freeze-
out fine-tuning, has made a significant impact.

This academic study is anticipated to enhance existing meteorological forecast systems,
improve predictions of extreme weather events, and serve as inspiration for future research
in this field.

APPENDIX
Figure A1 explains the workflow of the proposed approach which comprises pre-training,
training, fine tuning, and lastly, evaluation phases.

Guzel et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1779 24/28

http://dx.doi.org/10.7717/peerj-cs.1779
https://peerj.com/computer-science/

Figure A1 Flowchart representation of the experiment. Full-size DOI: 10.7717/peerj-cs.1779/fig-25

Guzel et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1779 25/28

http://dx.doi.org/10.7717/peerj-cs.1779/fig-25
http://dx.doi.org/10.7717/peerj-cs.1779
https://peerj.com/computer-science/

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Mehmet Guzel analyzed the data, performed the computation work, prepared figures
and/or tables, and approved the final draft.
� Muruvvet Kalkan conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables, and
approved the final draft.
� Erkan Bostanci conceived and designed the experiments, performed the experiments,
authored or reviewed drafts of the article, and approved the final draft.
� Koray Acici analyzed the data, authored or reviewed drafts of the article, and approved
the final draft.
� Tunc Asuroglu analyzed the data, authored or reviewed drafts of the article, and
approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The data is available at Kaggle and Harvard Dataverse:
- https://www.kaggle.com/datasets/mmichelli/cirrus-cumulus-stratus-nimbus-ccsn-

database.
- Liu, Pu, 2019, “Cirrus Cumulus Stratus Nimbus (CCSN) Database”, https://doi.org/10.

7910/DVN/CADDPD, Harvard Dataverse, V2.
The code is available at GitHub and Zenodo:
- https://github.com/mrsKalkan/GitHub-Categorical-ConvNeXtSmall-with-

Confusion/tree/main.
- mrsKalkan. (2023). mrsKalkan/GitHub-Categorical-ConvNeXtSmall-with-

Confusion: v1.0.0 (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.10141318.

REFERENCES
Akin Y. 2020. Bulutlarin siniflandirilmasi: En yaygin görülen bulutlar hangileridir? Özellikleri

nelerdir? Hangi bulutlar yagmur getirir? Available at https://evrimagaci.org/bulutlarin-
siniflandirilmasi-en-yaygin-gorulen-bulutlar-hangileridir-ozellikleri-nelerdir-hangi-bulutlar-
yagmur-getirir-9764 (accessed 15 June 2023).

Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, Santamaría J, Fadhel
MA, Al-Amidie M, Farhan L. 2021. Review of deep learning: concepts, CNN architectures,
challenges, applications, future directions. Journal of Big Data 8(1):1–74
DOI 10.1186/s40537-021-00444-8.

Guzel et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1779 26/28

https://www.kaggle.com/datasets/mmichelli/cirrus-cumulus-stratus-nimbus-ccsn-database
https://www.kaggle.com/datasets/mmichelli/cirrus-cumulus-stratus-nimbus-ccsn-database
https://doi.org/10.7910/DVN/CADDPD
https://doi.org/10.7910/DVN/CADDPD
https://github.com/mrsKalkan/GitHub-Categorical-ConvNeXtSmall-with-Confusion/tree/main
https://github.com/mrsKalkan/GitHub-Categorical-ConvNeXtSmall-with-Confusion/tree/main
https://doi.org/10.5281/zenodo.10141318
https://evrimagaci.org/bulutlarin-siniflandirilmasi-en-yaygin-gorulen-bulutlar-hangileridir-ozellikleri-nelerdir-hangi-bulutlar-yagmur-getirir-9764
https://evrimagaci.org/bulutlarin-siniflandirilmasi-en-yaygin-gorulen-bulutlar-hangileridir-ozellikleri-nelerdir-hangi-bulutlar-yagmur-getirir-9764
https://evrimagaci.org/bulutlarin-siniflandirilmasi-en-yaygin-gorulen-bulutlar-hangileridir-ozellikleri-nelerdir-hangi-bulutlar-yagmur-getirir-9764
http://dx.doi.org/10.1186/s40537-021-00444-8
http://dx.doi.org/10.7717/peerj-cs.1779
https://peerj.com/computer-science/

Azimi-Sadjadi MR, Zekavat SA. 2000. Cloud classification using support vector machines. In:
IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the
Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat.
No. 00CH37120). Vol. 2, Piscataway: IEEE, 669–671.

Brock A, Lim T, Ritchie JM, Weston N. 2017. Freezeout: accelerate training by progressively
freezing layers. ArXiv preprint DOI 10.48550/arXiv.1706.04983.

Chollet F. 2016. Xception: deep learning with depthwise separable convolutions. CoRR
DOI 10.48550/arXiv.1610.02357.

Christian S, Vincent V, Sergey I, Jonathon S, Zbigniew W. 2015. Rethinking the inception
architecture for computer vision. CoRR DOI 10.48550/arXiv.1512.00567.

Gyasi EK, Swarnalatha P. 2023. Cloud-MobiNet: an abridged Mobile-Net convolutional neural
network model for ground-based cloud classification. Atmosphere 14(2):280
DOI 10.3390/atmos14020280.

He K, Zhang X, Ren S, Sun J. 2015. Deep residual learning for image recognition. CoRR
DOI 10.48550/arXiv.1512.03385.

He K, Zhang X, Ren S, Sun J. 2016. Identity mappings in deep residual networks. CoRR
DOI 10.48550/arXiv.1603.05027.

Heinle A, Macke A, Srivastav A. 2010. Automatic cloud classification of whole sky images.
Atmospheric Measurement Techniques 3(3):557–567 DOI 10.5194/amt-3-557-2010.

Howard A, Zhmoginov A, Chen LC, Sandler M, Zhu M. 2018. Inverted residuals and linear
bottlenecks: mobile networks for classification, detection and segmentation. Available at https://
www.arxiv-vanity.com/papers/1801.04381/.

Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H.
2017.MobileNets: efficient convolutional neural networks for mobile vision applications. ArXiv
preprint DOI 10.48550/arXiv.1704.04861.

Kalkan M, Bostancı GE, Güzel MS, Kalkan B, Özsarı Ş, Soysal Ö, Köse G. 2022. Cloudy/clear
weather classification using deep learning techniques with cloud images. Computers and
Electrical Engineering 102(7804):108271 DOI 10.1016/j.compeleceng.2022.108271.

Lee J, Weger RC, Sengupta SK, Welch RM. 1990. A neural network approach to cloud
classification. IEEE Transactions on Geoscience and Remote Sensing 28(5):846–855
DOI 10.1109/36.58972.

Li X, Qiu B, Cao G, Wu C, Zhang L. 2022. A novel method for ground-based cloud image
classification using transformer. Remote Sensing 14(16):3978 DOI 10.3390/rs14163978.

Liu P. 2019. Cirrus cumulus stratus nimbus (CCSN) database. Available at https://dataverse.
harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/CADDPD.

Liu Z, Mao H, Wu C, Feichtenhofer C, Darrell T, Xie S. 2022. A ConvNet for the 2020s. CoRR
DOI 10.48550/arXiv.2201.03545.

Liu CC, Zhang YC, Chen PY, Lai CC, Chen YH, Cheng JH, Ko MH. 2019. Clouds classification
from sentinel-2 imagery with deep residual learning and semantic image segmentation. Remote
Sensing 11(2):119 DOI 10.3390/rs11020119.

Pan SJ, Yang Q. 2009. A survey on transfer learning. IEEE Transactions on Knowledge and Data
Engineering 22(10):1345–1359 DOI 10.1109/TKDE.2009.191.

Simonyan K, Zisserman A. 2014. Very deep convolutional networks for large-scale image
recognition. ArXiv preprint DOI 10.48550/arXiv.1409.1556.

Tan M, Le QV. 2019. EfficientNet: rethinking model scaling for convolutional neural networks.
CoRR DOI 10.48550/arXiv.1905.11946.

Guzel et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1779 27/28

http://dx.doi.org/10.48550/arXiv.1706.04983
http://dx.doi.org/10.48550/arXiv.1610.02357
http://dx.doi.org/10.48550/arXiv.1512.00567
http://dx.doi.org/10.3390/atmos14020280
http://dx.doi.org/10.48550/arXiv.1512.03385
http://dx.doi.org/10.48550/arXiv.1603.05027
http://dx.doi.org/10.5194/amt-3-557-2010
https://www.arxiv-vanity.com/papers/1801.04381/
https://www.arxiv-vanity.com/papers/1801.04381/
http://dx.doi.org/10.48550/arXiv.1704.04861
http://dx.doi.org/10.1016/j.compeleceng.2022.108271
http://dx.doi.org/10.1109/36.58972
http://dx.doi.org/10.3390/rs14163978
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/CADDPD
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/CADDPD
http://dx.doi.org/10.48550/arXiv.2201.03545
http://dx.doi.org/10.3390/rs11020119
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.48550/arXiv.1409.1556
http://dx.doi.org/10.48550/arXiv.1905.11946
http://dx.doi.org/10.7717/peerj-cs.1779
https://peerj.com/computer-science/

Tan M, Le QV. 2021. EfficientNetV2: smaller models and faster training. CoRR
DOI 10.48550/arXiv.2104.00298.

Tian B, Shaikh MA, Azimi-Sadjadi MR, Haar THV, Reinke DL. 1999. A study of cloud
classification with neural networks using spectral and textural features. IEEE Transactions on
Neural Networks 10(1):138–151 DOI 10.1109/72.737500.

World Meteorological Organization. 2017. Understanding clouds. Available at https://public-old.
wmo.int/en/resources/world-meteorological-day/previous-world-meteorological-days/
understanding-clouds-2017 (accessed 15 June 2023).

Xiao Y, Cao Z, Zhuo W, Ye L, Zhu L. 2016. mCLOUD: a multiview visual feature extraction
mechanism for ground-based cloud image categorization. Journal of Atmospheric and Oceanic
Technology 33(4):789–801 DOI 10.1175/JTECH-D-15-0015.1.

Yılmaz AA, Guzel MS, Bostancı E, Askerzade I. 2020. A novel action recognition framework
based on deep-learning and genetic algorithms. IEEE Access 8:100631–100644
DOI 10.1109/ACCESS.2020.2997962.

Zhang J, Liu P, Zhang F, Iwabuchi H, de Moura AAHA, de Albuquerque VHC. 2020. Ensemble
meteorological cloud classification meets internet of dependable and controllable things. IEEE
Internet of Things Journal 8(5):3323–3330 DOI 10.1109/JIOT.2020.3043289.

Zhang J, Liu P, Zhang F, Song Q. 2018. CloudNet: ground-based cloud classification with deep
convolutional neural network. Geophysical Research Letters 45(16):8665–8672
DOI 10.1029/2018GL077787.

Zhu W, Chen T, Hou B, Bian C, Yu A, Chen L, Tang M, Zhu Y. 2022. Classification of ground-
based cloud images by improved combined convolutional network. Applied Sciences 12(3):1570
DOI 10.3390/app12031570.

Guzel et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1779 28/28

http://dx.doi.org/10.48550/arXiv.2104.00298
http://dx.doi.org/10.1109/72.737500
https://public-old.wmo.int/en/resources/world-meteorological-day/previous-world-meteorological-days/understanding-clouds-2017
https://public-old.wmo.int/en/resources/world-meteorological-day/previous-world-meteorological-days/understanding-clouds-2017
https://public-old.wmo.int/en/resources/world-meteorological-day/previous-world-meteorological-days/understanding-clouds-2017
http://dx.doi.org/10.1175/JTECH-D-15-0015.1
http://dx.doi.org/10.1109/ACCESS.2020.2997962
http://dx.doi.org/10.1109/JIOT.2020.3043289
http://dx.doi.org/10.1029/2018GL077787
http://dx.doi.org/10.3390/app12031570
http://dx.doi.org/10.7717/peerj-cs.1779
https://peerj.com/computer-science/

	Cloud type classification using deep learning with cloud images
	Introduction
	Literature review
	Methodology
	Experimental results
	Discussion
	Conclusion
	Appendix
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

